РУБРИКИ

Проект массового взрыва при отработке залежи "Центральная" Риддер-Сокольного рудника

   РЕКЛАМА

Главная

Зоология

Инвестиции

Информатика

Искусство и культура

Исторические личности

История

Кибернетика

Коммуникации и связь

Косметология

Криптология

Кулинария

Культурология

Логика

Логистика

Банковское дело

Безопасность жизнедеятельности

Бизнес-план

Биология

Бухучет управленчучет

Водоснабжение водоотведение

Военная кафедра

География экономическая география

Геодезия

Геология

Животные

Жилищное право

Законодательство и право

Здоровье

Земельное право

Иностранные языки лингвистика

ПОДПИСКА

Рассылка на E-mail

ПОИСК

Проект массового взрыва при отработке залежи "Центральная" Риддер-Сокольного рудника


Примечание: для обеспечения лучшего проветривания горных работ на 17, 18 горизонты Быструшинской залежи и II Юго-Западной залежи в связи с дальнейшим понижением горных работ и смещением больших объемов добычи на нижние горизонты этих залежей необходимо пройти сбойку орта 13 до вент.восст. 16/18 по 17 горизонту длиной 80м х 8,0 = 640м3.


3.2 Расчет количества действующих очистных и проходческих забоев (по плану на 2010 год)


Производим расчет количества действующих и проходческих забоев:

Система подэтажных штреков (камерная система) с обрушением.

Годовые показатели: Добыча по системе, т.т. – 1160

в т.ч. попутная, т.т. – 148

очистная, т.т. – 1012

Горно-подготовительные, п.м. – 3008

S=4,625м2 м3 – 13912


в т.ч. горизонтальн. п.м./м3 – 2415/11173

вертикальные п.м./м3 – 593/2742

Нарезные работы, п.м. – 8113


S=4,625м2 м3 – 37525


в .т.ч. горизонтальн. п.м./м3 – 4497/20800

вертикальные п.м./м3 – 3616/16725


Расчетное количество выемочных единиц:


N = Q/N = 7 (1)


где Q = 1160 т.т. – годовая добыча руды по руднику данной системой;

N = 165 т.т – расчетная годовая производительность выемочной единицей по системе.

N = 1160/165 = 7


Расчетное количество скреперных выработок для обеспечения

сменной производительности рудника по очистной добыче:


N=1012000/(80,2*3*305)=11,9 (2)


где 862 т.т. – годовая добыча руды по руднику из очистных работ по системе;

80,2 т/м3 – сменная производительность скреперной лебедки 55ЛС-2С при скреперовании на 50м при данной системе;

3 см – количество рабочих смен в сутки;

305 дн – количество рабочих дней в году.


Расчетное количество буровых забоев на очистных работах (бурение скважин):


N=1012000/(8,0*11,9*3*305)=10 (3)


где 862 т.т. – годовая добыча руды по руднику из очистных работ по системе;

8,0 т/п.м. – выход руды с 1 п.м. скважин;

11,9 п.м./см – норма выработки на бурение скважин станком ЛПС-3М;

3 см – количество рабочих смен в сутки;

305 дн – количество рабочих дней в году.

Расчетное количество забоев при проходке горизонтальных выработок от ГПР и НР:


N=(11173+20800)/(4,625*105*12)=5,5 (4)


где (11173+20800) м3 – годовые объемы горизонтальных выработок от (ГПР+НР);

4,625 м2 – среднее сечение горизонтальных выработок;

105 м/мес – нормативная скорость проходки;

12 мес – количество месяцев в году.

Расчетное количество забоев при проходке вертикальных выработок от ГПР и НР:


N=(2742+16725)/(4,2*45*12)=8,6 (5)


где (2742+16725) м3 – годовые объемы вертикальных выработок от (ГПР+НР);

4,2 м3 – среднее сечение вертикальных выработок;

45 м/мес – нормативная скорость проходки;

12 мес – количество месяцев в году.

Система отработки – камеры с закладкой.

Годовые показатели: Добыча по системе, т.т. – 647,5

в т.ч. попутная, т.т. – 63,3

очистная, т.т. – 584,2

Горно-подготовительные, п.м. – 3905


S=4,625м2 м3 – 18060


в т.ч. горизонтальн. п.м./м3 – 2803/12964

вертикальные п.м./м3 – 1102/5096

Нарезные работы, п.м. – 3177


S=4,625м2 м3 – 14695


в .т.ч. горизонтальн. п.м./м3 – 1804/8343

вертикальные п.м./м3 – 1373/6352

Расчетное количество выемочных единиц:


N= 647,5/71,8=9 (1)


где 647,5 т.т. – годовая добыча по руднику данной системой;

71,8 т.т. – расчетная годовая производительность выемочной единицы по системе.

Расчетное количество скреперных выработок для обеспечения сменной производительности рудника по очистной добыче:


N=584200/(100*3*305)=6,5 (2)

где 584,2 т.т. – годовая добыча руды по руднику из очистных работ по системе;

100 т/м3 – сменная производительность скреперной лебедки 55ЛС-2С при скреперовании на 50м при данной системе;

3 см – количество рабочих смен в сутки;

305 дн – количество рабочих дней в году.

Расчетное количество буровых забоев на очистных работах (бурение скважин):


N=584200/(10,0*12,0*3*305)=5,4 (3)


где 584,2 т.т. – годовая добыча руды по руднику из очистных работ по системе;

10,0 т/п.м. – выход руды с 1 п.м. скважин;

12,0 п.м./см – норма выработки на бурение скважин станком ЛПС-3М;

3 см – количество рабочих смен в сутки;

305 дн – количество рабочих дней в году.

Расчетное количество забоев при проходке горизонтальных выработок от ГПР и НР:


N=(12964+8343)/(4,625*105*12)=3,6 (4)


где (12964+8343) м3 – годовые объемы горизонтальных выработок от(ГПР+НР);

4,625 м2 – среднее сечение горизонтальных выработок;

105 м/мес – нормативная скорость проходки;

12 мес – количество месяцев в году.

