РУБРИКИ

Шпаргалки по биологии

   РЕКЛАМА

Главная

Зоология

Инвестиции

Информатика

Искусство и культура

Исторические личности

История

Кибернетика

Коммуникации и связь

Косметология

Криптология

Кулинария

Культурология

Логика

Логистика

Банковское дело

Безопасность жизнедеятельности

Бизнес-план

Биология

Бухучет управленчучет

Водоснабжение водоотведение

Военная кафедра

География экономическая география

Геодезия

Геология

Животные

Жилищное право

Законодательство и право

Здоровье

Земельное право

Иностранные языки лингвистика

ПОДПИСКА

Рассылка на E-mail

ПОИСК

Шпаргалки по биологии

Шпаргалки по биологии

Билет № 11. Клеточное строение организ­мов. Клетка — единица строения каждого организма. Одноклеточ­ные организмы, их строение и жи­знедеятельность. Многоклеточные организмы, возникновение в про­цессе эволюции клеток, разнооб­разных по форме, размерам и функциям. Взаимосвязь клеток в организме, образование тканей, органов. 2. Сходное строение клеток рас­тений, животных, грибов и бакте­рий. Наличие плазматической мембраны, цитоплазмы, ядра или ядерного вещества, рибосом в клетках всех организмов, а также митохондрий, комплекса Гольджи

в клетках растений, животных и грибов. Сходство в строении кле­ток организмов всех царств — до­казательство их родства, единства органического мира. 3. Различия в строении клеток: отсутствие целлюлозной оболочки, хлоропластов и вакуолей с клеточ­ным соком у животных, грибов; отсутствие в клетках бактерий оформленного ядра (ядерное ве­щество расположено в цитоплаз­ме), митохондрий, хлоропластов, комплекса Гольджи. 4. Клетка — функциональная единица живого. Обмен веществ и превращение энергии — основа жизнедеятельности клетки и орга­низма. Способы поступления ве­ществ в клетку: фагоцитоз, пи-ноцитоз, активный транспорт. Пластический обмен — синтез органических соединений из по­ступивших в клетку веществ с участием ферментов и использо­ванием энергии. Энергетический обмен — окисление органических веществ клетки с участием фер­ментов и синтез молекул АТФ.

5. Деление клеток — основа их размножения, роста организма.

2. 1. Палеонтологические дока­зательства эволюции. Ископае­мые остатки — основа восстанов­ления облика древних организмов. Сходство ископаемых и современных организмов — дока­зательство их родства. Условия со­хранения ископаемых остатков и отпечатков древних организмов. Распространение древних, прими­тивных организмов в наиболее глубоких слоях земной коры, а высокоорганизованных — в по­здних слоях.

Переходные формы (археопте­рикс, зверозубый ящер), их роль в установлении связей между систе­матическими группами. Филоге­нетические ряды — ряды последо­вательно сменяющих друг друга видов (на примере эволюции лоша­ди или слона).

2. Сравнительно-анатомические доказательства эволюции:

1) клеточное строение организ­мов. Сходство строения клеток ор­ганизмов разных царств; 2) общий план строения по­звоночных животных — дву­сторонняя симметрия тела, позво­ночник, полость тела, нервная, кровеносная и другие системы органов;

3) гомологичные органы, еди­ный план строения, общность про­исхождения, выполнение различ­ных функций (скелет передней конечности позвоночных живот­ных);

4) аналогичные органы, сходство выполняемых функций, различие общего плана строения и проис­хождения (жабры рыбы и речного рака). Отсутствие родства между организмами с аналогичными ор­ганами; 5) рудименты — исчезающие органы, которые в процессе эволю­ции утратили значение для сохра­нения вида (первый и третий паль­цы у птиц в крыле, второй и чет­вертый пальцы у лошади, кости таза у кита);

6) атавизмы — появление у со­временных организмов признаков предков (сильно развитый волося­ной покров, многососковость у че­ловека).

3. Эмбриологические  доказа­тельства эволюции:

1)при половом размножении развитие организмов из оплодотво­ренной яйцеклетки;

2) сходство зародышей позво­ночных животных на ранних ста­диях их развития. Формирование у зародышей признаков класса, от­ряда, а затем рода и вида по мере их развития; 3) биогенетический      закон Ф. Мюллера и Э. Геккеля — каж­дая особь в онтогенезе повторяет историю развития своего вида (форма тела личинок некоторых насекомых — доказательство их происхождения от червеобразных предков).

3.Надо обратить внимание на окраску, размеры цветка, его запах, наличие нектара. Эти признаки свидетельствуют о при­способленности растений к опы­лению насекомыми. В процессе эволюции у растений могли по­явиться наследственные измене­ния (в окраске цветков, размерах и т. д.). Такие растения привле­кали насекомых и чаще опыля­лись, они сохранялись естествен­ным отбором и оставляли потом­ство.



Билет № 21. Строение растительной клет­ки: целлюлозная оболочка, плаз­матическая мембрана, цитоплаз­ма с органоидами, ядро, вакуоли с клеточным соком. Наличие плас­тид — главная особенность расти­тельной клетки.

