РУБРИКИ |
Теория Эволюции (шпаргалка) |
РЕКЛАМА |
|
Теория Эволюции (шпаргалка)Генетический гомеостаз определяет, в какой мере генофонд может реагировать на отбор. Чем меньше некий частный аспект фенотипа связан с общей приспособленностью, тем больше вероятность того, что фенотип отреагирует на давление отбора по этому признаку. Если признак в природе не влияет на приспособленность, как, н-р, большое число щетинок у дрозофилы или причудливая окраска голубей и попугаев, то естественный отбор не использует возможностей, выявляемых искусственным отбором. Чем более специфичен данный признак и чем меньшим числом генов он определяется (н-р, устойчивость к какому-то токсичному веществу), тем быстрее будет реакция на отбор. Доказательством этому служит устойчивость к инсектицидам. Полиморфизм: Полиморфизм – одно из наиболее универсальных явлений жизни: среди всех организмов как растительного, так и животного царства мы встречаем разнообразие форм одного вида. Это и различия в окраске цветков розы, и красная и чёрная формы двухточечной божьей коровки, и различный рисунок на надкрыльях многих жуков, и право- или левозакрученные раковины моллюсков, и различный цвет меха норок, Известный биолог и филосол Холдейн назвал человека самым полиморфным видом на Земле. У человека полиморфны практически все признаки: цвет глаз и волос, форма носа и черепа, группа крови, ритм суточной активности («совы» и «жаворонки»), тип нервной системы, способность различать цвета, звуки, запахи и т.д. Каждый из нас знает, что у него нет двойника, и даже однояйцевых близнецов, как две капли воды похожих друг на друга, все же различают их родители. В ряде случаев полиморфизм бывает представлен двумя или незначительным числом форм. Н-р, человек может быть либо левшой, либо правшой. Кстати, это не имеет существенного значения для отбора. А вот у рыбки четырехглазки из Южной Америки самец левша должен найти только самку правшу, чтобы оставить потомство. Его анальный плавник, участвующий в оплодотворении, двигается либо только влево, либо только вправо. У жуков березовых трубковертов есть особи, закручивающие кулечки из листьев березы для откладки яиц вправо, а есть жуки, кот. также разрезают лист по сложной кривой, но закручивают его влево. Однако не всегда мы встречаемся с таким четким разделением организмов по какому-либо признаку на два класса. В свое время Р. Гольдшмидт показал, что даже формирование. двух полов у непарного шелкопряда и других несекомых не обходится без промежуточных форм, интерсексов. Примеры полиморфизма у растений, так называемая гетеростилия, описаны еще Ч. Дарвином. Основы современных представлений о полиморфизме заложены Четвериковым и Вавиловым. Сейчас изучается полиморфизм от биохимических различий до поведения. НАСЛЕДСТВЕННАЯ ОСНОВА ПОЛИМОРФИЗМА Полиморфизм – любое разнообразие форм одного и того же вида организмов – охватывает все признаки: цитологические, биохимические, физиологические, морфологические и поведенческие. Он может быть результатом дискретной внутрипопуляционной изменчивости, наследственного характера, а может определяться нормой реакции организма на условия внешней среды, причем границы такой реакции могут колебаться в широких пределах. Возникает генетический полиморфизм благодаря закреплению в популяции генных, хромосомных и геномных мутаций. Поэтому и выделяют генный (аллельный), хромосомный, геномный полиморфизм. Генный полиморфизм в простейшем случае обусловлен наличием двух аллелей, один из которых может быть доминантным. В этом случае в популяции возникает 3 групы генотипов и 2 группы фенотипов. H-р, способность людей ощущать вкус фенилтиомочевины определяется доминантным аллелем Т, Ощущающие вкус имеют либо генотип TT, либо Tt, а не ощущающие — tt. Нередко полиморфизм обусловлен. действием трех и более аллелей — это так называемый множественный аллелизм. Так, четыре группы крови человека возникают в сочетания трех аллелей — А, В, 0: первая группа всегда гомозиготна; вторая состоит из гомозигот АА или гетерозигот A 0; третья — из гомозигот ВВ или гетерозигот 0В; и, наконец, четвертая группа всегда гетерозиготна — AB •'' Xpомосомный полиморфизм может возникать за счет перестроек типа инверсий (изменение последовательности расположения генов внутри хромосом) Такие перестройки обнаружены в конце 30-х годов Н. П. Дубининым, Г. Г. Тиняковым и , Н. Соколовым. Изучая природные популяции дрозофил, они обнаружили, что частота инверсий в популяциях плодовых мух зависит от сезона года. Изменчивость частоты хромосомных перестроек наблюдали и американские генетики: концентрация инверсий в популяциях дрозофил в горах Сьерра-Невада четко зависела от высоты ареала каждой популяции над уровнем моря. Следовательно, хромосомный полиморфизм широко распространен в природе, имеет явный приспособительный характер. Хромосомные перестройки происходят на одной из стадий мейоза, когда хромосомы соединены в области центромеры. При этом может происходить не только обмен участками хромосом, приводящий к изменению порядка расположения некоторых их участков, но и к увеличению или уменьшению числа самих хромосом последнее время выяснилось, что именно такой тип хромосомного полиморфизма встречается в популяциях многих видов организмов. Н-р, у кижуча число хромосом колеблется от 58 до 60, у радужной форели от 58 до 64, у беломорской сельди встречаются особи с 52 и 54 хромосомами. Подобные же факты обнаружены у млекопитающих Н. Н. Воронцовым и другими кариосистематиками. Геномный полиморфизм основан на мутациях, при которых происходит изменение числа полных гаплоидных наборов: хромосом и возникают так называемые полиплоидные организмы. Н-р, у серебряного карася описаны популяции с набором, содержащим 100, 150 и 200 хромосом, тогда как нормальное диплоидное число их равно 50. И если в природных условиях геномный полиморфизм животных — явление не такое уж частое, то в растительном мире почти третья часть всех видов цветковых растений — полиплоиды. Теперь зададим себе вопрос: как соотносятся в популяции гено- и фенотипические различия? Однозначно ли генотипические изменения проявляются в фенотипе. Еще А. Вейсман обнаружил у бабочки , пестрокрыльницы две формы. Одна из них — темная — развивается из гусениц, выросших в условиях длинного светового дня, и выводится без диапаузы в конце лета; другая — со светлыми крыльями — выходит из перезимовавших гусениц, выросших в условиях короткого осеннего дня. Полиморфизм в данном случае незафиксирован жестко генетическими задатками: различные формы одного и того же вида возникают благодаря тому, что при одинаковом генотипе организмы, развиваясь в разных условиях, формируют разные фенотипы. Поэтому и окраска особей зависит от места обитания, от сезона года и позволяет популяции адекватно реагировать на меняющиеся условия среды. Принято считать, что полиморфизм, контролируемы небольшим числом генов строго выражен в в виде определеннных фенотипов без промежуточных между крайними вариациями форм. Однако мы обнаружили много примеров непрерывной изменчивости полиморфных признаков у многих видов жесткокрылых, чешуекрылых, перепончатокрылых, стрекоз и других нaсекомых'. Н-р, в биоценозах Урала листоед лапландский (Meiasoma lapponica) представлен и чисто синими жуками, и красными и 18 переходными по рисунку формами. СТАБИЛЬНОСТЬ ПОЛИМОРФИЗМА В ПОПУЛЯЦИИ Полиморфной считаем популяцию, состоящую из особей двух и более морфологических типов. Исследуя многочисленные популяции жука восковика перевязанного, распространенного в СССР от Карпат до Камчатки и от Туруханска до Саян, мы обнаружили, что в каждой из них присущ свой собственный набор аберраций рисунка на надкрыльях жука. Частота встречаемости таких форм оказалась стабильной из поколения в поколение для каждой популяции. Н-р, в Ильменском государственном заповеднике на Урале частота девяти аберраций окраски у другого вида — восковика обыкновенного — не изменялась на протяжении 10 лет. Стабильность в частоте встречаемости характерных форм может служить фенотипическим «паспортом», по которому легко определить, к какой популяции данного вида относятся те или иные особи. Один из известных исследователей полиморфизма М. Гордон, изучавший изменения окраски хвоста у