Расчетное количество забоев при проходке вертикальных выработок от ГПР и НР:

N=(5096+6352)/(4,2*45*12)=5,1 (5)


где (5096+6352) м3 – годовые объемы вертикальных выработок от (ГПР+НР);

4,2 м3 – среднее сечение вертикальных выработок;

45 м/мес – нормативная скорость проходки;

12 мес – количество месяцев в году.

Система этажного обрушения.

Годовые показатели: Добыча по системе, т.т. –192,5

в т.ч. попутная, т.т. – 18,9

очистная, т.т. – 173,6

Горно-подготовительные, п.м. – 1087


S=4,625м2 м3 – 5028


в т.ч. горизонтальн. п.м./м3 – 865/4000

вертикальные п.м./м3 – 222/1028

Нарезные работы, п.м. – 1033


S=4,625м2 м3 – 4780


в .т.ч. горизонтальн. п.м./м3 – 607/2809

вертикальные п.м./м3 – 426/1971

Расчетное количество выемочных единиц:


N= 192,5/320,8=1 (1)


где 192,5 т.т. – годовая добыча по руднику данной системой;

320,8 т.т. – расчетная годовая производительность выемочной единицы по системе.

Расчетное количество скреперных выработок для обеспечения сменной производительности рудника по очистной добыче:


N=173600/(123,4*3*305)=1,6 (2)


где 173,2 т.т. – годовая добыча руды по руднику из очистных работ по системе;

123,4 т/м3 – сменная производительность скреперной лебедки 55ЛС-2С при скреперовании на 50м при данной системе;

3 см – количество рабочих смен в сутки;

305 дн – количество рабочих дней в году.

Расчетное количество буровых забоев на очистных работах (бурение скважин):


N=173600/(10,0*11,9*3*305)=1,6 (3)


где 173,2 т.т. – годовая добыча руды по руднику из очистных работ по системе;

10,0 т/п.м. – выход руды с 1 п.м. скважин;

11,9 п.м./см – норма выработки на бурение скважин станком ЛПС-3М;

3 см – количество рабочих смен в сутки;

305 дн – количество рабочих дней в году.

Расчетное количество забоев при проходке горизонтальных выработок от ГПР и НР:


N=(4000+2809)/(4,625*105*12)=1,2 (4)


где (4000+2809) м3 – годовые объемы горизонтальных выработок от (ГПР+НР);

4,625 м2 – среднее сечение горизонтальных выработок;

105 м/мес – нормативная скорость проходки;

12 мес – количество месяцев в году.

Расчетное количество забоев при проходке вертикальных выработок от ГПР и НР:


N=(1028+1971)/(4,2*45*12)=1,3 (5)


где (1028+1971) м3 – годовые объемы вертикальных выработок от (ГПР+НР);

4,2 м3 – среднее сечение вертикальных выработок;

45 м/мес – нормативная скорость проходки;

12 мес – количество месяцев в году.

Расчетное количество забоев при проходке горизонтальных выработок от ГКР, промразведки и эксплоразведки:


N = V/(SвVnn) (6)

NГКР=10120/(8,43*70*12)=1,4

Nпр.раз-ки=5000/(8,33*70*12)=0,7

Nэкс.раз-ки=11900/(4,15*105*12)=2,3


где V = 10120 м3, 5000 м3, 11900 м3 – годовые объемы ГКР, промразведки и эксплоразведки соответственно;


Sв = 8,43 м2; 8,33 м2; 4,15 м2 – сечение выработок;


Vn = 70м/мес, 105 м/мес – нормативная скорость ГКР, промразведки и эксплоразведки;

n = 12 – количество месяцев в году.

3.3 Расчет количества воздуха, необходимого для проветривания горных работ


Количество воздуха, необходимое для проветривания горных работ рудника.

Расчет производится по следующим факторам:

–          по наибольшему числу людей, одновременно находящихся в шахте,

–          по газам, образующимся при взрывных работах,

–          по минимально допустимым скоростям движения воздуха.

Формулы, применяемые для расчета количества воздуха:

По наибольшему числу людей:


Q=N*g (м3/сек) (7)


где N – наибольшее число людей;

g – норма свежего воздуха на одного человека.

По газам, образующимся при взрывных работах (очистные работы, системы слоевого обрушения и забой-лава):


Q=(3,4/t)*ÖAbV (м3/сек) (8)


где А – количество одновременно взрываемого ВВ (кг);

b – газовость применяемого ВВ (л/кг);

V – проветриваемый объем очистного забоя (м3);

t – время проветривания (сек).

По газам, образующимся при взрывных работах (очистные работы):


Q=(2,32/Kтt)*ÖAbVk (м3/сек) (9)


где Кт – коэффициент турбулентных диффузий;

Vk – проветриваемый объем очистного забоя (м3).

По газам, образующимся при взрывных работах (проходка горизонтальных выработок):


Q=(2,25/t)*ÖAКобвDS2L2/Кут (м3/сек) (10)


где S – площадь поперечного сечения выработки (м2);

L – длина тупиковой части выработки (м);

Кобв – коэффициент, учитывающий обводненность выработки;

Кут – коэффициент, учитывающий потери воздуха в трубопроводе.

По газам, образующимся при взрывных работах (проходка восстающих):


Q=(0,3К1К2/t)*ÖAНbS/КутС (м3/сек) (11)


где К1 – коэффициент, учитывающий высоту восстающего;

К2 – коэффициент, учитывающий способ проветривания;

Н – высота восстающего (м);

С – допустимая концентрация ядовитых газов (%);

По минимально допустимым скоростям движения воздуха:


Q=vS (м3/сек) (12)


где v – минимально допустимая скорость движения воздуха.