2. Функции клеточной оболоч­ки — придает клетке форму, защи­щает от факторов внешней среды. 3. Плазматическая мембрана — тонкая пленка, состоит из взаимо^ действующих молекул липидов и белков, отграничивает внутреннее содержимое от внешней среды, обеспечивает транспорт в клетку воды, минеральных и органиче­ских веществ путем осмоса и ак­тивного переноса, а также удаляет вредные продукты жизнедеятель­ности. 4. Цитоплазма — внутренняя полужидкая среда клетки, в кото­рой расположено ядро и органо­иды, обеспечивает связи между ними, участвует в основных про­цессах жизнедеятельности. 5. Эндоплазматическая сеть — сеть ветвящихся каналов в цито­плазме. Она участвует в синтезе белков, липидов и углеводов, в транспорте веществ. Рибосомы — тельца, расположенные на ЭПС или в цитоплазме, состоят из РНК и белка, участвуют в синтезе белка. ЭПС и рибосомы — единый аппа­рат синтеза и транспорта белков. 6. Митохондрии — органоиды, отграниченные от цитоплазмы двумя мембранами. В них с учас­тием ферментов окисляются орга­нические вещества и синтезируют­ся молекулы АТФ. Увеличение по­верхности внутренней мембраны, на которой расположены фермен­ты за счет крист. АТФ — богатое энергией органическое вещество. 7.   Пластиды (хлоропласты, лейкопласты, хромопласты), их содержание в клетке — главная особенность растительного орга­низма. Хлоропласты — пластиды, содержащие зеленый пигмент хло­рофилл, который поглощает энер­гию света и использует ее на синтез органических веществ из углекислого газа и воды. Отгра­ничение хлоропластов от цито­плазмы двумя мембранами, много­численные выросты — граны на внутренней мембране, в которых расположены молекулы хлорофил­ла и ферменты. 8. Комплекс Гольджи — систе­ма полостей, отграниченных от ци­топлазмы мембраной. Накаплива­ние в них белков, жиров и углево­дов. Осуществление на мембранах синтеза жиров и углеводов. 9. Лизосомы — тельца, отгра­ниченные от цитоплазмы одной мембраной. Содержащиеся в них ферменты ускоряют реакцию рас­щепления сложных молекул до простых: белков до аминокислот, сложных углеводов до простых, липидов до глицерина и жирных кислот, а также разрушают отмер­шие части клетки, целые клетки. 10. Вакуоли — полости в цито­плазме, заполненные клеточным соком, место накопления запас­ных питательных веществ, вред­ных веществ; они регулируют со­держание воды в клетке. 11. Клеточные включения — капли и зерна запасных питатель­ных веществ (белки, жиры и угле­воды). 12. Ядро — главная часть клет­ки, покрытая снаружи двухмемб­ранной, пронизанной порами ядер­ной оболочкой. Вещества поступа­ют в ядро и удаляются из него через поры. Хромосомы — носители на­следственной информации о при­знаках организма, основные струк­туры ядра, каждая из которых со­стоит из одной "молекулы ДНК в соединении с белками. Ядро — ме­сто синтеза ДНК, иРНК, рРНК.

2.1. Ароморфоз — крупное эво­люционное изменение. Оно обеспе­чивает повышение уровня органи­зации организмов, преимущества в борьбе за существование, воз­можность освоения новых сред обитания. 2. Факторы, вызывающие аро-морфозы, — наследственная из­менчивость, борьба за существова­ние и естественный отбор.

3. Основные ароморфозы в эво­люции многоклеточных живот­ных:

1) появление многоклеточных животных от одноклеточных, диф­ференциация клеток и образова­ние тканей; 2) формирование у животных двусторонней симметрии, пере­дней и задней частей тела, брюш­ной и спинной сторон тела в связи с разделением функций в организ­ме (ориентация в пространстве — передняя часть, защитная — спин­ная сторона, передвижение — брюшная сторона); 3) возникновение бесчерепных, подобных современному ланцетни­ку, панцирных рыб с костными че­люстями, позволяющими активно охотиться и справляться с добы­чей; 4) возникновение легких и по­явление легочного дыхания наря­ду с жаберным; 5) формирование скелета плав­ников с мышцами, подобных пяти­палой конечности наземных позво­ночных, позволивших животным не только плавать, но и ползать по дну, передвигаться по суше;

6) усложнение кровеносной сис­темы от двухкамерного сердца,од­ного круга кровообращения у рыб до четырехкамерного сердца, двух кругов кровообращения у птиц и млекопитающих. Развитие нерв­ной системы: паутинообразная у кишечнополостных, брюшная це­почка у кольчатых червей, трубча­тая нервная система, значительное развитие больших полушарий и коры головного мозга у птиц, чело­века и других млекопитающих. Усложнение  органов дыхания (жабры у рыб, легкие у наземных позвоночных, появление у челове­ка и других млекопитающих в лег­ких множества ячеек, оплетенных сетью капилляров). 4. Роль ароморфозов в освое­нии животными всех сред обита­ния, в совершенствовании спосо­бов передвижения, в активном об­разе жизни. 3.Надо определить, к какому ти­пу можно отнести расположение листьев на стебле: супротивное (листья расположены друг против друга), очередное (по спирали), му­товчатое (листья вырастают из од­ного узла). При любом расположе­нии листья не затеняют друг дру­га, получают много света, а значит, и энергии, необходимой для фотосинтеза.

Билет № 3 1. Строение клетки — наличие наружной мембраны, цитоплазмы с органоидами, ядра с хромосо­мами. 2. Наружная, или плазматиче­ская, мембрана — отграничивает содержимое клетки от окружаю­щей среды (других клеток, межк­леточного вещества), состоит из молекул липидов и белка, обеспе­чивает связь между клетками, транспорт веществ в клетку (пино-цитоз, фагоцитоз, активный пере­нос) и из клетки.

3. Цитоплазма — внутренняя полужидкая среда клетки, которая обеспечивает связь между располо­женными в ней ядром и органоида­ми. В цитоплазме протекают основ­ные процессы жизнедеятельности. 4. Органоиды клетки: 1) эндоплазматическая    сеть (ЭПС) — система ветвящихся ка-нальцев, участвует в синтезе бел­ков, липидов и углеводов, в транс­порте веществ в клетке; 2) рибосомы — тельца, содержа­щие рРНК, расположены на ЭПС и в цитоплазме, участвуют в синтезе белка. ЭПС и рибосомы — единый аппарат синтеза и транспорта белка; 3) митохондрии — «силовые станции» клетки, отграничены от цитоплазмы двумя мембранами. Внутренняя   образует   кристы (складки), увеличивающие ее по­верхность. Ферменты на кристах ускоряют реакции окисления ор­ганических веществ и синтеза мо­лекул АГФ, богатых энергией;

4) комплекс Гольджи — группа полостей, отграниченных мембра­ной от цитоплазмы, заполненных белками, жирами и углеводами, которые либо используются в про­цессах жизнедеятельности, либо удаляются из клетки. На мембра­нах комплекса осуществляется синтез жиров и углеводов; 5) лизосомьг — тельца, запол­ненные ферментами, ускоряют ре­акции расщепления белков до ами­нокислот, липидов до глицерина и жирных кислот, полисахаридов до моносахаридов. В лизосомах разрушаются  отмершие  части клетки, целые клетки. 5. Клеточные включения — скопления запасных питательных веществ: белков, жиров и углево­дов.