рыбок пециллий в речных системах Мексики, мог по 70—100 рыбкам узнать, из какой реки они выловлены. Имеющую только ей свойственный фенотипический облик, каждую популяцию можно представить как интегрированную и коадаптированную генетическую систему с характерной для нее стабильностью, или адаптивной инерцией. Коадаптированность этой системы формируется за счет постоянного скрещивания и обмена генами между особями, живущими на одной территории и приспособленными к ней. Отбор же оставляет в популяции лишь те гены, кот. дают хорошо приспособленные генотипы. Они-то и формируют специфический для. популяции полиморфизм. Стабильность полиморфизма проявляется иногда даже для редких признаков. Н-р, однояйцевые близнецы в каждой популяции человека рождаются со строгой частотой. Так, в Нигерии в среднем на каждую тысячу родов рождаются близнецы в 39,9 случаев, в США — 11,8; в Греции — 10,9; в Японии — 2,7. Поразительна и устойчивость полиморфизма во времени. К. Дайвер, используя палеонтологические материалы, установил, что даже 30 тыс лет назад частота форм наземного моллюска Cepaea была такой же, как в настоящее время. У другого полиморфного моллюска в Уганде обнаружены сейчас 5 форм, найденные в тех же пропорциях еще в отложениях плейстоцена — 8—10 тыс. лет назад. Какие же механизмы поддерживают, уровень полиморфизма в популяции. Один из них — так называемый ключевой механизм, примером которого является гетеростилия у растений. Часть таких растений имеет короткие тычинки и длинный столбик, тогда как у растений другой половины популяции тычиночные нити длинные, а столбик, наоборот, короткий. Эти морфологические различия, обусловленные одной парой аллелей, приводят к тому, что вредное для вида самоопыление становится механически возможным. В результате в естественных условиях: происходит перекрестное опыление цветков, принадлежащих только растениям разных типов. Следовательно, гетеростилия — это специальный механизм перекрестного скрещивания и благодаря ему в каждом поколении популяции достигается необходимое равенство частот обоих типов особей.. Другой механизм, обеспечивающий определенную степень полиморфности популяции – селективное преимущество гетерозигот. Характерный пример— полиморфизм гемоглобина человека. Среди народов Африки и Ближнего Востока: довольно часто встречаются носители мутантного серповидноклеточного гемоглобина. Если ген, кодирующий синтез такого гемоглобина, находится у человека в гомозиготном состоянии, то обладатели его страдают тяжелой формой малокровия, серповидноклеточной анемией. У носителей же гетерозигот одновременно синтезируются и нормальный гемоглобин, кот. вполне справляется с переносом кислорода, и мутантный. Но в этом случае он не только не приводит к анемии, но и защищает организм человека от другого широко распространенного здесь заболевания — тропической малярии. Поэтому в районах, где малярия часта, именно гетерозиготы, оказались более жизнеспособными. Но и при отсутствии доминирования аллелей в гетерозиготах полиморфизм сохраняет свою стабильность. В 1927 г. Ландштейнер и Левин открыли у человека систему крови MN. Поскольку гены, ответственные за синтез антигенов, не имеют рецессивных аллелей, люди делятся на три группы: у одних эритроциты несут антиген ММ, у других NN, у третьих оба антигена — MN. В разных популяциях человека частота встречаемости этих аллелей весьма специфична: у индейцев навахо особи группы ММ составляют 85%, а в популяциях австралийских аборигенов лишь 2%, тогда как частота группы NN у последних — 67,6%, а MN — 30,4%. Механизм, поддерживающий стабильность подобного полиморфизма, заключается в несколько различной ценности двух или большего числа аллелей и различной функциональной, нагрузке фенотипов, сосуществующих в популяции ПОЛИМОРФИЗМ: НАПАДЕНИЕ И ЗАЩИТА Дж. Б. С. Холдейн обратил внимание, что отбор иногда благоприятствует редкому гену только потому, что он редок. Действительно, во время _эпидемий в популяциях человека наиболее жизнеспособными оказываются обладатели редких, генов, контролирующих синтез антител, так как патогенные микроорганизмы (бактерии, вирусы) не успевают приобрести устойчивость к таким редким антителам. По этой же причине птицы скорее уничтожают в популяции типичную жертву, нежели редкую форму, как показали наблюдения Тинбергена, Кларка и других исследователей. В поисках пищи хищники концентрируют свое внимание на одной или немногих сновных формах, игнорируя другие. В качестве защиты от хищников некоторых видов выступает и полиморфизм, кот. по своему фенотипическому выражению близок к непрерывной изменчивости. Исследуя жука усача цветочного в популяциях Урала, мы обнаружили 100 разных форм или аберраций рисунка на надкрыльях жуков. У хищников при столь разноликой популяции жертв не вырабатывается поисковый стереотип. Кроме того, этот защитный полиморфизм может дополнятся еще покровительственным эффектом окраски. Наследственный иммунитет человека и животных также представлен множеством вариаций. Развивается такой полиморфизм в ответ на несколько форм возбудителей инфекционных заболеваний. Н-р, человек полиморфен по иммунитету к ботулизму (известно шесть форм возбудителя этого заболевания), чуме, холере, оспе и др. Частота встречаемости особей, устойчивых против инфекций, в разных популяциях различна, поэтому не все народности страдают от эпидемий в равной степени. Наследование антимикробной резистентности часто бывает сцеплено у людей с некоторыми фенотипически хорошо выраженными признаками: цветом глаз, формой ушной раковины, узором на пальцах и другими. Особенно много примеров известно о связях наследственного иммунитета с той или иной группой крови человека. Наиболее изучены связи групп крови АВ0 со многими известными заболеваниями. Так, люди II (АА или АО) и IV (АВ) групп чаще заболевают оспой, чем лица, I (00) и IIl (ВВ или 0В) группами. Поэтому ген А редок на территориях, где особенно распространялась оспа (Индия, Аравия, тропическая Африка) и где смертность больных со II и IV группами крови была максимальной. То же самое и с чумой: там, где она особенно свирепствовала, частота гена 0 минимальна, поскольку именно его носители в большей степени подвержены этому страшному заболеванию. Несомненно, полиморфизм устойчивости человека к инфекциям так же разнообразен, как разнообразны и полиморфны возбудители этих заболеваний МОБИЛИЗАЦИОННЫЙ РЕЗЕРВ ВИДА Наследственная мутационная изменчивость есть тот элементарный материал, на основе которого строится филогенетическое древо жизни. Первые органические формы на Земле прокариоты,— лишенные ядра и полового размножения и снабженные гаплоидным, одиночным, набором хромосом, приспосабливались за счет высокой скорости размножения, огромной численности и большого количества мутантных особей в клонах. Правда, как сейчас установлено, они способны к: передаче наследственной информации за, счет непосредственного обмена генетическим материалом при кратковременном, контакте клеток (конъюгация у бактерий) или с помощью вирусов (трансдукция), передачи эписом и другими способами неполового обмена генами, превращающими клон в популяцию. Что же касается высших организмов, то низкая численность и сложность развития большинства эукариот не могли бы обеспечить им Эволюционную пластичность. К дальнейшей эв-ции эукариот привело половое размножение. За счет обмена генами между организмами мутации накапливаются и образуют различные сочетания. Популяции, обладающие таким резервом не страшны резкие изменения среды. В Англии за 100 лет более 70 видов бабочек изменили свою окраску со светлой на темную. Редкие в середине прошлого века меланисты в задымленых промышленных районах вытеснили светлые формы, так как светлых бабочек, более заметных на почерневших от гари деревьях, склевывали птицы. В итоге частота меланистов в некоторых популяциях достигла 95%, а определители насекомых устарели для Англии за одно столетие — описание типичных форм не соответствовало действительности. Едва ли такое быстрое эволюционное событие, вошедшее во все учебники под названием «промышленный меланизм», имело бы место без полиморфизма популяций. Любопытно, что в последнее время в связи с развернувшейся борьбой с задымлением в некоторых районах