Расчет количества воздуха, необходимого для проветривания горных работ по плану на 2010 год приведен в таблице 3:

4. Внутришахтный транспорт


Риддер-Сокольное месторождение вскрыто 12 вертикальными стволами на глубину 460,8 м (до уровня 18 горизонта), по горизонтали – откаточными квершлагами, ортами (штреками) на основных и промежуточных горизонтах, а так же серией вертикальных и горизонтальных вентиляционных выработок, обеспечивающих проветривание всех эксплуатируемых залежей. Всего отработка ведется на 11 залежах и 11 эксплуатационных горизонтах. Транспортировка руды и породы осуществляется по 3 концентрационным горизонтам (11, 13,16) электровозами К-10, К-14 в вагонах ВГ-4,5 и ВГ-2,2. по промежуточным горизонтам транспортировка руды и породы осуществляется в вагонах УВБ-2,5 и ВГ-2,2.

В соответствии с годовым планом по добычи руды вывозка руды составляет 1800000т/г.

Расстояние от пунктов разгрузки до пунктов погрузки при движении в порожняковом направлении:


L1п = Lk+Lп (13)

L2п = Lk+Lш-Lsn+Lв1+Ls (14)

L3п = Lk+Lш+Lв1-Lsn+Lв2+Ls (15)

L4п = Lk+Lш+Lв1-Lsn+Lв2+Lв3+Ls (16)


где Lk=1000м – длина квершлага;

Ln=600м – расстояние от квершлага до погрузочного пункта №1;

Lш=750м – длина штрека;

Lsn=55м – расстояние между полевыми ортами;

Lв1 – длина первого блока;

Lв2=Lв3 – длина второго и третьего блоков;

Ls= 10м – расстояние от полевого орта до рудничной залежи.

L1п = 1000+600 = 1600м

L2п = 1000+750-55+70+10 = 1775м

L3п = 1000+750-55+70+75+10 = 1850м

L4п = 1000+750-55+70+75+75+10 = 1925м


Расстояние от пунктов погрузки до пунктов разгрузки при движении в груженом направлении:


L1г = Lk+Lп (17)

L2г = m+Ls+Lв1+Lш+Lk (18)

L3г = m+Ls+Lв1+Lв2+Lш+Lk (19)

L4г = m+Ls+Lв1+Lв2+Lв3+Lш+Lk (20)


где m=35м – мощность рудного тела.


L1г = 1000+600 = 1600м

L2г = 35+10+70+750+1000 = 1865м

L3г = 35+10+70+75+750+1000 = 1940м

L4г = 35+10+70+75+75+750+1000 = 2015м


Расстояние транспортирования при движении в порожняковом направлении:

 

n n

Lп = åAiLin/åAi (21)

i=1 i=1

Lп = (1152*16000+1152*1775+1152*1850+1152*1925)/(4*1152) = 1787,5м


Расстояние транспортирования при движении в грузовом направлении:


n n

Lг = åAiLiА/åAi (22)

i=1 i=1

Lг = (1152*16000+1152*1865+1152*1940+1152*2015)/(4*1152) = 1855м


Средневзвешенная длина откатки:


L = (Lп+Lг)/2 (23)

L = (1787,5+1855)/2 = 1821м


Исходя из производительности рудника и средневзвешенной длины откатки принимаем вагон ВГ-4,5 с глухим не опрокидным кузовом и контактный электровоз К-14М.

ВГ-4,5:

Вместительность – 4,5 м3

Колея – 755 м

Длина по буферам – 4100 м

Ширина – 1350 м

Высота – 1550 м

Масса тары – 4,2 т

К-14М:

Сцепная масса – 14 т

Напряжение – 275 В

Количество двигателей – 2

Мощность двигателей – 46 кВт

Число секций – 1

4.1  Расчет электровозного транспорта


Фактическая грузоподъемность принятого вагона:


G = VYKн (24)


где Y – насыпная плотность руды.


G = 4,5*2,8*0,95 = 12т


Фактическое сопротивление движению груженого и порожнякового состава:


Wг = 10,5G-1/3 (25)

Wп = 10,2G0-1/3 (26)


где G0 – масса тары вагона.


Wг = 10,5*12-1/3 = 4,6н/кН

Wп = 10,2*4,2-1/3 = 6,3н/кН


Масса груженого поезда:


Qг = Pcцnc((1000gj/(1000(1+jn)j0+(1,5Wг+i)g)-1) (27)


где nc=1 – число секций электровоза;

j=0,15 – коэффициент сцепления без подсыпки песка;

jn=0,075 – коэффициент инерции вращающихся масс поезда;

j0 = 0,04м/с2 – ускорение при начале движения поезда;

i = 3% – уклон пути.

Qг = 14*1((1000*9,8*0,15/(1000(1+0,075)*0,04+(1,5*4,6+3)9,8)-1) = 109,2т


Количество вагонов в составе:


n = Qг/(G+G0) (28)

n = 109,2/(12+4,2) = 7 вагонов


Уточненная масса груженого состава:


Qг = n(G0+G) (29)

Qг = 7(4,2+12) = 113т


Уточненная масса порожнего состава:


Qп = nG0 (30)

Qп = 7*4,2 = 29,4т


Полезная масса поезда:


Q = nG (31)

Q = 7*12 = 84т


Сила тяги на один двигатель в период установившегося движения груженого и порожнего составов:


Fг = (g/ngnc)(Pcnc+Qг)(Wг-i) (32)

Fп = (g/ngnc)(Pcnc+Qп)(Wп-i) (33)

Fг = (9,8/2*1)(14*1+113)(4,6-3) = 998,8Н

Fп = (9,8/2*1)(14*1+29,4)(6,3-3) = 1977,7Н

Скорость груженого поезда:


Vг = 177N/(Fг+0,807Vr) (34)


где N – мощность двигателя (кВт),

Vr – скорость движения электровоза при часовом режиме (м/с).