6. Ядро — наиболее важная часть клетки. Оно покрыто двух­мембранной оболочкой с порами, через которые одни вещества про­никают в ядро, а другие поступают в цитоплазму. Хромосомы — ос­новные структуры ядра, носители наследственной информации о при­знаках организма. Она передается в процессе деления материнской клетки дочерним клеткам, а с по­ловыми клетками — дочерним ор­ганизмам. Ядро — место синтеза ДНК, иРНК. рРНК.

2. . Вид — группа особей, свя­занных между собой общим про­исхождением, сходством строе­ния и процессов жизнедеятельно­сти. Особи вида имеют сходные приспособления к жизни в опреде­ленных условиях, скрещиваются между собой и дают плодовитое потомство. 2. Вид — реально существую­щая в природе единица, которая характеризуется рядом призна­ков — критериев, единица класси­фикации организмов. Критерии вида: генетический, морфологиче­ский, физиологический, географи­ческий, экологический. 3. Генетический — главный критерий. Это строго опреде­ленное число, форма и размеры хромосом в клетках организма каждого вида. Генетический кри­терий — основа морфологических, физиологических различий особей разных видов, он определяет способность особей вида скрещи­ваться и давать плодовитое потом­ство.

4. Морфологический критерий —сходство внешнего и внутреннего строения особей вида.5. Физиологический критерий — сходство процессов жизнедеятель­ности у особей вида, способность их скрещиваться и давать плодо­витое потомство (у растений сход­ные приспособления к опылению, размножению).6. Географический критерий — занимаемый особями вида сплош­ной или прерывистый ареал, бо­льшой или небольшой. Измене­ние ареала ряда видов под вли­янием деятельности человека, например сужение ареала в связи с вырубкой лесов, осушением бо­лот и др.7. Экологический критерий — совокупность факторов внешней среды, определенные экологиче­ские условия, в которых существу­ет вид. Например, некоторые виды лютиков живут в условиях высо­кой влажности, другие — в менее влажных местах.8. Необходимость использова­ния всего комплекса критериев при определении видов обуслов­лена изменчивостью признаков под воздействием факторов среды, возникновением хромосомных му­таций, скрещиваемостью особей разных видов, наличием совме­щенных ареалов у ряда видов, ви­дов-двойников .9. Популяция — структурная единица вида, группа особей, обладающих наибольшим сход­ством и родством, длительное вре­мя обитающих на общей террито­рии.

3.Генотип одного из родителей из­вестен, так как он рецессивный. Генотип другого родителя неизвес­тен, он может быть Аа или АА. Оп­ределяем неизвестный генотип. Если в потомстве соотношение до­минантных и рецессивных особей по фенотипу будет равным 1:1, значит, неизвестный генотип бу­дет гетерозиготным — Аа, а при соотношении 3:1 генотип будет го-мозиготным — АА.

Билет № 4 1. М. Шлейден и Т. Шванн —

основоположники клеточной тео­рии (1838), учения о клеточном строении всех организмов.

2. Дальнейшее развитие кле­точной теории рядом ученых, ее основные положения:

— клетка — единица строения организмов всех царств;

— клетка — единица жизне­деятельности  организмов  всех царств;

— клетка — единица роста и развития организмов всех царств;

— клетка — единица размно­жения, генетическая единица жи­вого;

— клетки организмов всех царств живой природы сходны по строению, химическому составу, жизнедеятельности;

— образование новых клеток в результате деления материнской клетки;

— ткани — группы клеток в многоклеточном организме, вы­полнение ими сходных функций, из тканей состоят органы.

3. Значение клеточной теории: сходство строения, химического состава, жизнедеятельности, кле­точного строения организмов — доказательства родства организ­мов всех царств живой природы, общности  их  происхождения, единства органического мира.

2. 1. Размножение — процесс вос­произведения организмом себе по­добных, передачи генетического материала, наследственной инфор­мации от родителей потомству.

2. Способы размножения — бесполое и половое. Особенности полового размножения: развитие дочернего организма из зиготы, которая образуется в результате слияния мужской и женской поло­вых клеток, оплодотворения. 3. Особенности строения поло­вых клеток (гамет) — гаплоидный набор хромосом (в отличие от дип-лоидного в соматических клет­ках). Восстановление диплоидно-го набора хромосом при оплодотво­рении, образовании зиготы. 4. Виды   гамет: яйцеклетка (женская гамета) и сперматозоид, или спермин (мужская гамета). Яйцеклетка, ее особенности — не­подвижна, значительно крупнее (по сравнению с мужской), так как содержит большой запас пита­тельных веществ. Мужские гаме­ты — чаще подвижные, мелкие, не имеют запаса питательных ве­ществ. 5. Формирование половых кле­ток на заростке у папоротников, в шишке у голосеменных, в цветке у покрытосеменных, в половых же­лезах у позвоночных животных. 6. Развитие половых клеток: деление первичных половых кле­ток с диплоидным набором хромо­сом путем митоза, увеличение чис­ла клеток, дальнейший их рост и созревание. 7. Мейоз — созревание половых клеток, особый вид деления, обес­печивающий формирование гамет с уменьшенным вдвое числом хро­мосом. Мейоз — два деления пер­вичных половых клеток, следую­щих одно за другим с одной интер­фазой, одним удвоением молекул ДНК, с образованием двух хрома-тид из каждой хромосомы. Фаза мейоза: профаза, метафаза, анафа­за, телофаза.

8. Особенности первого деле­ния мейоза: конъюгация гомоло-гичных хромосом, возможность обмена генами, расхождение гомо-логичных хромосом из двух хрома-тид и образование двух клеток с гаплоидным числом хромосом. 9. Второе деление мейоза: рас­хождение хроматид к полюсам клетки, образование из каждой клетки двух с гаплоидным числом хромосом (при отделении хрома­тид друг от друга они становятся

хромосомами). Сходство второго деления мейоза с митозом. 10. Образование в процессе мейоза четырех полноценных мужских гамет из одной первич­ной половой клетки и одной яй­цеклетки из первичной половой клетки (три мелкие клетки при этом рассасываются). 11. Сущность мейоза — образо­вание из клеток с диплоидным на­бором хромосом половых клеток с гаплоидным набором хромосом.