Англии популяции бабочек вновь стали светлеть. На основе полиморфизма у многих насекомых развивается мимикрия. Н-р, самки бабочки-парусника, широко распространенной в Африке, имитируют окраску разных видов несъедобных бабочек и тем спасают себе жизнь. А. С. Мальчевский и другие орнитологи показали примеры полиморфизма в поведении птиц. Так, самки разных видов кукушек паразитируют на материнском инстинкте строго определенных видов у певчих птиц, откладывая свои яйца только в гнезда тех певуний, которыми они сами были когда-то воспитаны, а цвет и форма их яиц похожи на кукушечьи. ПОЛИМОРФИЗМ И ВИДООБРАЗОВАНИЕ До настоящего времени не решен спор о том, где богаче полиморфизм популяций — на краю или в центре видового ареала. Вавилов, изучая популяции диких предшественников культурных растений, обнаружил их большую полиморфность в центрах их происхождения, и особенно в горных районах с их многообразием местных условий. Э. Майр указывает, что полиморфизм убывает по мере приближения к границе ареала вида и периферические популяции мономорфны, поскольку вид может себе позволить большую изменчивость в оптимальных экологических условиях вблизи центра ареала, а не на периферии, где эти условия более разнообразны. Однако наши исследования говорят об обратном. Изучая, популяции жука восковика обыкновенного (Урал, Западная и восточная Сибирь, Кавказ), мы обнаружили наибольшую полиморфность в периферических популяциях. Если в центре основного ареала (Урал – Восточная Сибирь) во всех популяциях преобладала одна аберрация, а другие встречались редко, то в краевых популяциях было 2-3 основных морфы и довольно много необычных с очень низкой частотой встречаемости. Кавказ – это изолированная периферическая часть общего видового ареала восковика обыкновенного. И его кавказские популяции своим фенообликом отличаются от всех других популяций основного ареала. Вопрос о степени полиморфности популяций в разных частях видового ареала не праздный. Он непосредственно связан с выяснением роли популяционных различий в видовой дифференцировке. Возможность видообразования через полиморфизм предполагалась такими исследователями, кяк Гершензон, Форд, Хаксли. Однако и до cиx пор нет еще достаточного количества данных и не ясны механизмы формирования репродуктивной изоляции между двумя популяциями с различным типом полиморфности. Возможно ли обособление двух форм, составляющих полиморфную популяцию, или они навсегда связаны друг с другом как самцы и самки при половом диморфизме или разные типы растений при гетеростилии? Ответ можно получить, лишь проанализировав весь комплекс явлений, объединяемых понятием полиморфность, Сейчас уже очевидно, что засчет полиморфизма популяции приспасабливаются к разнообразным условиям внешней среды. На периферии ареала условия абиотической и биотической среды экстремальны. Это и создает специфику действия как отбора, так и случайных генетических процессов в периферйных популяциях. Нельзя забывать о значении полиморфизма и в усилиях сохранить существующий генофонд планеты. Обычно при составлении списков и книг по охране редких видов зоологи и ботаники стараются внести в них все сохранившиеся популяции (или подвиды) исчезающего вида. В этих популяциях могут находиться редкие для всего вида гены. Лишь путем сохранения большинства популяций можно успешно поддерживать вид в целом как эволюционную единицу с его мобилизационные резервом. Когда уровень наших знаний достигнет стадии управления эволюционным процессом в масштабе планеты, человек сможет в полной мере использовать этот мобилизационный резерв. Межпопуляционный отбор. В классическом дарвинизме единицами эволюционного процесса считались особь и вид, отсюда в качестве основных форм рассматривался индивидуальный и межвидовой отбор. До появления синтетической теории эв-ции существовало несколько попыток классификации форм естественного отбора. При этом все внимание фиксировалось на индивидуальном организме. Поэтому различались формы естественного отбора, ведущие к частным приспособлениям, связанным с разными формами жизнедеятельности способом питания, средствами активной и пассивной защиты, способами размножения и заботы о потомстве, плодовитостью С появлением генетической теории естественного отбора внимание было перенесено на структуру популяции и вида в целом. Сторонники синтетической теории эв-ции за элементарную единицу эволюционного процесса принимают популяцию как статистическую совокупность особей, занимающих определенную территорию и обладающих единым генофондом. Отсюда различаются статистические формы отбора в группе особей и между группами. Учение Г. Ф. Морозова о смене пород, развитое В. Н. Сукачевым, дает представление об отборе на уровне биоценозов, их конкурентных взаимоотношениях и вытеснении одного типа биоценоза другим, более устойчивым и совершенным. Развиваемый в последнее время системный подход к биологическим явлениям требует рассмотрения эв-ции путем конкуренции и отбора на уровне популяционных систем. Вид является динамической системой популяций, кот. взаимодействуют между собой, конкурируют и изменяются в результате отбора. Главным движущим фактором такой филетической эв-ции является межпопуляционный отбор. Этот вопрос представляется нам менее всего изученным. Нет ни одного вида, у которого была бы прослежена смена его популяций во времени или пространстве. Популяция является не только единицей эв-ции, но и единицей отбора, причем системной единицей отбора. Селективная адаптивность этой системы выражается тем количеством потомства, которое она способна оставить относительно потомства других таких же систем. Приспособившись к определенным условиям, популяция обладает высшей (по сравнению с другими) конкурентной способностью для длительного существования в данной среде. Отсюда логично предположить сущ-ие специфичной формы естественного отбора межпопуляционного. Несомненно, что эта форма имеет место на популяцнонном уровне и отличается от индивидуального и межвидового отбора. Взаимодействие популяций выражается либо в вытеснении одной популяции другой, более приспособленной (конкуренция), либо в их слиянии или обмене генетической информацией (кооперация). Помимо теоретических предпосылок имеется уже достаточное количество фактов, подтверждающих сущ-ие и роль межпопуляционного взаимодействия. Нет сомнения, н-р, что межпопуляционнный отбор играл главную роль в формировании таких адаптивных свойств популяции, как се пюлиморфность. Показано, что полиморфные популяции более адаптивны, чем мономорфные. Полиморфные популяции дают больше потомства в изменчивой среде, мономорфные в постоянной. Бесспорна роль межпопуляционного отбора в появлении метагенезиса (чередования бесполового и полового размножения) и коммуникаций у общественных насекомых. Выработка в популяции механизмов регуляции численности, также происходит под действием межпопуляционного отбора: (Шапошников, 1974 а; Wynde-Edwards, 1967), Эти механизмы спасают популяцию от перепроизводства и нарушения своей энергетической базы. Одним из важнейших результатов межпопуляционного отбора является эволюция социальной организации животных. Внутрипопуляционная, иерархическая социальная структура, свойственная многим видам насекомых и млекопитающих, могла возникнуть лишь в результате группового отбора. МЕХАНИЗМЫ ДЕЙСТВИЯ МЕЖПОПУЛЯЦИОННОГО ОТБОРА Способы межпонуляционных взаимоотношений могут быть самыми разными, однако среди них можно выделить две главные формы. Слияние двух популяций путем гибридизации и образования более адаптивной популяции. Конкуренция популяции, выражающаяся в том, что одна из них оставляет ежегодно большее количество потомства, чем другая. В результате происходит замещение одной популяционной генетической системы другой, более приспособленной с более адаптивным генофондом. Каждая популяция представляет собой элементарную хорогенетическую системную единицу эволюционного процесса. Адаптивность популяции зависит от входящих в нее особей и от частоты их встречаемости. Генетические особенности особей популяции взаимно влияют друг на друга в результате свободного скрещивания. При изменении условий среды и притоке особей из соседней популяции происходит нарушение установившегося в популяции