Vг = 177*46/(998+0,807*3,23) = 9,2м/с


Скорость порожнего поезда:


Vп = 177N/(Fп+0,807Vr) (35)

Vп = 177*46/(1977,7+0,807*3,23) = 6,7м/с


Тормозная сила электровоза при механических тормозах:


Вт = 1000gPсцj (36)

Вт = 1000*9,8*14*0,15 = 24696Н


Удельная тормозная сила груженого и порожнего поездов:


Втг = Вт/(Рсц+Qг) (37)

Втп = Вт/(Рсц+Qп) (38)

Втг = 24696/(14+113) = 193,8Н/т

Втп = 24696/(14+29,4) = 569Н/т


Тормозное замедление груженого и порожнего поездов;


jтг = (Втг+g(Wг-i)/(1000(1+jn)) (39)

jтп = (Втп+g(Wп-i)/(1000(1+jn)) (40)

jтг = (193,8+9,8(4,6-3))/(1000(1+0,075) = 0,19м/с2

jтп = (569+9,8(6,3-3))/(1000(1+0,075) = 0,6м/с2


Допустимая по торможению скорость груженого и порожнего поездов:


Vтг = jтг(Öt02+(2Lт/jтг)-t0) (41)

Vтп = jтп(Öt02+(2Lт/jтп)-t0) (42)


где t0 = 3 – предтормозное время,

Lт = 40м – тормозной путь по ЕПБ.


Vтг = 0,19(Ö32+(2*40/0,12)-3) = 2,8 м/с

Vтг = 0,6(Ö32+(2*40/0,38)-3) = 4,5 м/с


Из полученных значений скорости по силе тяги и торможению принимается наименьшее:


V`г = Vтг = 2,8 м/с

V`п = Vтп = 4,5 м/с


Продолжительность рейса при L>1000м.

Средняя ходовая скорость груженого и порожнего поездов:


Vхг = 0,75V`г (43)

Vхп = 0,75V`п (44)

Vхг = 0,75*2,8 = 2,1 м/с

Vхп = 0,75*4,5 = 3,4 м/с


Продолжительность движения груженого и порожнего поездов:

Тг = L/60Vхг (45)

Тп = L/60Vхп (46)

Тг = 1821/60*2,1 = 14,5 мин

Тп = 1821/60*3,4 = 8,9 мин


Продолжительность движения в течении рейса:


Тдв = Тг+Тп (47)

Тдв = 14,5+8,9 = 23,4 мин


Время погрузки состава:


tп = t`пn (48)


где t`п – время погрузки одного вагона, t`п = 2мин (ВГ-4,5).

t`п = 2*7 = 14 мин

Время разгрузки состава:


tр = t`рn/Z (49)


где t`р – время разгрузки,

Z – число одновременно разгружаемых вагонов.

Для разгрузки принимается опрокидыватель.


tр = 0,83*7/2 = 2,9 мин


Полная продолжительность рейса:


Тр = Тдв+tп+tр+q (50)

где q = 13мин – продолжительность маневра за 1 рейс.


Тр = 2,34+14+2,9+13 = 55,3 мин


Проверка двигателей на нагревание при движении груженого и порожнего поездов:


Аэ = (JpQL)/K (51)

Аэ = (6*84*1,821)/1,25 = 734,2 т км/смену


Расчетная сменная производительность электровоза:


А`э = (1,2*1640*1,821)/6 = 597,3 т км/смену


Расчетный коэффициент использования электровоза за смену:


Кисп = 32/6*6 = 0,9


Инвентарное количество вагонов для перевозки руды и породы:


Nв = Квn(Nэ+Кд) (52)

Nв = 1,25*7(6+0,0) = 53


Разгрузка вагонов в вагоноопрокидывателях. На руднике преимущественно применяются круговые (роторные) вагоноопрокидыватели.

Каждый круговой вагоноопрокидыватель состоит из металлической клети механизма вращения, механизма для зацепления вагона и устройства для перекатывания вагона по платформе.

Привод механизма вращения в вагоноопрокидывателях фрикционный.

Разгрузка вагонов в вагоноопрокидывателе осуществляется с помощью пульта управления, находящегося в камере и дистанционного управления с подвижного состава.

Длина участка с дистанционным управлением рассчитана на двойную длину состава (груженого и порожнего).

Разгрузка вагонов осуществляется в строгом соответствии с «Инструкцией для машинистов электровоза по безопасным методам работы на вагоноопрокидывателях с дистанционным управлением» №58/02.

Разгрузка вагонов с обводненной горной массой производится по специальной организации работ, составленной и утвержденной в установленном порядке.

На 13 16 горизонтах установлены вагоноопрокидыватели типа ОК-1-4 для вагонов емкостью 4,5 м3, на 11 горизонте – ОК-2,2 для вагонов емкостью 2,2 м3.

На промежуточных горизонтах разгрузка вагонов УВБ-2,5 с боковым откидным бортом осуществляется разгрузочными устройствами с боковым захватом колес и цилиндротолкателем. На разгрузочных устройствах так же применяется и дистанционное управление с подвижного состава.

5. Шахтные подъемные установки

5.1 Процесс подъема руды и породы


Подъем руды и породы, а так же разгрузку ее в бункер «сырой руды» на Риддер-Сокольном руднике обеспечивает участок внутришахтного вертикального транспорта (№10) по стволам шахт «Новая» и «Скиповая». Процесс выдачи руды на поверхность в бункер «сырой руды» включает в себя следующие этапы:

–          погрузка руды (породы) в скипы,

–          подъем руды (породы) на поверхность,

–          загрузка скипов в приемный бункер «сырой руды»

Погрузку руды (породы) в скипы выполняют дозаторщики скиповых подъемов в соответствии с рабочей инструкцией и инструкцией РГОК «По охране туда для машинистов подъемных установок».