3. Надо сравнивать органы расте­ний, выявить признаки сходства в строении цветков, семян, так как они одного рода. В связи с тем что растения принадлежат к разным видам, они могут различаться по окраске цветков, форме стебля, размерам и строению листьев.

Билет 5 1. Элементарный состав кле­ток, наибольшее содержание в ней атомов углерода, водорода, кисло­рода, азота (98%), небольшое ко­личество других элементов. Сходство элементарного состава тел живой и неживой природы — до­казательство их единства. 2. Химические вещества, вхо­дящие в состав клетки: неоргани­ческие (вода и минеральные соли) и органические (белки, нуклеино­вые кислоты, липиды, углеводы, АТФ). 3. Состав углеводов — атомы углерода, водорода и кислорода. Простые углеводы, моносахариды (глюкоза, фруктоза); сложные уг­леводы, полисахариды (клетчатка, или целлюлоза). Моносахариды — мономеры полисахаридов. Функ­ции простых углеводов — основ­ной источник энергии в клетке;

функции сложных углеводов — строительная и запасающая (обо­лочка растительной клетки состо­ит из клетчатки). 4. Липиды (жиры, холестерин, некоторые витамины и гормоны), их элементарный состав — атомы углерода, водорода и кислорода. Функции липидов: строительная (составная часть мембран), источ­ник энергии. Роль жиров в жизни ряда животных, их способность длительное время обходиться без воды благодаря запасам жира. 5. Белки — макромолекулы (имеют большую молекулярную массу). Они состоят из десятков, сотен аминокислот. Состав амино­кислот, карбоксильная (кислая) и аминная (основная) группы — ос­нова образования между амино­кислотами пептидных связей. Раз­нообразие аминокислот (примерно 20). Разная последовательность со­единения аминокислот в молеку­лах белков — причина их огромно­го разнообразия.

6. Структуры молекул белка: первичная   (последовательность аминокислот), вторичная (форма спирали), третичная (более слож­ная конфигурация). Обусловлен­ность структур молекул белков различными химическими связя­ми. Разнообразие белков — причи­на большого числа признаков у ор­ганизма. Многофункциональность белков: строительная, транспорт­ная, сигнальная, двигательная, энергетическая, ферментативная (белки входят в состав ферментов). 7. Нуклеиновые кислоты (НК), их виды: ДНК, иРНК, тРНК. рРНК, НК — полимеры, их мо­номеры — нуклеотиды. Состав нуклеотидов: углевод (рибоза в РНК и дезоксирибоза в ДНК}, фос­форная кислота, азотистое основа­ние (в ДНК — аденин, тимин, гу­анин, цитозин, в РНК — те же, но вместо тимина урацил). Функции НК — хранение и передача на­следственной информации, матри­ца для синтеза белков, транспор­тировка аминокислот.

8. Структура молекулы ДНК: двойная спираль, основа ее образо­вания — принцип комплементар-ности, возникновение связей меж­ду дополнительными азотистыми основаниями (А=Г и Г=Ц). РНК — одноцепочечная спираль, состоит из нуклеотидов.

9. АТФ аденозинтрифосфор-ная кислота, нуклеотид, состоит из аденина, рибозы и трех остат­ков фосфорной кислоты, соединен­ных макроэргическими (богатыми энергией) связями. АТФ — акку­мулятор энергии, используемой во всех процессах жизнедеятельно­сти.


2.1. Изменчивость — общее свой­ство организмов приобретать но­вые признаки в процессе онтогене­за. Ненаследственная, или моди-фикационная, и наследственная (мутационная и комбинативная) изменчивость. Примеры ненаслед­ственной изменчивости: увеличе­ние массы человека при обильном питании и малоподвижном образе жизни, появление загара; приме­ры наследственной изменчивости:

белая прядь волос у человека, цве­ток сирени с пятью лепестками.

2. Фенотип — совокупность внешних и внутренних призна­ков, процессов жизнедеятельно­сти организма. Генотип — сово­купность генов в организме. Фор­мирование фенотипа под влиянием генотипа и условий среды. Причи­ны модификационной изменчиво­сти — воздействие факторов сре­ды. Модификационная изменчи­вость — изменение фенотипа, не связанное с изменениями генов и генотипа.

3. Особенности модификацион­ной изменчивости — не переда­ется по наследству, так как не за­трагивает гены и генотип, имеет массовый характер (проявляется одинаково у всех особей вида), об­ратима — изменение исчезает, ес­ли вызвавший его фактор прекра­щает действовать. Например, у всех растений пшеницы при внесе­нии удобрений улучшается рост и увеличивается масса; при заняти­ях спортом масса мышц у человека увеличивается, а с их прекращени­ем уменьшается.4. Норма реакции — пределы модификационной изменчивости признака. Степень изменчивости признаков. Широкая норма реак­ции: большие изменения призна­ков, например, надоев молока у коров, коз, массы животных. Уз­кая норма реакции — небольшие изменения признаков, например, жирности молока, окраски шер­сти. Зависимость модификацион­ной изменчивости от нормы реак­ции. Наследование организмом нормы реакции.

5. Адаптивный характер моди­фикационной изменчивости — приспособительная реакция орга­низмов на изменения условий сре­ды.

6. Закономерности модифика­ционной изменчивости: ее прояв­ление у большого числа особей. Наиболее часто встречаются особи со средним проявлением признака, реже — с крайними пределами (максимальные или минимальные величины). Например, в колосе пшеницы от 14 до 20 колосков. Ча­ще встречаются колосья с 16—18 колосками, реже с 14 и 20. Причи­на: одни условия среды оказыва­ют благоприятное воздействие на развитие признака, а другие — не­благоприятное. В целом же дей­ствие условий усредняется: чем разнообразнее условия среды, тем шире Модификационная изменчи­вость признаков.

3. Надо исходить из того, что гемо­филия — рецессивный признак, ген гемофилии (А), ген нормальной свертываемости крови (Н) нахо­дятся в Х-хромосоме. У женщин заболевание проявляется в случае, когда в обеих Х-хромосомах находятся гены гемофилии. У мужчин всего одна Х-хромосома, содержа­ние гена гемофилии в ней говорит о заболевании организма.

Билет № 61.