генетического и адаптивного равновесия. B результате взаимного влияния новых генотипов друг на друга складывается новый генофонд с новыми качествами. Вследствие утраты или перестройки ранее сложившихся сбалансированных систем происходит разрушение генетического гомеостазиса. Столкновение двух популяций не всегда приводит к образованию нового генного комплекса. Наблюдается явление несовместимости двух популяций и ослабленная жизненность межпопуляционных гибридов. Н-р, в результате скрещивания сибирской косули (Capreolus с. pigargus) с местной формой (С. с. capreolus) в Чехословакии происходит гибель местных самок при родах из-за крупных размеров плода (Дорст, 1968). МЕЖПОПУЛЯЦИОННЫЙ ОТБОР И ФИЛЕТИЧЕСКАЯ ЭВОЛЮЦИЯ Запас изменчивости в любой локальной популяции много больше, чем в полностью изолированной популяции того же размера, так как миграция и дрейф генов имеют больший эффект, чем мутационное давление в популяции. При этом обогащение генофонда популяции путем переноса генов "происходит без нарушения локальной дифференциации. (Любая локальная популяция, обладающая генетическим комплексом исключительной адаптивной ценности, имеет тенденцию увеличиваться в размерах и становиться главным источником иммиграций в соседние популяции. Если новая адаптация имеет лишь локальную ценность, то давление отбора может действовать против ее распространения, что приведет к изоляции и выщеплению популяции из вида. Если же адаптация имеет общую ценность, то она может изменить соседние популяции в направлении этой адаптивности. Этот процесс лежит в основе изменения видов во времени, т. е. в основе филетической эв-ции. При этом единицей отбора тут является не ген и даже не генотип в целом, а вся система генной частоты локальной популяции. Со времени сформирования нового вида и до его распадения или вымирания генетический состав его популяций не остается без изменений. Первоначально вид может быть представлен одной популяцией, достигшей видовой дифференциации. Затем количество популяций вида может увеличиваться за счет освоения новых территорий. Вновь возникшие популяции вида подчас оказываются более приспособленными и вытесняют старые, занимая их ареал. За всю историю существования вида таких замещений может быть множество. Симпсон называет, такое замещение одних популяций другими филетическои эволюцией, а вид с изменяющимся во времени составом его популяций – филумом. Нет сомнения, что филетическая эволюция неотделима от квантовой эв-ции, т. с. эв-ции путем дивергенции, однако отрицать сущ-ие филетичеекпх этапов в эв-ции форм нет осиований. Главным движущим фактором филетическои эв-ции является межпопуляционный отбор. Примеры фил.эв-ции, которые можно рассматривать как историческую смену популяций вида. С середины плейстоцена до наших дней (400-600 тыс. лет) в Приобье сменилось три фратрии (подвида) водяных полевок Arvicola terrcstris (Тимофеев-Ресовский и др., 1969). За этоже время у зубров произошла замен нескольких фратрий, переход от последней фратрии Bison priscus к современному виду (Bison bonasus L.) произошел за промежуток не более 10-16 тыс. лет, т. е. максиму 2-4 тыс. поколений (там же). МЕЖПОПУЛЯЦИОННЫИ ОТБОР И ЭВОЛЮЦИЯ ЧЕЛОВЕКА Главным адаптивным признаком человека, позволившим ему освоить новую экологическую нишу, является способность накапливать и передавать культуру или свой трудовой и духовный опыт. В каждом человеке заложены свойства к обучаемости, к интеллектуальному совершенству, к усвоению навыков, однако появиться они могут при условии его сущестпопания в популяции. Т. о., формирование Homo sapiens происходило под влиянием культуры, т. е. такого качества, которым может обладать лишь популяция. Главной формой отбора по этому селективному признаку был, безусловно, межпопуляционный отбор. В процессе эволюционного развития получали преимущество те популяции антропоидов, кот. обладали более совершенное культурой изготовления и использования орудий. Последние палеонтологические и археологические находки свидетельствуют, что одновременное сущ-ие популяций архантропов и палеоантропов, находящихся на разных стадиях развития культуры, является неопровержимым фактом. Все больше данных подтверждают, что анагенез - изменение вида во времени без дивергенции является доминантной формой эв-ции гоминид. Такая филетическая эволюция возможна лишь при конкуренции и замещении одних более адаптивно приспособленных популяций вида другими. В эв-ции человека шел интенсивный процесс замещения менее сапиентных популяции более развитыми в интеллектуальном и культурном отношении. Межпопуляционный отбор, возможно, происходил путем ассимиляции одних популяций другими пли непосредственной конкуренции за районы обитания и места охоты. Межпопуляционная конкурентная борьба стала роковой для многих популяций гигантопитеков, мегантропов, неандертальцев, исчезнувших с основного пути антропогенеза. В эв-ции человека отбор шел не только на индивидуальное совершенство, но и на общепопуляционное свойство - способность ассимилировать и передавать потомкам навыки создания культуры. На последних этапах антропогенеза межпопуляционная конкуренция все больше заменяется гибридизацией и интенсивным обменом эволюционными достижениями между популяциями. В последнее время проявлению межпопуляционного отбора способствует деятельность человека. Известны многочисленные примеры формирования и расселения новых рас или популяций насекомых, возникших под воздействием ядохимикатов. Для борьбы с щитовками, "поражающими цитрусовые деревья, широко применялось окуривание деревьев цианистым газом. В 1914 г. в садах близ Калифорнии была обнаружена популяция красной щитовки Acnidiela auranlii, на которую не действовали ни увеличенные дозы, ни повторное окуривание. В 1915 г;. появилась раса черной щитовки Saissictia oleae, резистентность которой и ее ареал стали быстро возрастать. В 1925 г. обнаружилась локальная популяция лимонной щитовки Coccus pseudomagnoliarum, которая в последующие годы стала быстро распространяться по новым площадям.Аналогичные явления быстрого расообразования наблюдались для яблоневой плодожорки Carpucaspa pomonella. После того как яблоневая плодожорка попала в 1873 г. на Тихоокеанское побережье, она подверглась некоторым превращениям. Здесь наряду с яблоневой и грушевой расами появилась раса, которая стала поражать ореховые деревья. Эта новая раса быстро распространялась. В 1909 г. она появилась в Северной Калифорнии, в 1913 г.- в Южной Калифорнии, а в 1919 г.-в Орегоне (Hough, 1934, цит. по Дубинину, 1966). Роль межпопуляционного отбора особенно наглядна в возникновении новых штаммов у бактерий и вирусов. Левоентин приводит интересный пример действия группового отбора в возникновении слабовирулентных штаммов миксоматоза у кроликов в Австралии. Вирусы миксоматоза передаются механическим путем ротовыми органами москитов. Погибших от этой болезни кроликов москиты не кусают и, следовательно, сильно вирулентные популяции вирусов гибнут вместе с хозяином. Каждый погибший кролик представляет популяцию вирусов. Отбор на слабовирулентные популяции привел к тому, что кролики в Австралии перестали погибать от миксоматоза. Естественный отбор. Отбор в понимании Ч. Дарвина. Различия между искусственным и естественным отбором. Различия между видом и породой, сортом. Из анализа огромного материала, накопленного по культурным формам животных и растений, Ч. Дарвин выводит основные положения эволюционного учения. Исходя из широкой изменчивости домашних животных и растений и установив, что все многообразие пород и сортов происходит из небольшого числа родоначальных форм, Ч. Дарвин подходит к выявлению основного формообразующего фактора – отбора. Ключ к объяснению эв-ции Ч. Дарвин видит в выяснении таких факторов, под влиянием которых виды, эволюируя, в то же время становятся приспособленными к новым условиям существуя, и притом во всех жизненно главных чертах морфофизиологической организации. По аналогии с культурными формами Ч. Дарвин считает, что приспособленность естественных видов есть так же результат отбора наиболее приспособленных, но производится отбор не человеком, а самими условиями среды. По мнению Ч. Дарвина, перенаселение есть основная, хотя и не единственная причина возникновения борьбы за сущ-ие, которую приходится вести организмам. Переживание наиболее приспособленных и гибель менее приспособленных форм Ч. Дарвин называет естественным отбором. Этот отбор есть природный фактор, сохраняющий полезные изменения. Ч. Дарвин указывает, что под естественным отбором не следует понимать какой-либо сознательный выбор, т.