Подъем руды (породы) на поверхность выполняет дежурный машинист подъемной установки шх. «Скиповая» (шх. «Новая») в соответствии с рабочей инструкцией и инструкцией РГОК «По охране труда для машинистов подъемных установок».

Разгрузку скипов в приемный бункер «сырой руды» выполняет дежурный машинист подъемной установки совместно с дозаторщиком в соответствии с рабочими инструкциями.

Шахтные подъемные установки являются одним из важнейших звеньев всего технологического комплекса при подземной разработке месторождений полезных ископаемых. Подъемные установки предназначены для транспортирования по шахтному стволу руды и породы, материалов, оборудования, а также для спуска и подъема людей, осмотра и ремонта шахтного ствола.

Основными требованиями, предъявляемыми к подъемным установкам, являются обеспечение требуемой производительности, безопасность и экономичность работы.

В комплекс подъемной установки входят следующие элементы:

–     подъемная машина, состоящая из органов навивки подъемных канатов (барабанов), редуктора, приводного электродвигателя, аппаратуры управления и защиты;

–     надшахтный копер, на котором установлены копровые шкивы и устройства разгрузки подъемных сосудов;

–     подъемные канаты, на которых подвешены подъемные сосуды;

–     подъемные сосуды – клети или скипы, в которых транспортируются грузы;

–     загрузочные и разгрузочные устройства.

Перед пуском в работу подъемная машина должна быть проверена. Проверке подлежат:

–     состояние загрузочных устройств;

–     состояние шахтного ствола, его армировки, крепи, проводников;

–     состояние скипов;

–     состояние разгрузочных устройств;

–     состояние основных узлов подъемной машины, цепей управления и сигнализации.

Перечень работ и периодичность проведения проверок регламентируются «Правилами промышленной безопасности при разработке рудных, нерудных и россыпных месторождений полезных ископаемых подземным способом» и графиками проведения планово-предупредительных ремонтов (ППР).

Согласно графика ППР проводятся следующие работы:

–     ежесменно – проверка подъемной машины машинистом подъемной установки в объеме, указанном рабочей инструкцией;

–     ежесуточно – проверка состояния ствола, надшахтного копра, копровых шкивов, подъемных канатов, скипов, загрузочных и разгрузочных устройств;

–     еженедельно – смазка канатов;

–     1 раз в 15 дней – проверка состояния подъемной установки комиссией в составе главного механика рудника и механика участка;

–     ежемесячно – проверка подъемной установки комиссией в составе главного инженера рудника, главного механика, главного энергетика и механика участка;

–     2 раза в год – ревизия и наладка подъемной установки специализированной ремонтно-наладочной бригадой

По общей схеме комплекса, руда (порода) из опрокидывателя попадает в капитальный рудоспуск, из которого по двум загрузочным рукавам (для каждого скипа) поступает в мерные ящики, откуда непосредственно загружается в скипы. Загруженный скип поднимается на поверхность подъемной машиной. При подходе скипа к разгрузочным кривым отклоняющий ролик входит в них и происходит опрокидывание кузова скипа (открывание секторного затвора скипа). Руда (порода) по погрузочному рукаву поступает в бункер. По окончании загрузки и отправлении второго скипа первый скип начинает опускаться и отклоняющий ролик, двигаясь по разгрузочным кривым, возвращает кузов скипа (секторный затвор скипа) в исходное положение. Загрузка одного из скипов в шахте и разгрузка другого на поверхности происходят одновременно.

Контроль процесса выдачи руды на поверхность ведется при помощи автоматического устройства. Особенностью работы этого устройства является нечувствительность к подъему пустого скипа. Благодаря наличию «обнуления» счетчиков есть возможность контроля выдачи руды за различные промежутки времени (час, смена, сутки) и сравнение с плановыми показателями.

5.2 Технические характеристики подъемных установок


Подъемная установка шх. «Скиповая» Ц-2х5х2,3 эксплуатируется с 1951 года. Максимальная скорость подъема – 8,2 м/сек. Оснащена двумя скипами V=7,5 м3, максимальный полезный вес в скипе 13,3 т. Высота подъема – 502 м.

Подъемная установка шх. «Новая» (грузовая) ЦР-4х3,2/06 эксплуатируется с 1979 года, максимальная скорость подъема – 6,4 м/сек. Оснащена двумя скипами V=4,8 м3, максимальный полезный вес в скипе 8,5 т. Высота подъема – 473 м.

Подъемная установка шх. «Новая» (клетьевая) ЦР-5х3/06 эксплуатируется с 1987 года, максимальная скорость подъема – 7,4 м/сек. Оснащена противовесом и клетью 22Н13-31, максимальный вес расчетного груза в вагоне ВГ-2,2 – 3,6 т. Высота подъема – 500 м.

Подъемная установка шх. «Андреевская» ПМ-24 эксплуатируется с 1942 года, максимальная скорость подъема – 3,14 м/сек. Оснащена противовесом и клетью ТК-5, максимальный полезный вес в клети 1600 т. Высота подъема – 180 м. Осуществляет спуск-подъем людей и материалов.

Подъемная установка шх. «Белкина-2» 2БМ-3000/1520 эксплуатируется с 1962 года, максимальная скорость подъема – 4,46 м/сек. Оснащена скипом V=2,5 м3 с максимальным полезным весом в скипе 3200 кг и клетью ТК-5 с максимальным полезным весом в клети 1300 кг. Высота подъема – 401 м. Осуществляет спуск-подъем людей и материалов.

Подъемная установка шх. «Быструшинская» ШПМ2х4х1,7 эксплуатируется с 1954 года, максимальная скорость подъема – 6,3 м/сек. Оснащена противовесом и клетью ТК-5, максимальный полезный вес в клети 2720 кг. Высота подъема – 384 м. Осуществляет спуск-подъем людей и материалов.