1. Вирусы — очень мелкие не­клеточные формы, различимые лишь в электронный микроскоп, состоят из молекул ДНК или РНК, окруженных молекулами белка.2.  Кристаллическая форма вируса — вне живой клетки, про­явление ими жизнедеятельности только в клетках других организ­мов. Функционирование вирусов:

1) прикрепление к клетке; 2) рас­творение ее оболочки или мем­браны; 3) проникновение внутрь клетки молекулы ДНК вируса;4) встраивание ДНК вируса в ДНК клетки; 5) синтез молекул ДНКвируса и образование множества вирусов; 6) гибель клетки и выход вирусов наружу; 7) заражение ви­русами новых здоровых клеток.3. Заболевания растений, жи­вотных и человека, вызываемые вирусами: мозаичная болезнь таба­ка, бешенство животных и челове­ка, оспа, грипп, полиомиелит, СПИД, инфекционный гепатит и др. Профилактика вирусных забо­леваний, повышение его невоспри­имчивости: соблюдение гигиениче­ских норм, изоляция больных, за­каливание организма.

2.1. Ароморфозы — эволюцион­ные изменения, способствуют об­щему подъему организации и по­вышению интенсивности жизнеде­ятельности организмов, освоению новых сред обитания, выживанию в борьбе за существование. Аро-морфоз — основа повышения вы­живаемости организмов, увеличе­ния численности популяций, рас­ширения их ареала, образования новых популяций, видов.2. Возникновение в клетках хлоропластов с хлорофиллом, фо­тосинтеза — важный ароморфоз в эволюции органического мира, обе­спечивший все живое пищей и энергией, кислородом. 3. Появление от одноклеточных многоклеточных водорослей — аро­морфоз, способствующий увеличе­нию размеров организмов. Ароморф-ные изменения — причина появле­ния от водорослей более сложных растений — псилофитов. Их тело состояло из различных тканей, вет­вящегося стебля, ризоидов (выростов от нижней части стебля, ук­репляющих растение в почве).4. Дальнейшее усложнение ра­стений в процессе эволюции: по­явление корней, листьев, развито­го стебля, тканей, позволивших им освоить сушу (папоротники, хвощи, плауны).5. Ароморфозы,  способствую­щие усложнению растений в про­цессе эволюции: возникновение се­мени, цветка и плода (переход се­менных растений от размножения спорами к размножению семена­ми). Спора — одна специализиро­ванная клетка, семя — зачаток нового растения с запасом питатель­ных веществ. Преимущества раз­множения растений семенами — уменьшение зависимости процесса размножения от окружающих ус­ловий и повышение выживаемости.6. Причина ароморфозов — на­следственная изменчивость, борь­ба за существование, естественный отбор.

3.У кактуса листья видоизменены в колючки. Это способствует умень­шению испарения воды. В тка­нях мясистого стебля запасается вода. В условиях засушливого климата выживали и оставляли потомство преимущественно расте­ния с мелкими листьями и тол­стым стеблем. Возникновение на­следственных изменений, естест­венный отбор особей с указанными признаками в течение многих поколений способствовали появле­нию кактуса и других засухоус­тойчивых растений с видоизменен­ными в колючки листьями, мяси­стым стеблем.

Билет № 71. Метаболизм — совокупность химических реакций в клетке:

расщепления (энергетический об­мен) и синтеза (пластический обмен). Зависимость жизни клет­ки от непрерывного поступления веществ из внешней среды в клет­ку и выделения продуктов обмена из клетки во внешнюю среду. Об­мен веществ — основной прязнак жизни.2. Функции клеточного обмена веществ: 1) обеспечение клетки строительным материалом, необ­ходимым для образования клеточ­ных структур; 2) снабжение клет­ки энергией, которая используется на процессы жизнедеятельности (синтез веществ, их транспорт и ДР.)3. Энергетический обмен — окисление органических веществ (углеводов, жиров, белков) и син­тез богатых энергией молекул АТФ за счет освобождаемой энергии.4. Пластический обмен — син­тез молекул белков из аминокис­лот, полисахаридов из моносахародов, жиров из глицерина и жир­ных кислот, нуклеиновых кислот из нуклеотидов, использование на эти реакции энергии, освобождае­мой в процессе энергетического об­мена.5. Ферментативный характер реакций обмена. Ферменты — био­логические катализаторы, ускоря­ющие реакции обмена в клетке. Ферменты — в основном белки, у некоторых из них есть небелковая часть (например, витамины). Мо­лекулы ферментов значительно превышают размеры молекул ве­щества, на которые они действуют. Активный центр фермента, его со­ответствие структуре молекулы ве­щества, на которое он действует.6. Разнообразие ферментов, их локализация в определенном по­рядке на мембранах клетки и в ци­топлазме. Подобная локализация обеспечивает последовательность реакций.

7. Высокая активность и спе­цифичность действия ферментов:ускорение в сотни и тысячи раз каждым ферментом одной или группы сходных реакций. Условия действия ферментов: определенная температура, реакция среды (рН), концентрация солей. Изменение условий среды, например рН, — причина нарушения структуры фермента, снижения его активно­сти, прекращения действия.

2.1. Идиоадаптация — направле­ние эволюции, в основе которого лежат мелкие изменения, способ­ствующие формированию приспо­соблений у организмов к опреде­ленным условиям среды. Идиоадаптации не ведут к повышению уровня организации. Пример: при­способление одних видов птиц к полету, других — к плаванию, тре­тьих — к быстрому бегу2. Причины возникновения идиоадаптаций — появление на­следственных изменений у особей, действие естественного отбора на популяцию и сохранение особей с изменениями, полезными для жизни в определенных условиях.

3. Многообразие видов птиц — результат идиоадаптаций. Форми­рование у птиц различных приспо­соблений к жизни в разных эколо­гических условиях без повыше­ния уровня их организации. Пример: разнообразие видов вьюр­ков, их приспособленность добы­вать разную пищу при едином об­щем уровне организации.4. Многообразие покрытосе­менных растений, приспособлен­ность к жизни в разных условиях среды — пример развития по пути идиоадаптаций. 1) В засушливых районах — глубоко уходящие в почву корни, мелкие листья, по­крытые толстой кутикулой, их опушенность; 2) в тундре — корот­кий вегетационный период, низко-рослость, мелкие кожистые лис­тья; 3) в водной среде — воз-духоносные  полости,   устьица расположены на верхней стороне листа и др.