к. здесь мы имеем лишь естественное следствие гибели всех менее приспособленных. Различия между искусственным и естественным отбором. Искусственный отбор часто ведет к накоплению признаков, не приносящих пользу для их обладателя ( большинство видов домашних животных и культурных растений не могут существовать поэтому без постоянной поддержки человеком в результате резко пониженной жизнеспособности в природных условиях). Естественный отбор не предопределен, не направлен заранее к какой-то цели, как искусственный. При искусственном отборе образуются сорта и породы, а при естественном отборе – виды. При искусственном отборе селекционный процесс ведет человек; при естественном отборе – отбирает среда.В природе изменчивость условий среды менее резкая. Различие между видом и породой, сортом: К образованию пород и сортов приводит методический отбор. Признаки кот. развиваются у данной формы прежде всего хозяйственно полезны. Виды образуются в результате естественного отбора , т.е. под воздействием на организм условий окружающей среды. опыты Иогансена с чистыми линиями. Фундаментальная теорема Фимера. Отбор между рецессивного и доминантного генов. Начало генетического изучения популяций положила работа В. Иогансена «О наследовании в популяциях и чистых линиях» (1903), экспериментально доказавшая эффективность действия отбора в гетерогенной смеси генотипов (все природные популяции). Одновременна была продемонстрирована неэффективность действия отбора в чистых линиях – генотипически однородном (гомозиготном) потомстве, получаемом исходно от одной самоопыляющейся или самооплодотворяющейся особи с помощью отбора и дальнейшего самоопыления (самооплодотворения). Фундаментальной теоремы Фимера; отбор между рецессивного и доминантного генов НЕ НАШЕЛ Статистический аспект отбора. Не нашел Движущие и стабилизирующие формы отбора. Движущей (или направленной) формой отбора принято называть отбор, способствующий сдвигу среднего значения признака или свойства. Такой отбор способствует закреплению новой нормы взамен старой, пришедшей в несоответствие с условиями. Изменение признака при этом может происходить как в сторону усиления, так и ослабления. Утрата признака – обычно результат действия движущей формы отбора. Н-р, в условиях функциональной непригодности органа (или его части) естественный отбор способствует их редукции. Утрата крыльев у части птиц и насекомых, пальцев у копытных, конечностей у змей, глаз у пещерных животных, корней и листьев у растений-паразитов – примеры действия движущего отбора в направлении редукции органов. Материал для действия отбора в направлении редукции органов доставляется разного рода мутациями, кот. ведут к дезинтеграции организма и нарушению системы его корреляций. Была изучена возможность изменения числа щетинок у дрозофилы. Направленный отбор через 30 поколений в одной линии снизил их число с 32 до 25, а в другой (после 20 поколений) повысил до 45 – 50 шт. Генетический анализ мух новых линий показал наследственную обусловленность вновь возникших особенностей. В экспериментах с тем же видом дрозофил показана возможность заметного повышения холодоустойчивости после отбора. Так, у исходной линии при температуре 0 С выживало лишь 28% четырехдневных личинок. После 30 поколений отбора для личинок температура 0С превратилась в фактор, стимулирующий развитие. Этот процесс характерен в природе; часто первоначально вредный фактор при его постоянном действии превращается в фактор нормального развития. Стабилизирующий отбор – форма естественного отбора, направленная на поддержание и повышение устойчивости реализации в популяции среднего, ранее сложившегося значения признака или свойства. При стабилизирующем отборе преимущество в размножении получают особи со средним выражением признака. Эта форма как бы охраняет и усиливает установившуюся характеристику признака, устраняя от размножения все особи, фенотипически заметно уклоняющиеся в ту или иную сторону от сложившейся нормы. Дезруптивный отбор. Эта форма отбора существует в случаях, когда ни одна из групп генотипов не получает абсолютного преимущества в борьбе за сущ-ие из-за разнообразия условий, одновременно встречающихся на одной территории. При этом в одних условиях отбирается одно качество признака, в других – другое. Дизруптивный отбор направлен против особей со средним или промежуточным характером признаков и ведет к установлению полиморфизма в пределах популяций. Популяция как бы разрывается по данному признаку на несколько групп. Общий результат дизруптивного отбора – формирование гетерозиготного полиморфизма. Межпопуляционный отбор. Не нашел Эффект Болдуина. Фенокопии и морфозы Феномен, когда
приобретенные признаки замещаются такими же врожденными, одновременно привлек
внимание нескольких авторов, но наиболее детально обсуждался в работах
Болдуина) и потому получил название "эффект Болдуина". Последовавшее
развитие генетики и синтетической теории эв-ции отвлекли внимание научного
сообщества от наследования приобретенных свойств.
""стабилизирующий" отбор: наследование признаков, приобретенных
в ходе индивидуального развития. Морфозы – это ненаследственные
изменения фенотипа, кот. возникают под действием экстремальных факторов среды,
не носят адаптивный характер и необратимы (н-р: ожоги, шрамы). Ортогенетические взгляды на эволюцию. Некот. авторы пытались другим путем, чем де Фриз, объяснить быстроту эволюционных изменений. Они предполагали, что изменчивость, будучи материалом для эволюционного процесса, представляет целый ряд изменений, протекающих в одном определенном направлении, а не беспорядочно в разных направлениях. В результате этого эволюционный процесс может протекать быстро и не нуждается в столь длительных периодах времени, как это принимал Д. и его соратники. Эти именно течения в науке об эволюционизме носят название ортогенеза. Ортогенетические взгляды не составляют какой-то монолитной концепции и по существу разные авторы, кот. следуют по этому направлению, часто стоят на совершенно разных позициях. Ортогенетиков в основном можно разделить на два лагеря. Один из них оперирует скорее понятиями, кот. не могут надолго укорениться в науке, так как они прибегают к помощи сверхъестественных факторов, другой старается объяснить механизм ортогенеза на основании материалистического мировоззрения. К представителям первого лагеря можно отнести выдающегося ботаника К. Негели, с которым, как мы уже упоминали, Мендель вел корреспонденцию. По словам Жордана и Келлога "Карл Негели в своих идеях ортогенеза принимает какой-то вид мистического принципа прогрессивного развития, что-то неуловимое, что существует в живой природе и что вызывает, по крайней мере, стремление к специализации и совершенному приспособлению... Негели считает, что растения и животные развивались бы так, как развивались и без какой бы то ни было борьбы за сущ-ие или естественного отбора". Другими словами, Негели исключает действие дарвинских факторов, вводя вместо них какой-то сверхъестественный фактор. Другие представители ортогенеза не занимали таких крайних позиций, если иметь в виду действие отбора, и стремились объяснить развитие в одном направлении без помощи какой-то таинственной и непознаваемой силы. Так, н-р, Т. Эймер принимает, что направления эволюционного развития были немногочисленными и не были обусловлены действием отбора, а законами органического роста и наследованием приобретенных признаков. Как течение химической реакции является однозначным, так и эволюционные процессы протекают детерминировано в одном направлении. Лишь тогда, когда признак окажется отчетливо полезным или вредным, может проявиться действие естественного отбора. Эймер доказывает свои эволюционные концепции на примере рисунка крыльев бабочек и окраски ящериц. Среди многочисленных сторонников ортогенетических взглядов оказались главным образом палеонтологи, кот. приводили много примеров развития рода в одном направлении. Они также обращали внимание на то, что в эволюционном развитии ископаемых форм иногда можно найти примеры развития структур, кот. были скорее вредными для особи, и потому возникновения их нельзя свести к действию отбора. Наконец, следует в нескольких словах вспомнить, что и решительные виталисты, одаряющие жизнь специфическими силами, которых нет в мире мертвой природы, тоже стали сторонниками эв-ции. Таких взглядов придерживался, н-р, французский философ Бергсон, кот. принимал действие в живой субстанции нематериальной силы, и которую называл elan vital. Эта сила была ответственна за все проявления жизни организмов, не исключая и их эв-ции. Даже и те из биологов и философов, кот. приписывали действия и свойства организмов специальным жизненным силам, не могли уже отбросить самого факта эв-ции. Учения Л.