Подъемная установка шх. «Быструшинская-Слепая» 2х3х1,5 эксплуатируется с 1977 года, максимальная скорость подъема – 5,8 м/сек. Оснащена противовесом и клетью 21НВ-31, максимальный полезный вес в клети 3660 кг. Высота подъема – 150 м. Осуществляет спуск-подъем людей и материалов.

6. Технология закладочных работ


На руднике применяются следующие виды закладки выработанного пространства:

–          твердеющая на основе вяжущего портландцемента,

–          гидравлическая,

–          породная.

В качестве инертного заполнителя при твердеющей и гидрозакладке

используются текущие хвосты обогатительной фабрики в пульпообразном виде. Портландцемент доставляется с цементных заводов до центрального склада цемента на промплощадке РСМ (6 емкостей по 400т) в вагонах-хопперах и со склада транспортируется до закладочных комплексов (БЗК) рудника автоцементовозами. Расход цемента на 1 м3 закладочной смеси в зависимости от нормативной прочности искусственного массива варьируется в диапазоне 100¸200 кг/м3.

Существующая технологическая схема закладочного комплекса Риддер-Сокольного рудника выглядит следующим образом. Текущие хвосты отбираются из безнапорного объединенного хвостопровода обогатительной фабрики через патрубки, оборудованные шланговыми затворами и через последние поступают в зумпф грунтовых насосов ГРТ-400-4. Насосы (2 шт) подают хвостовую пульпу на две батареи гидроциклонов ГЦ-500 (по 4 шт на каждый насос). Слив гидроциклонов самотеком возвращается в хвостопровод фабрики. Пески гидроциклонов поступают в специальный зумпф, в который по дополнительному патрубку со шланговым затвором подается исходная хвостовая пульпа из хвостопровода. Объединенная пульпа из зумпфа грунтовым насосом ГРТ-400-4 по трубопроводу диаметром 219 мм перекачивается на расстояние до 1 км на закладочный комплекс рудника. На закладочном комплексе пульпа из трубопровода поступает на батарею гидроциклонов ГЦ-500 (4 шт), где обезвоживается до требуемой плотности. Слив гидроциклонов в зумпф специальным насосом ГРТ-400-4 возвращается по трубопроводу обратки в хвостопровод обогатительной фабрики. Пески гидроциклонов самотеком подаются в турбулентный смеситель, где перемешиваются с цементом. Доставленный автоцементовозом цемент сжатым воздухом перекачивается в два приемных бункера цемента по 100т и затем подается в расходный бункер цемента вместимостью 20 т. Цемент дозируется в процессе приготовления смеси дозатором цемента шлюзового типа (СБ-71) с регулируемым эл.приводом. готовая закладочная смесь после турбулентного смесителя поступает в закладочную скважину и по трубопроводу диаметром 150 мм транспортируется к месту закладки. Производительность БЗК зависит от качества текущих хвостов обогатительной фабрики и находится в диапазоне 50¸60 м3/час. Плотность пульпы песков гидроциклонов составляет порядка 1800кг/м3, плотность исходной пульпы из хвостопровода составляет 1130¸1180 кг/м3. Содержание крупных частиц (кл+74мкм) в исходной пульпе находится на уровне 30%, а в песках гидроциклонов, направляемых в закладку доходит до 70¸80%, т.е. в технологии приготовления текущих хвостов для закладки происходит не только их сгущение от содержания твердого от 13% до 70% по массе, но и выделение крупного класса материала для использования его в закладке.

В связи с тем, что в закладку преимущественно используется крупная составляющая хвостов обогащения и с учетом того, что для намыва дамбы хвостохранилища обогатительной фабрики также требуется крупный материал в значительных объемах, в летнее время в период намыва дамбы хвостохранилища отбор хвостов на закладку приходится прекращать и останавливать БЗК на период до 4 месяцев.

Для обеспечения возможности работы БЗК в период намыва дамбы хвостохранилища был разработан проект , который предусматривает подачу гипсовой пульпы установки нейтрализации серной кислоты в схему отбора и подготовки текущих хвостов на закладочный комплекс рудника, а также возврат гипсовой пульпы со сливом гидроциклонов на установку нейтрализации серной кислоты и далее на шламонакопитель в Крюковский карьер.

Для выполнения технологических данных закладочный комплекс рудника оборудован приборами автоматического учета расхода компонентов закладочной смеси – дозаторами цемента, плотномерами, расходомерами.

7. Система водоотлива


Общий водоприток в горные выработки месторождения составляет 2500¸2800 м3/час.

Водоотливной комплекс включает в себя 5 насосных станций, расположенных на 18, 16, 13, 11 и штольневом горизонтах у ствола шх. «Новая».

В настоящее время в насосной 18 горизонта установлено 3 насоса ЦНС-180/126, вода из насосной подается в водосборники 16 горизонта в объеме 80¸100 м3/час.

В насосной 16 горизонта установлено 5 насосов ЦН-600/380, вода в объеме 550¸600 м3/час перекачивается в штольневую насосную на поверхности.

В насосной 13 горизонта установлено 5 насосов ЦН-900/310, вода в объеме 650¸700 м3/час перекачивается в штольневую насосную на поверхности.

В насосной 11 горизонта установлено 5 насосов ЦН-1000/180, вода в объеме 900¸1000 м3/час, как условно чистая, перекачивается на поверхность.

В штольневой насосной установлено 3 насоса 1Д1250, вода в объеме 1150¸1300 м3/час перекачивается на очистные сооружения.    

Схема общешахтного водоотлива Риддер-Сокольного месторождения приведена на рис.2.

8. Энергоснабжение горных работ

8.1 Снабжение сжатым воздухом


Площадка Риддер-Сокольного месторождения обеспечивается сжатым воздухом от компрессорной №1 ЦЗО (Центральная заводская ограда) и компрессорной №2 Быструшинской площадки рудника.