5. Идиоадаптаций — причина многообразия птиц и покрытосе­менных растений, их процвета­ния, широкого расселения на зем­ном шаре, приспособленности к жизни в разнообразных климати­ческих и экологических условиях без перестройки общего уровня их организации.

3.При решении задачи надо учи­тывать, что в соматических клет­ках родителей и потомства за фор­мирование двух признаков должно отвечать четыре гена, например АаВЬ, а в половых клетках два ге­на, например АВ. Если неаллель-ные гены А и В, а и Ь расположены в разных хромосомах, то они на­следуются независимо. Наследова­ние гена А не зависит от насле­дования гена В, поэтому соотно­шение расщепления по каждому признаку будет равно 3:1.

Билет № 81. Энергетический обмен — со­вокупность реакций окисления органических веществ в клетке, синтеза молекул АТФ за счет ос­вобождаемой энергии. Значение энергетического обмена — снаб­жение клетки энергией, которая необходима для жизнедеятельно­сти.2. Этапы энергетического обме­на: подготовительный, бескисло­родный, кислородный.1) Подготовительный — рас­щепление в лизосомах полисаха-ридов до моносахаридов, жиров до глицерина и жирных кислот, бел­ков до аминокислот, нуклеиновых кислот до нуклеотидов. Рассеива­ние в виде тепла небольшого коли­чества освобождаемой при этом энергии;

2) бескислородный — окисле­ние веществ без участия кислорода до более простых, синтез за счет освобождаемой энергии двух мо­лекул АТФ. Осуществление про­цесса на внешних мембранах ми­тохондрий при участии фермен­тов;

3) кислородный — окисление кислородом воздуха простых орга­нических веществ до углекислого газа и воды, образование при этом 36 молекул АТФ. Окисление ве­ществ при участии ферментов, расположенных на кристах мито­хондрий. Сходство энергетическо­го обмена в клетках растений, животных, человека и грибов — доказательство их родства.3. Митохондрий — «силовые станции» клетки, их отграниче­ние от цитоплазмы двумя мембра­нами — внешней и внутренней. Увеличение поверхности внутрен­ней мембраны за счет образования складок — крист, на которых рас­положены ферменты. Они ускоря­ют реакции окисления и синтеза молекул АТФ. Огромное значение митохондрий — причина большого количества их в клетках организ­мов почти всех царств.

2.1. Учение Ч. Дарвина о движу­щих силах эволюции (середина XIX в.). Современные данные ци­тологии, генетики, экологии, обо­гатившие учение Дарвина об эво­люции.

2. Движущие силы эволюции:наследственная изменчивость ор­ганизмов, борьба за существование и естественный отбор. Эволюция органического мира — результат совместного действия всего комп­лекса движущих сил.3. Изменчивость особей в попу­ляции — причина ее неоднородно­сти, эффективности действия ес­тественного отбора. Наследствен­ная изменчивость — способность организмов изменять свои призна­ки и передавать изменения потом­ству. Роль мутационной и комби-нативной изменчивости особей в эволюции. Изменение генов, хро­мосом, генотипа — материальные основы мутационной изменчиво­сти. Перекрест гомологичных хро­мосом, их случайное расхождение в мейозе и случайное сочетание га­мет при оплодотворении — основа комбинативной изменчивости.4. Популяция — элементарная единица эволюции, накопление в ней рецессивных мутаций в резуль­тате размножения особей. Геноти-пическое и фенотипическое разно­образие особей в популяции — ис­ходный материал для эволюции. Относительная изоляция популя­ций — фактор ограничения сво­бодного скрещивания, а значит, и усиления генотипического разли­чия между популяциями вида.

5. Борьба за существование — взаимоотношения особей в популя­циях, между популяциями, с фак­торами неживой природы. Спо­собность особей к безграничному размножению, увеличению чис­ленности популяций и ограничен­ность ресурсов (пищи, территории и др.) — причина борьбы за су­ществование. Виды борьбы за су­ществование: внутривидовая, меж­видовая, с неблагоприятными ус­ловиями.

6. Естественный отбор — про­цесс выживания особей с полезны­ми в данных условиях среды на­следственными изменениями и ос­тавления ими потомства. Отбор — следствие борьбы за существова­ние, главный, направляющий фак­тор эволюции (из разнообразных изменений отбор сохраняет особей преимущественно с полезными му­тациями для определенных усло­вий среды).7. Возникновение наследствен­ных изменений, их распростране­ние и накопление в рецессивном состоянии в популяции благодаря размножению особей. Сохранение полезных для определенных усло­вий изменений естественным от­бором, оставление этими особями потомства — основа изменения генного состава популяций, появ­ления новых видов.

8. Взаимосвязь наследственной изменчивости, борьбы за сущест­вование, естественного отбора — причина эволюции органического мира, образования новых видов.

3.Можно составить следующие пищевые цепи в аквариуме: вод­ные растения —> рыбы; органиче­ские остатки —> моллюски. Небольшое число звеньев в цепи пита­ния объясняется тем, что в ней обитает мало видов, численность каждого вида небольшая, мало пи­щи, кислорода, в соответствии с правилом экологической пирами­ды потеря энергии от звена к звену составляет около 90%.

Билет № 91. Пластический обмен — сово­купность реакций синтеза органи­ческих веществ в клетке с исполь­зованием энергии. Синтез белков из аминокислот, жиров из глице­рина и жирных кислот — примеры биосинтеза в клетке.

2. Значение пластического об­мена: обеспечение клетки строите­льным материалом для создания клеточных структур; органически­ми веществами, которые использу­ются в энергетическом обмене.3. Фотосинтез и биосинтез бел­ков — примеры пластического об­мена. Роль ядра, рибосом, эндо­плазматической сети в биосинтезе белка. Ферментативный характер реакций биосинтеза, участие в нем разнообразных ферментов. Моле­кулы АТФ — источник энергии для биосинтеза.