С. Берга о номогенезе. Номогенез - концепция биологической эв-ции как процесса, протекающего по определенным внутренне запрограммированным закономерностям, не сводимым к воздействиям внешней среды. Теорию номогенеза выдвинул в 1922 г. Л.С.Берг (1876-195О) и противопоставил ее дарвинизму. . ХРОНОЛОГИЯ ИСТОРИИ ЗЕМЛИ Способы определения возраста верхних слоев Земли разнообразны. Зная период полураспада урана (4,5 млн. лет) .и подсчитывая соотношение урана и свинца в урановых рудах, можно определить возраст соответствующих горных пород. Возраст молодых четвертичных отложений можно определить, зная период полураспада радиоактивного углерода С14. Сезонные отличия в росте растительной массы и ее отмирании позволяют с точностью до года устанавливать возраст болот. Дендрохронологическое определение возраста (по годичным кольцам деревьев) позволяет составить для некоторых районов Земли точные таблицы, с помощью которых можно определить возраст любого дерева в течение последних 8—12 тыс. лет. Различия в усвоении изотопов кислорода в СаСОз при различной температуре позволяют выяснить температуру воды, в которой жил тот или иной вымерший вид моллюсков. Зная возраст изверженных пород, можно определить положение магнитных полюсов в период остывания породы, а на основе этого представить взаимное расположение материков относительно полюсов. История Земли разделяется на длительные промежутки — эры; эры подразделяются на периоды; периоды — на эпохи; эпохи — на века. Окончание одной эры и начало другой знаменовалось существеннейшими преобразованиями лика Земли, изменениями в соотношении суши и моря, изменениями климата, горообразовательными процессами. Все это, вместе взятое, вело к существенной смене фаун и флор, к изменению структуры биогеоценозов, влияя на эволюцию органического мира в целом. Геохронологическое разделение истории Земли (по данным палеонтологии, биогеохимии, палеогеографии, палеоклиматологии, геологии, геофизики) представлено на геохронологической таблице. Возраст Земли около 7 млрд. лет. В начале развития Земли (протопланетный период) была утеряна первичная атмосфера и возникает вторичная, собственно земная атмосфера с преобладанием СН4, Н2, NН3,Cl2. Катархей характеризуется интенсивными вулканическими процессами. На границе катархея и архея возникла жизнь. КОСМИЧЕСКАЯ ЭВОЛЮЦИЯ Фридман. Красное смещение подтвердило теорию о расширяющейся вселенной. (1965г.)- открытие реликтового излучения – ископаемого – доказательства того, что вселенная эволюционирует во времени. Энрих Янш: «Самоорганизующаяся вселенная»,Вейтберг: «Три минуты после взрыва». Между частями вселенной была первичная симметрия, нарушение которой развёртывает пространство и время для эволюц. процесса. Гравитация - на макроуровне, ядерные силы - на микроуровне, магнитные силы – между макро- и микро-. В плотной горячей вселенной сначала были ядерные силы. После создания ядер Н и Не вслелствие охлаждения в расширяющейся вселенной ядерная эв-ция вотступает на задний план. 10-15 млрд лет назад – начало космической эв-ции, начало гравитации, формирование облаков из атомов (~30 млн лет) => формирование звёзд и планет. Земля – одна из таких планет. Её возраст 4,5-5 млрд лет. Сформировалась метагалактика (доступная для наблюдений часть вселенной). Доступность определяется космическим горизонтом. Скорость удаления от нас этого космич. Горизонта = 300 тыс. км./сек (скорость света). (1963г.)- открыты квазары – объекты, подобные ядрам галактик. Сейчас их известно ~ 4000. Метагалактики – множественные скопления галактик, их М = 10 в 9 –т 10 в 12 степени масс солнца. В каждой галактике – много млрд. звёзд. На 1 квю градусе неба – до пол-миллиона галактик. БИОЛОГИЧЕСКАЯ ЭВОЛЮЦИЯ Конвариантная редупликация – способность живого воспроизводить себя – основная загадка… До сих пор существует 4 гипотезы происхождения жизни: 1)Креационизм. (Джон Агер,Джон Лайфуд): октябрь 4004г.до н. э. – Бог создал мир,23 октября 4004 г.до н.э. – Бог создал человека, закончив этим свой труд. 2)Самопроизвольное Самозорождение. От Аристотеля, распространилось в Китае, Египте, Вавилоне. (1577-1644) Ван Гельмонт описал эксперимент, созал за 3 недели мышей: грязная рубашка, горсть пшена, тёмный шкаф. (1688) Франческо Реди. Всё живое – из живого. Эксперименты с закапыванием мяса. Почему там черви? Было 2 мешка :один открытый, другой закрытый. Прославился. Акер (повар) – консервировал еду. Пастер начал пастеризовать банки, придумал колбу Пастера: колба с длинным ломающимся носиком не пропускает бактений. 3) Теория Панспермии (занос жизни на землю из космоса) а) Свант и Аррениус Фред Хойи и Ч. Вакрамасингхе. По характеру поглощения света различных цветов звёздной пылью, они обнаружили в ней присутствие живых клеток, часть которых разложилась с образованием графита. (1972) обнаружили присутствие длинных цепей полимеров, 10 в 52 степени отдельных клеток галактики. Б) Сознательный посев: формула Дрэйка- расчёт возможных обитаемых миров (их очень много) 4) Биохимическая теория Опарина: атмосфера была восстановительной (вода, аммияк, метан, углекислый газ), температура не менее 100 градусов Цельсия, вода в виде пара. УФ проникал, так как озонового слоя не было. Образовался первичный бульон (коацерваты), кот. поглощали ионы металлов и образовывали ферменты. На их границе со средой образовались липиды (клеточные мембраны) (1953) Стендли Миллер моделировал эти условия и синтезировал ряд аминокислот и простые сахара, аденин (из воды, аммияка и угл. Газа). А УФ разлагает воду на Н 2 и О2, и некот. О2 à О3. Озон накопился и защищает от УФ. Дальнейший синтез стал не возможен. Началось голодание и отбор организмов, способных к фотосинтезу. Отношение к этой концепции: не лепо и не правдоподобно, как сборка ураганом Боинга из кучи мусора.Вернадский добавил к сферам ещё и биосферу. Природные явления – с деградацией энергии, рассеивающейся в виде тепла. Если есть конец мира, то миру должен прийти конец (возрастает энтропия вселенной). Результате жизни же происходит увеличение жизненной энергии в земной коре (противовес). Созидает, создаёт, увеличивается негэнтрапия. Выделение газов. Рост действенной энергии. Энергия солнца à через живое существо à О2 атм. Растекание жизни - через размножение. Шредингер “Жизнь с точки зрения физики”. Дарвин: возникновение порядка из хаоса. Изменчивость имеет случайный статистический характер. Популяция – элементарная часть эволюционного процесса, в которой действует отбор. Естественный отбор и создаёт порядок. Биологическая эволюция, подобно космической, происходит в открытой системе, далёкой от равновесия. Конечный итог – отток энтропии в окружающую среду. Жизнь задерживает рост энтропии, ведущей к смерти. Жизнь – извлечение из среды упорядоченности, то есть негэнтропии. Вернадский и Шредингер проповедовали синергетику. Организм питается отрицательной синтрапией, вызывая на себя её проток. Энтрапия – степень омертвелости системы. Негэнтрапия – степень оживлённости. СОЦИАЛЬНАЯ ЭВОЛЮЦИЯ Обезьяна стала превращаться в человека, когда она стала использовать палку не только по прямому назначению, но и совершенствовать её как орудие труда. Появилась частная собственность. Появилась “моя культурная продукция”. Культура – биологический признак, кот. передаётся не генами, а символами. С появлением культуры начался этап социальной культуры. Геохронологическое разделение истории Земли (по данным палеонтологии, биогеохимии, палеогеографии, палеоклиматологии, геологии, геофизики) представлено на геохронологической таблице (табл. 1). Возраст Земли около 7 млрд. лет. В начале развития Земли (протопланетный период) была утеряна первичная атмосфера и возникает вторичная, собственно земная атмосфера с преобладанием СН4, Н2, NH3CL2. Катархей характеризуется интенсивными вулканическими процессами. На границе катархея и архея возникла жизнь. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Эры |