В компрессорной станции №1 установлено пять компрессоров типа 4ВМ-10/120-9 производительностью 124,5 м3/мин каждый, два компрессора 2ВГ производительностью 100 м3/мин каждый, два компрессора 55В производительностью 100 м3/мин каждый.

В компрессорной станции №2 Быструшинской площадки РСР установлено три компрессора 4ВМ-10/120-9 производительностью 124,5 м3/мин каждый, два компрессора 5Г-100/6 производительностью 100 м3/мин каждый.

В подземный выработки сжатый воздух подается по трубопроводам, проложенным в стволах:

–          шх. «Новая» – один трубопровод диаметром 377 мм,

–          шх. «Андреевская» – два трубопровода диаметром 233 мм до 9-го горизонта, а от 9-го горизонта до 11-го горизонта – один трубопровод диаметром 273 мм,

–          шх. «Быструшинская» – один трубопровод диаметром 273 мм.

Магистральная сеть всех компрессорных закольцована.

Схема воздухоснабжения рудника Риддер-Сокольного месторождения на приведена рис.3.

Снабжение промышленной водой. Водоснабжение горных работ осуществляется от поверхностных хозяйственно-питьевых водопроводов по трубопроводам промышленной воды Быструшинской плотины, Верхне-Хариузовского водозабора и насосного водозабора реки Быструха:

–          в стволе шх. «Андреевская» проложен трубопровод диаметром 159 мм от промпровода диаметром 325 мм,

–          в стволе шх. «Новая» проложен трубопровод диаметром 159 мм от хозпитьевого водопровода диаметром 530 мм,

–          в стволе шх. «Быструшинская» проложен трубопровод диаметром 159 мм от насосного водозабора на реке Быструха, где установлены три насоса типа А320-50УХЛ4.

На 16 горизонте трубопроводы закольцованы.


8.2 Снабжение теплоэнергией


На площадку ЦЗО теплоэнергия подается от Риддерской ТЭЦ.


8.3 Снабжение электроэнергией


Питание площадки ЦЗО осуществляется по линии ЛЭП-110кВ №№ 112, 117, 145, 146 и ЛЭП-35кВ №№ 40, 41, 37, 39. Головные подстанции ГПП-1, п/ст Таловская, п/ст Рафинации, п/ст №2, п/ст Белкина-2, п/ст Быструшинская находятся на балансе комплекса, все внешние сети обслуживает районная энергетическая компания «ВК РЭК».

Основными поверхностными потребителями электроэнергии являются:

–          шахтный подъем («Скиповая», «Новая», «Андреевская», «Быструшинская», «Белкина-2»),

–          вентиляторные установки (вентиляционный шурф, «Белкина-2», шахта №3, «Вентиляционная»)

–          компрессорные,

–          калориферные,

–          объекты водоснабжения,

–          очистные сооружения шахтных вод,

–          вспомогательные службы,

–          БЗК.

Основными подземными потребителями электроэнергии являются:

–          насосы главного водоотлива,

–          вентиляторы (подпорные и местного проветривания),

–          дробильные и рудовыдочные комплексы шх. «Новая» и «Скиповая»,

–          механизмы горных работ,

–          электровозный транспорт,

–          освещение.

Все технологические нагрузки в отношении обеспечения надежности электроснабжения разделяются по категориям.

Потребители 1 категории: насосы главного водоотлива, вентиляторные установки, объекты водоснабжения, подъемные установки.

Потребители 3 категории: объекты вспомогательного назначения.

Остальные потребители относятся ко 2 категории.

9. Производство массового взрыва

9.1 Горно-геологическая характеристика


Район массового взрыва в блока 1 расположен в центральной части Центральной залежи между 2с и 3в линиями ортов, 13 и 14а линиями штреков и между отметками +500 ¸ 560м.

Район работ блок 1 сложен микрокварцитами, серицит-глинистыми сланцами, серицит-хлорит-кварцевыми породами.

Микрокварциты серого цвета массивные плитчатые (Ð = 5¸15о), устойчивые, коэффициент крепости по шкале профессора Протодьяконова

f = 12¸14.

Серицит-глинистые сланцы черного цвета, неустойчивые (коэффициент f = 5¸6), распространены в виде отдельных линз и прослоев мощностью 2¸22м.

Серицит-хлорит-кварцевые породы серо-зеленого цвета от средней устойчивости (f = 8¸10) до неустойчивых (f = 5¸6).

В кровле блока 1 находятся ранее отработанные блока 3/4, 4, 8, у которых воронка вышла на поверхность.

Гидрогеологические условия являются нормальными, в горных выработках местами наблюдается незначительный капеж воды.

Взрываемые объемы руды и металлов приведены в паспорте блока.


9.2 Система разработки


Проектом предусматривается система разработки – подэтажное обрушение. Отбойка запасов руды панели осуществляется глубокими скважинными зарядами. Днище панели принято типовое: скреперные выработки, выпускные ниши, дучки, буровые камеры. Выпуск отбитой руды – донный, самотечный через дучки в днище камеры. Доставка руды скреперная.

Система предусматривает двухстадийную отработку запасов. В первую очередь отрабатывается руда компенсационных камер, во вторую очередь на компенсационные камеры производится отбойка запасов временных циклов. При этом выпуск руды осуществляется под обрушенными породами.

Средняя высота блока – 55м.

Глубина от поверхности до днища блока – 363м.

Площадь обнажения потолочины – 1121м2.

Рудный массив блока 1 разбурен станками ЛПС-3У. Разбуривание веерное, диаметр скважин – 130мм, сетка разбуривания 2,9 х 3,0м. Взрывные скважины находятся в удовлетворительном состоянии и соответствуют паспорту разбуривания.