4. Матричный характер реак­ций синтеза белков и нуклеино­вых кислот в клетке. Последова­тельность нуклеотидов в молекуле ДНК — матричная основа для рас­положения нуклеотидов в молеку­ле иРНК, а последовательность нуклеотидов в молекуле иРНК — матричная основа для расположе­ния аминокислот в молекуле белка в определенном порядке.5. Этапы биосинтеза белка:1) транскрипция — переписы­вание в ядре информации о струк­туре белка с ДНК на иРНК. Значе­ние дополнительности азотистых оснований в этом процессе. Мо­лекула иРНК — копия одного ге­на, содержащего информацию о структуре одного белка. Генетиче­ский код — последовательность нуклеотидов в молекуле ДНК, которая определяет последова­тельность аминокислот в молекуле белка. Кодирование аминокислот триплетами — тремя рядом распо­ложенными нуклеотидами;2) перемещение иРНК из ядра к рибосоме, нанизывание рибосом на иРНК. Расположение в месте кон­такта иРНК и рибосомы двух три­плетов, к одному из которых подходит тРНК с аминокислотой. Дополнительность   нуклеотидов иРНК и тРНК — основа взаимо­действия аминокислот. Передви­жение рибосомы на новый участок иРНК, содержащий два триплета,

и повторение всех процессов: до­ставка новых аминокислот, их со­единение с фрагментом молекулы белка. Движение рибосомы до кон­ца иРНК и завершение синтеза всей молекулы белка.6. Высокая скорость реакций биосинтеза белка в клетке. Согла­сованность процессов в ядре, цито­плазме, рибосомах — доказатель­ство целостности клетки. Сходст­во процесса биосинтеза белка в клетках растений, животных и др. — доказательство их родства, единства органического мира.

2.. Наследственная   изменчи­вость — свойство организмов при­обретать новые признаки в процессе онтогенеза и передавать их потом­ству. Виды наследственной измен­чивости — мутационная и комби-нативная. Материальные основы наследственной изменчивости — изменение генов, генотипа; ее ин­дивидуальный характер (проявле­ние у отдельных особей), необрати­мость, передача по наследству.

2. Комбинативная   изменчи­вость — результат перекомбина­ции генов при скрещивании орга­низмов. Причины перекомбинации генов — перекрест и обмен участ­ками гомологичных хромосом, слу­чайный характер распределения хромосом между дочерними клет­ками в ходе мейоза, случайное со­четание гамет при оплодотворении, взаимодействие генов. Пример: по­явление дрозофил с темным телом и длинными крыльями при скре­щивании серых дрозофил с длин­ными крыльями с темными дрозо-филами с короткими крыльями.3. Мутационная изменчивость — внезапное, случайное возникнове­ние стойких изменений генетиче­ского аппарата, вызывающее появ­ление новых признаков в феноти­пе. Примеры: шестипалая рука, альбиносы. Виды мутаций — ген­ные (изменение последовательно­сти нуклеотидов в гене) и хромо­сомные (увеличение или уменьше­ние числа хромосом, потеря их части). Последствия генных и хро­мосомных мутаций — синтез но­вых белков, а значит, и появление новых признаков у организмов, которые чаще всего ведут к сниже­нию жизнеспособности, а иногда и к смерти.4. Полиплоидия — наследст­венная изменчивость, вызванная кратным увеличением числа хро­мосом. При этом увеличиваются размеры, масса, число семян и плодов у растения. Причины — на­рушение процессов митоза или мейоза, нерасхождение хромосом в дочерние клетки. Широкое рас­пространение в природе полипло­идии у растений. Получение поли-плоидных сортов растений, их вы­сокая урожайность.5. Соматические мутации — из­менение генов или хромосом в сома­тических клетках, возникновение изменений в той части организма, которая развилась из мутировав­ших клеток. Соматические мута­ции потомству не передаются, они исчезают с гибелью организма. Пример — белая прядь волос у че­ловека.

3Растения поглощают углекис­лый газ из окружающей среды и используют его углерод в процессе фотосинтеза на создание органиче­ских веществ. Их используют как сами растения, так и животные (рыбы, моллюски). Они питаются ими, создают из них вещества, свойственные организму. Органи­ческие вещества организмы испо­льзуют в процессе дыхания, при этом в окружающую среду выделя­ется углекислый газ. Расщепление мертвых остатков микроорганиз­мами сопровождается выделением в атмосферу углекислого газа. Так происходит круговорот углерода. В аквариуме масса пищи, а зна­чит, и содержание углерода не со­ответствует правилу экологиче­ской пирамиды (масса растений должна в 1000 раз превышать мас­су животных), поэтому рыб прихо­дится подкармливать.

Билет 101. Фотосинтез — вид пластиче­ского обмена, который происхо­дит в клетках растений и некото­рых автотрофных бактерий. Фото­синтез — процесс образования органических веществ из углекис­лого газа и воды, идущий в хлоро-пластах с использованием солнеч­ной энергии. Суммарное уравне­ние фотосинтеза:

2. Значение фотосинтеза — об­разование органических веществ и запасание солнечной энергии, необходимой всем организмам, обогащение атмосферы кислоро­дом. Зависимость жизни всех орга­низмов от фотосинтеза.

3. Хлоропласты — расположен­ные в цитоплазме органоиды, в ко­торых происходит фотосинтез. Их отделение от цитоплазмы двумя мембранами. Образование гран — многочисленных  выростов  на внутренней мембране, в которые встроены молекулы хлорофилла и ферментов.4. Хлорофилл — высокоактив­ное вещество, зеленый пигмент, способный поглощать и использо­вать энергию солнечного света на синтез органических веществ из неорганических. Зависимость ак­тивности хлорофилла от включе­ния его в структуры хлоропласта.5. Фотосинтез — сложный про­цесс, в котором выделяют свето­вую и темновую фазы.Световая фаза фотосинтеза:1) поглощение на свету хлоро­филлом энергии солнечного света и ее преобразование в энергию хи­мических связей (синтез молекул АТФ);2) расщепление молекул воды на протоны и атомы кислорода;

3) образование из атомов моле­кулярного кислорода и выделение его в атмосферу;

4) восстановление протонов элек­тронами и превращение их в атомы водорода.

Темновая фаза фотосинтеза — ряд последовательных реакций синтеза углеводов: восстановле­ние углекислого газа водородом, который образовался в световую фазу при расщеплении молекул воды. Использование запасенной в световую фазу энергии молекул АТФ на синтез углеводов.