Периоды |
Века |
Длительность, |
Время от начала до наших |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
млн. лет |
дней |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Кайнозой |
Четвертичный |
Голоцен Плейстоцен |
0,02 1,0 |
1 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Третичный Неоген |
Плиоцен Миоцен |
25 |
26 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Палеоген |
Олигоцен Эоцен Палеоцен |
45 |
71 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Мезозой |
Мел |
|
50 |
120 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Юра |
|
55 |
175 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Триас |
|
45 |
220 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Палеозой |
Пермь |
|
50 |
270 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Карбон |
|
55 |
325 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Девон |
|
45 |
370 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Силур |
|
30 |
400 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Ордовик |
|
90 |
490 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Кембрий |
|
80 |
570 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Поздний про |
|
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
терозой |
|
|
630 |
1200 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ранний про |
|
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
терозой |
|
|
700 |
1900 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Архей |
|
|
800 |
2700 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Катархей |
|
|
800 |
3500 |
б) АРХЕЙ И ПРОТЕРОЗОЙ
В результате деятельности живых организмов резко изменяются химический состав и физические свойства верхнего слоя земной коры: появляется почва, в атмосфере уменьшается количество СН4, NНз, Н2, начинается Скопление СО2 и О2. К началу протерозоя относится мощное развитие деятельности железобактерий (возникновение руд Курской магнитной аномалии относится к этому периоду). К концу протерозоя жизнь в морях крайне разнообразна; в результате интенсивных процессов фотосинтеза водорослями резко уменьшается количество СО2 и увеличивается количество кислорода. Накопление кислорода в атмосфере и насыщение кислородом вод благоприятствовало развитию гетеротрофных организмов, использующих энергию, освобождающуюся при расщеплении органических соединений.
Жизнь в архее была представлена клеточными предъядерными формами—бактериями и синезелеными водорослями. Наряду с ними, в породах архейского возраста обнаружены и остатки нитчатых зеленых водорослей, а в самое последнее время — и остатки многоклеточных животных (гидроидных полипов, представителей типа кишечнополостных). В архее бактерии появляются и на суше. На грани архея и протерозоя произошел первый великий период горообразования. Палеогеография протерозоя мало напоминала современную. Наибольший массив суши образовывал материк, объединивший Канаду и Гренландию. Бразилия и Патагония были отдельными островами. Африка была связана с Аравией и Индией, большая часть Западной Европы была покрыта морем. Восточная Европа образовывала материк Русской платформы, отделенный Уральским проливом и морем Тетис от других островов Азии.
Господство синезеленых водорослей в протерозое сменяется расцветом зеленых и золотистых (ядерных) водорослей. Наряду с плавающими в толще воды растениями появляются формы, прикрепленные ко дну. В морях протерозоя появляются кольчатые черви, предки моллюсков и членистоногих, а к концу протерозоя — древнейшие представители членистоногих— ракоскорпионы.
Можно сказать, что в течение архея и протерозоя жизнь сделала несколько «рывков» от неклеточного к клеточному предъядерному, от предъядерного к ядерному, от одноклеточного к многоклеточному типам строения. Жизнь стала геологическим фактором: организмы меняли форму и состав земной коры, изменяли состав атмосферы. Все эти изменения стали основой для дальнейшего развития жизни в последующие эпохи.
в) ПАЛЕОЗОЙ
На грани протерозоя и палеозоя начался второй великий период горообразования. Вновь перераспределяются суша и море на Земле. Накопленные в течение протерозоя мощные слои осадков в результате сжатий и поднятий со дна моря превратились в горные породы. Это был последний период горообразования, носивший катастрофический (для палеонтологов) характер: в течение последующих горообразовательных периодов ископаемые остатки уже не подвергались столь значительному уничтожению и, начиная с кембрия, палеонтологическая летопись достаточно полна и относительно непрерывна.
Кембрий. В кембрии погружается территория. Канадского архипелага, но на юге суша расширяется, включая Мексику. Южная Америка существовала как единый материк, включая Карибскую сушу и Флориду. Африка соединялась с Индо-Тибетией и через нее с материком Сунгаро-Гобии. Фенно-Сарматский остров был единственным большим массивом суши в Европе; северо-восток Азии и северо-запад Северной Америки составляли единый материк Берингии. Животные и растения населяют по-прежнему в основном моря. На суше царствуют бактерии и сине-зеленые водоросли. Однако уже в кембрии возникли высшие растения, у которых тело расчленено на корень, стебель, листья. Выход высших растений на сушу потребовал возникновения системы, передающей питательные вещества и влагу от корней к наземным частям; возникают первые сосудистые растения — хвощи и плауны. В море среди растений господствовали зеленые и бурые водоросли, прикрепленные ко дну; в толщах вод плавали диатомовые, золотистые и эвгленовые водоросли. Среди животных в кембрийских слоях найдены представители всех типов, за исключением хордовых. Весьма разнообразны были губки; огромные скопления, сходные с современными коралловыми рифами, образовывали представители вымершего типа многоклеточных животных — археоциаты. Среди сидячих животных были древние представители иглокожих — морские лилии, среди подвижных — двустворчатые, брюхоногие, головоногие моллюски, кот., как и членистоногие, уже «успели» произойти от кольчатых червей, продолжающих существовать и самостоятельно. Древнейшие членистоногие — трилобиты — по форме тела напоминали современных ракообразных — мокриц. Хотя из кембрийских слоев пока неизвестны остатки хордовых, можно предполагать, что примитивные представители этого типа, напоминающие современных ланцетников, возникли уже в кембрии. Изменение очертаний Сибирского моря, вступавшего в контакт то с Атлантикой, то с Пацификой, а затем образование в позднем кембрии Центральноазиатского пролива привело к слабым отличиям фау-нистических комплексов Атлантической и Тихоокеанской областей.
Ордовик и силур. Вначале и середине ордовика происходит значительное потепление климата Земли, в конце силура происходит поднятие суши, сопровождающееся значительным иссушением климата. В силуре появляются первые позвоночные — так называемые панцирные рыбы, лишь по форме тела напоминающие рыб. К концу силура относится широкое развитие наземных растений: мхов, папоротников, хвощей, плаунов. В развитии всех этих групп растений сохраняется стадия подвижных жгутиковых гамет, для которых необходима водная среда. Накопление органических остатков в почве определяет возможность появления бесхлорофильных гетеротрофных растений — грибов, кот. впервые также обнаруживаются в силуре. В силуре начинается выход на сушу и животных; одними из первых освоили эту новую среду представители членистоногих — паукообразные. В конце силура начинается каледонский горообразовательный период, кот. приводит к возникновению и ныне существующих горных массивов— Скандинавских гор, Казахской складчатой страны, Саяно-Байкальской горной дуги, гор Шотландии и др.