9.3 Схема и порядок подготовки к очистной выемке


Подготовка блока 1 Центральной залежи к очистной добыче производится следующим образом:

С кровли штрека 13 14 горизонта ведут проходку скреперного орта 2. из скреперного орта 2 проходят вентиляционный штрек для сбойки со скреперным ортом 1 панели 24. Затем из соединительного орта панели 24 Центральной залежи ведут проходку скреперного орта 1 , который сбивают с вентиляционным штреком 1.

После подключения скреперных ортов 1 и 2 к общешахтной схеме проветривания приступают к проходке нарезных выработок. Проходят ниши, дучки и сбивают их буровыми камерами. После проходки буровых камер осуществляют проходку просечек и отрезных восстающих. Из буровой камеры 11 панели 24 ведут проходку просечки 5 и отрезного восстающего 5, а также расширяют ходовую сбойку буровой камеры 11 панели 24 под буровую камеру и здесь же проходят буровую камеру 9.

Из орта 3 13 горизонта проходят буровую камеру 13, просечку 7, отрезной восстающий 8 и буровую камеру 14.

Скреперный штрек 4 панели 20 расширяют под просечку 6 и проходят буровые камеры 12, 16.

С почвы орта 3 13 горизонта проходят буровую камеру 11 и аналогично со штрека 14 13 горизонта проходят буровую камеру 15.

Со скреперного штрека 14 панели 17 ведут проходку буровой камеры 10 и рядом с ходовым восстающим 3 панели 24 проходят нишу ходового восстающего и затем осуществляют проходку ходового восстающего до сбойки с лебедочным штреком блока 4. На уровне Z=545,5 м из ходового восстающего проходят буровую камеру 17.

Из вентиляционного восстающего 14 13 горизонта на уровне Z=541,5 м осуществляют проходку буровой камеры 18 и буровой камеры 19.

Подробная очередность проходки указана в графике организации работ (таблица 5).


9.4 Способ отбойки и параметры буро-взрывных работ


Рудный массив блока 1 Центральной залежи разбуривается станками ЛПС-3У. Разбуривание веерное, сетка расположения скважин 2,9х3,0 м диаметр 130мм.

Для определения линии наименьшего сопротивления взрывных скважин пользуемся формулой:


W = Ö(pd2100gВВKз)/(4g0gpm) (53)


где W – ЛНС (м);

d – диаметр скважины (см);

gВВ – плотность ВВ (г/см3);

Кз – коэффициент, показывающий, какая часть общей длины скважины заполняется ВВ;

gp – объемный вес отбиваемой руды (т/м3);

g0 – удельный расход ВВ на первичную отбойку (величина, характеризующая энергоемкость разрушения данной породы взрывом) (г/т);

m – коэффициент сближения скважин в ряду.

При известных в практических условиях показателях величины заряда ВВ в 1 п.м. скважины вышеуказанная формула примет более упрощенное выражение:


W = ÖQ/(g0gm) (54)


где Q – количество ВВ, вмещаемое на 1 п.м. скважины (кг/м);

g0 – удельный расход ВВ на отбойку (кг/т)


g0 = (0,800-gв)(DfDgDeDd/Db); (55)


g– объемный вес отбиваемой руды (т/м3);

m – коэффициент сближения скважин в ряду.


W = ÖQDb/((0,800-gв)(DfDgDeDd/Db)gm) (56)


Отбойка руды крепостью f = 16¸17 производится скважинами диаметром 130 мм, g = 2,8 т/м3, кондиционный кусок – 400мм, коэффициент сближения скважин m = 1. Вместимость ВВ (игданит) в скважине Q = 15,0 кг/м.


W = Ö15 /(0,7*2,8*1) = 2,9м

Таблица 6 – Схема расположения скважин

Наименование выработок

Диаметр скважин, м

Наименьшая, наибольшая глубина, м

Общая длина скважин, м

Длина скважин, подлеж.

зарядке, п.м.

Количество скважин, шт

Просечка 1

130

15

450

375

30

Просечка 2

130

15

360

300

24

Просечка 3

130

15

270

225

18

Просечка 4

130

6

84

69

6

Просечка 5

130

6-9

126

81

18

Просечка 6

130

7-15

123

48

30

Просечка 7

130

6-10

384

264

48

Буровая камера 1

130

4-18

1298

876

114

Буровая камера 2

130

8-18

415

283

33

Буровая камера 3

130

6-18

190

129

16

Буровая камера 4

130

7-18

432

295

34

Наименование выработок

Диаметр скважин, м

Наименьшая, наибольшая глубина, м

Общая длина скважин, м

Длина скважин, подлеж.

зарядке, п.м.

Количество скважин, шт

Буровая камера 5

130

9-20

99

69

8

Буровая камера 6

130

14-18

301

207

22

Буровая камера 7

130

4-18

271

183

23

Буровая камера 8

130

10-18

155

107

14

Буровая камера 9

130

4-23

181

122

16

Буровая камера 10

130

8-18

352

233

38

Буровая камера 11

130

17

34

30

2

Буровая камера 12

130

11-20

338

231

27

Буровая камера 13

130

20-22

98

86

6

Буровая камера 14

130

8-14

291

192

32

Буровая камера 15

130

5-19

261

175

25

Буровая камера 16

130

6-13

28

20

3

Буровая камера 17

130

7-10

461

282

85

Буровая камера 18

130

12-18

1591

1077

136

Буровая камера 19

130

12-14

52

40

4

Бур.камера пан.24

130

7-18

444

284

63

Ход.сбойка пан.24

130

8-23

342

225

39

Леб.ниша с.ш.14 П-17

130

9-10

47

34

5

Орт 3 13 горизонт

130

7-10

461

282

85

Леб.штр.с.ш.1,2,3 бл.4

130

7-10

100

64

15

Всего



10039

6888


Страницы: 1, 2, 3, 4


© 2000
При полном или частичном использовании материалов
гиперссылка обязательна.