2.Ч. Дарвин о месте человека в системе органического мира как

о наиболее высокоорганизованном звене в эволюции, об общих дале­ких предках человека и человеко­образных обезьян.2. Сравнительно-анатомические и эмбриологические доказательст­ва происхождения человека от млекопитающих животных. До­казательства принадлежности че­ловека к классу млекопитающих:

1) сходство всех систем органов, внутриутробное развитие, нали­чие диафрагмы, млечных желез, трех видов зубов; 2) рудиментар­ные органы (копчик, аппендикс, остатки третьего века); 3) атавиз­мы — проявление у людей призна­ков далеких предков (многососко-вость, сильно развитый волосяной покров); 4) развитие человека и млекопитающих животных из оп­лодотворенной яйцеклетки, сход­ство стадий зародышевого разви­тия (закладка жаберных щелей и сильное развитие хвостового отде­ла до трехмесячного возраста, мозг зародыша в месячном возрасте на­поминает мозг рыб). 3. Сходство человека и челове­кообразных обезьян: 1) у обезьян также развита высшая нервная деятельность, есть память. Они ухаживают за детьми, проявляют чувства (радость, гнев), использу­ют простейшие орудия труда;

2) сходное строение всех систем ор­ганов, хромосомного аппарата, групп крови, общие болезни, пара­зиты.4. Сходство строения, жизнеде­ятельности, поведения человека и человекообразных обезьян — дока­зательства их родства, происхож­дения от общих предков. Призна­ки различий (присущие человеку мышление, речь, прямохождение, высокоразвитая трудовая деятель­ность) — доказательства дальней­шего развития человека и челове­кообразных обезьян в разных на­правлениях.

3. Надо исходить из того, что орга­низмы тесно связаны со средой. Так, растения в процессе фотосин­теза поглощают углекислый газ и воду, а выделяют кислород. Он расходуется при дыхании и гние­нии. Аквариум — искусственная экосистема с незамкнутым круго­воротом веществ, расход кислоро­да в процессе дыхания и гниения превышает его пополнение за счет фотосинтеза. Вода в аквариуме слабо перемешивается, в нижних слоях накапливается углекислый газ. Поэтому необходимо периоди­чески накачивать в аквариум воз-ДУХ.




 

 

 

 

Билет № 11 . 1. Деление клеток — основа роста и размножения организмов,

передачи наследственной инфор­мации от материнского организма (клетки) к дочернему, что обеспе­чивает их сходство. Деление кле­ток образовательной ткани — при­чина роста корня и побега верхуш­ками.

2. Ядро и расположенные в них хромосомы с генами — носи­тели наследственной информации о признаках клетки и организма. Число, форма и размеры хромо­сом, набор хромосом — генетиче­ский критерий вида. Роль деления клетки в обеспечении постоянства числа, формы и размера хромосом. Наличие в клетках тела дипло-идного (46 у человека), а в поло­вых — гаплоидного (23) набора хромосом. Состав хромосомы — комплекс одной молекулы ДНК с белками.

3. Жизненный цикл клетки:интерфаза (период подготовки

клетки к делению) и митоз (деле­ние).1) Интерфаза — хромосомы дес-пирализованы (раскручены). В ин­терфазе происходит синтез белков, липидов, углеводов, АТФ, самоуд­воение молекул ДНК и образова­ние в каждой хромосоме двух хро-матид;

2) фазы митоза (профаза, мета-фаза, анафаза, телофаза) — ряд по­следовательных изменений в клет­ке: а) спирализация хромосом, растворение ядерной оболочки и ядрышка; б) формирование верете­на деления, расположение хромо­сом в центре клетки, присоедине­ние к ним нитей веретена деления;в) расхождение хроматид к проти­воположным  полюсам  клетки (они становятся хромосомами);

г) формирование клеточной пере­городки, деление цитоплазмы и ее органоидов, образование ядерной оболочки, появление двух клеток из одной с одинаковым набором хромосом (по 46 в материнской и дочерних клетках человека).

4. Значение митоза — образо­вание из материнской двух дочер­них клеток с таким же набором хромосом, равномерное распреде­ление между дочерними клетками генетической информации.

2.1. Антропогенез — длитель­ный исторический процесс станов­ления человека, который происхо­дит под влиянием биологических и социальных факторов. Сходство человека с млекопитающими — доказательство его происхождения от животных.

2. Биологические факторы эво­люции человека — наследствен­ная изменчивость, борьба за су­ществование, естественный отбор. 1) Появление у предков человека 8-образного позвоночника, сводча­той стопы, расширенного таза, прочного крестца — наследствен­ные изменения, которые способст­вовали прямохождению; 2) изме­нения передних конечностей — противопоставление большого па­льца остальным пальцам — фор­мирование  руки.   Усложнение строения и функций головного мозга, позвоночника, руки, горта­ни — основа формирования трудо­вой деятельности, развития речи, мышления.

3. Социальные факторы эво­люции — труд, развитое сознание, мышление, речь, общественный образ жизни. Социальные факто­ры — основное отличие движущих сил антропогенеза от движущих сил эволюции органического ми­ра.

Главный признак трудовой де­ятельности человека — способ­ность изготавливать орудия тру­да. Труд — важнейший фактор эволюции человека, его роль в за­креплении морфологических и фи­зиологических изменений у пред­ков человека.4. Ведущая роль биологиче­ских факторов на ранних этапах эволюции человека. Ослабление их роли на современном этапе раз­вития общества, человека и воз­растание значения социальных факторов.

5. Стадии эволюции человека;

древнейшие, древние, первые сов­ременные люди. Ранние стадии

эволюции — австралопитеки, чер­ты их сходства с человеком и чело­векообразными обезьянами (стро­ение черепа, зубов, таза). Находки остатков человека умелого, его сходство с австралопитеками.

6. Древнейшие люди — пите­кантроп, синантроп, развитие у них лобных и височных долей мозга, связанных с речью, — до­казательство   ее   зарождения. Находки примитивных орудий труда — доказательство зачатков трудовой деятельности. Черты обе­зьян в строении черепа, лицевого отдела, позвоночника древнейших людей.

Страницы: 1, 2


© 2000
При полном или частичном использовании материалов
гиперссылка обязательна.