Д е в о н. В результате поднятия суши и сокращения площади морей климат девона более континентальный; в более теплых районах климат изменяется в сторону иссушения, появляются и полупустыни. В морях потомки панцирных рыб дают представителей настоящих рыб (хрящевых и костных); возникшие в девоне кистеперые рыбы обладали таким строением парных плавников, от которого могли произойти конечности первых наземных позвоночных. На суше появляются первые леса из гигантских папоротников, хвощей и плаунов; членистоногие дают начало многоножкам и первым насекомым. В конце девона потомки кистеперых рыб - выходят на сушу (древнейшие амфибии — стегоцефалы). Но и растения, и животные по-прежнему связаны с водоемами хотя бы на период размножения.
Карбон. В карбоне (каменноугольном периоде) происходит потепление и увлажнение климата. На низменных материках распространяются заболоченные низины, в болотистых лесах растут громадные папоротники, хвощи, плауны. Во влажных лесах исключительного расцвета достигают древнейшие амфибии; появляются первые крылатые насекомые (тараканы, стрекозы). К концу карбона начинается небольшое поднятие суши, а вместе с тем — иссушение и похолодание климата. К этому периоду относится возникновение первых пресмыкающихся — полностью наземных представителей позвоночных.
Пермь. Поднятие суши приводит к продолжающемуся иссушению и похолоданию климата. Влажные и пышные леса смещаются к экватору, вымирают папоротникообразные, а им на смену приходят голосемянные, для развития которых не обязательно присутствие воды. Начинают исчезать стегоцефалы, но более широко распространяются пресмыкающиеся, яйца которых защищены прочной оболочкой от высыхания. Кроме того, усложнение легких Создает предпосылки для развития сухого и прочного чешуйчатого покрова, освобождая кожу от функций дыхания, присущей коже амфибий.
Наиболее существенным этапом развития жизни в палеозое было завоевание суши растениями и животными. Выход многоклеточных растений на сушу был подготовлен бактериями и сине-зелеными водорослями, кот. в течение протерозоя образовали слой земной коры, богатый органическими веществами,— почву. Этот выход оказался возможным только благодаря развитию специальных приспособлений, связанных с необходимостью поддерживать организм в воздушной среде (стебель растений, конечности животных), разрыву связи процесса размножения с водной средой (возникновение семенного размножения голосемянных, защищенные оболочкой яйца рептилий) и ряду других факторов, кот. впоследствии становятся основными характеристиками крупнейших групп живых организмов.
г) МЕЗОЗОЙ
В конце палеозоя происходит герцинское горообразование, вызвавшее дальнейшее поднятие суши и возникновение таких гор, как Урал, Тянь-Шань, Алтай, сопровождавшееся дальнейшим иссушением климата.
Триас. В триасе сильно сокращается площадь внутриконтинентальных водоемов, развиваются пустынные ландшафты. Исчезают папоротники, хвощи, плауны, большинство земноводных — все те группы организмов, кот. в отдельные этапы жизни тесно связаны с водной средой. Среди растений сильного развития достигают голосемянные, среди животных — пресмыкающиеся (до наших дней из триасовых пресмыкающихся дожили лишь черепахи и гаттерия), кот. становятся все более разнообразными: от растительноядных до хищных. Появляются первые млекопитающие. В морях все большее развитие получают костистые рыбы и головоногие моллюски. Изобилие рыб и моллюсков позволило, вероятно, некоторым рептилиям, н-р ихтиозаврам, освоить водную среду.
Юра. В юре происходит некоторое расширение площадей тепловодных морей, в которых весьма многочисленными были головоногие моллюски — аммониты и белемниты; выдающегося разнообразия достигают морские пресмыкающиеся (ихтиозавры, плезиозавры). Пресмыкающиеся осваивают и воздушную среду (птеродактили), где находят обильную пищу в виде многочисленных и крупных насекомых. Одновременно возникают и птицы, - первые из которых причудливо сочетают признаки и рептилий, и птиц. В юре возникают и покрытосемянные (цветковые) растения.
Мел. Быстро распространяются покрытосемянные растения (тополя, ивы, дубы, эвкалипты, пальмы — меловые покрытосемянные, сохранившиеся до наших дней), происходит дальнейшая специализация пресмыкающихся (гигантские растительноядные динозавры, летающие ящеры с размахом крыльев до 8м и тп.. Однако непостоянная температура тела и откладка яиц ставили пресмыкающихся в большую зависимость от колебаний температуры среды, ограничивая их распространение лишь теплыми областями. Широкое распространение насекомых и появление покрытосемянных растений приводит к возникновению связи между ними: у растений возникает цветок, привлекающий насекомых окраской, запахом, запасами нектара, и насекомые становятся надежными переносчиками пыльцы, а перенос пыльцы насекомыми приводит к меньшей растрате гамет, нежели при ветроопылении. Тот же процесс уменьшения непроизводительного растрачивания гамет наблюдается и в ряду позвоночных:
расход и гибель гамет при наружном оплодотворении (н-р, у рыб, земноводных) гораздо больше, чем при внутреннем (у пресмыкающихся, птиц, млекопитающих). В конце мела наступает период интенсивного горообразования — альпийская складчатость; поднимаются Альпы, Анды, Гималаи. Климат становится более континентальным и прохладным, сокращается площадь морей. В морях вымирают аммониты и белемниты, а вслед за ними— и морские ящеры. На суше сокращается пространство, занятое околоводной растительностью, служившей основным кормом для растительноядных ящеров, и они также вымирают; вслед за ними вымирают многочисленные хищные динозавры. Крупные рептилии сохраняются лишь в экваториальном поясе (крокодилы, черепахи, гаттерия). В условиях резко континентального климата и общего похолодания исключительные преимущества получают теплокровные животные — птицы и млекопитающие, расцвет которых относится к следующей эре — кайнозою.
д) КАЙНОЗОЙ
Биоценозы кайнозоя гораздо сложнее и по числу видов, и по связям между разными группами, чем предшествовавшие им сообщества организмов на суше и в море. Кайнозой — эра расцвета покрытосемянных растений, насекомых, птиц и млекопитающих.
Третичный период. В начале третичного периода уже существовали примитивные плацентарные млекопитающие. В палеоцене и эоцене от насекомоядных произошли первые хищники; в первой половине третичного периода млекопитающие начинают завоевывать море (ластоногие, китообразные). От древних палеоценовых хищных произошли и первые копытные. В большинстве ветвей, идущих от первичных копытных, можно проследить тенденции к уменьшению числа пальцев конечностей и увеличению размеров тела (лошади, слоны, жирафы, олени и др.). К концу третичного периода (в плиоцене) начинается великий процесс остепнения суши; тропические и саванновые леса, росшие некогда в умеренной зоне от Венгрии до Монголии, сменяются степями. Травянистые формы однодольных растений постепенно вытесняют древесную растительность. В начале третичного периода от насекомоядных обособляется отряд приматов, в олигоцене были широко распространены общие предковые формы человекообразных обезьян и людей. К концу третичного периода встречаются представители всех современных семейств животных и растений.
Четвертичный период. В начале четвертичного периода (в плейстоцене) фауна Евразии и Северной Америки была достаточно теплолюбивой. Но в течение следующего миллиона лет эти территории четырежды подвергались гигантским оледенениям. Таяние льдов и снегов ежегодно давало меньше воды, чем выпадало снега, и накопление гигантских запасов льда на суше привело к существенному (на 60—90 м) понижению уровня Мирового океана. В результате возникают сухопутные мосты между Европой и Англией, Азией и Северной Америкой, Индокитаем и Зондским архипелагом. По этим участкам суши происходил обмен животными и растениями; эти же сухопутные мосты препятствовали обмену фауной и флорой соседних морских бассейнов.
Такова в самых общих чертах история развития органического мира на Земле. Процессы смены флор и фаун, процессы последовательного преобразования любой крупной группы организмов на Земле ныне не вызывают сомнения. Но палеонтология не дает нам ответа, как происходила эволюция, какие механизмы лежат в основе этого лавинообразно расширяющегося процесса развития органической, природы. Ответ на эти вопросы дает теория эв-ции, в общих чертах сформулированная Ч. Дарвином.
|
© 2000 |
|