РУБРИКИ

Экологические основы устойчивости растений

   РЕКЛАМА

Главная

Зоология

Инвестиции

Информатика

Искусство и культура

Исторические личности

История

Кибернетика

Коммуникации и связь

Косметология

Криптология

Кулинария

Культурология

Логика

Логистика

Банковское дело

Безопасность жизнедеятельности

Бизнес-план

Биология

Бухучет управленчучет

Водоснабжение водоотведение

Военная кафедра

География экономическая география

Геодезия

Геология

Животные

Жилищное право

Законодательство и право

Здоровье

Земельное право

Иностранные языки лингвистика

ПОДПИСКА

Рассылка на E-mail

ПОИСК

Экологические основы устойчивости растений

Экологические основы устойчивости растений

Министерство образования Российской Федерации

Сибирский Государственный Технологический Университет

 

 

Кафедра Физиологии растений

 

 

 

 

 

 

 

 

 

РЕФЕРАТ

 

На тему: Экологические основы устойчивости растений.

 

 

 

 

 

 

 

Выполнил: Студент гр.32-6

Чебых Евгений Александрович

Проверила:Сунцова Людмила Николаевна

Красноярск 2001г.

Содержание

 

ВВЕДЕНИЕ. 3

Границы приспособления и устойчивости. 3

Защитные возможности растений. 4

ХОЛОДОСТОЙКОСТЬ РАСТЕНИЙ.. 5

Физиолого-биохимические изменения у теплолюбивых растений при пониженных положительных температурах. 5

Приспособление растений к низким положительным температурам. 6

Способы повышения холодостойкости некоторых растений. 6

МОРОЗОУСТОЙЧИВОСТЬ РАСТЕНИЙ.. 7

Замерзание растительных клеток и тканей и происходящие при этом процессы. 8

Условия и причины вымерзания растений. 8

Закаливание растений. 9

Фазы закаливания. 10

Обратимость процессов закаливания. 13

Способы повышения морозоустойчивости. 13

Методы изучения морозоустойчивости растений. 14

ЗИМОСТОЙКОСТЬ РАСТЕНИЙ.. 15

Зимостойкость как устойчивость к комплексу неблагоприятных факторов перезимовки. 15

Выпревание, вымокание, гибель под ледяной коркой, выпирание, повреждение от зимней засухи. 15

Выпирание. 16

Методы определения жизнеспособности с/х культур в зимний, ранневесенний периоды. 17

ЯРОВИЗАЦИЯ.. 18

Типы растений, требующих охлаждения для перехода к цветению.. 19

Виды, для которых характерна реакция на охлаждение и фотопериодизм.. 20

Физиологические аспекты яровизации. 21

Природа изменений, происходящих во время яровизации. 22

ЖАРОУСТОЙЧИВОСТЬ РАСТЕНИЙ.. 23

Изменения обмена веществ, роста и развития растений при действии максимальных температур. 24

Диагностика жароустойчивости. 25

ЗАСУХОУСТОЙЧИВОСТЬ РАСТЕНИЙ.. 26

Совместное действие недостатка влаги и высокой температуры на растение. 27

Особенности водообмена у ксерофитов и мезофитов. 27

Влияние на растения недостатка влаги. 29

Физиологические особенности засухоустойчивости сельскохозяйственных растений. 31

Предпосевное повышение жаро- и засухоустойчивости. 33

Диагностика жаро- и засухоустойчивости. 34

Повышение засухоустойчивости культурных растений. 35

Орошение как радикальное средство борьбы с засухой. 35

ТИПЫ РАСТЕНИЙ ПО ОТНОШЕНИЮ К ВОДНОМУ РЕЖИМУ: КСЕРОФИТЫ, ГИГРОФИТЫ И МЕЗОФИТЫ... 36

О природе приспособительных реакций к недостатку воды у разныхгрупп растений. 37

КРИТИЧЕСКИЕ ПЕРИОДЫ В ВОДООБМЕНЕ РАЗНЫХ РАСТЕНИЙ. 38

ЗАКЛЮЧЕНИЕ. 39

ЛИТЕРАТУРА.. 40


ВВЕДЕНИЕ

Территория России включает различные климатические зоны. Значительная их часть приходится на районы неустойчивого зем­леделия, для которых характерны недостаток или избыток осад­ков, низкие зимние или высокие летние температуры, засолен­ность или заболоченность, закисленность почв и др. В этих условиях урожайность сельскохозяйственных культур во многом определяется их устойчивостью к неблагоприятным факторам среды конкретного сельскохозяйственного региона.

Приспособленность онтогенеза растений к условиям среды является результатом их эволюционного развития (изменчивос­ти, наследственности, отбора). На протяжении филогенеза каж­дого вида растений в процессе эволюции выработались опреде­ленные потребности индивидуума к условиям существования и приспособленность к занимаемой им экологической нише. Влаголюбие и теневыносливость, жароустойчивость, холодоустойчи­вость и другие экологические особенности конкретных видов растений сформировались в ходе эволюции в результате длитель­ного действия соответствующих условий. Так, теплолюбивые растения и растения короткого дня характерны для южных широт, менее требовательные к теплу и растения длинного дня — для северных.

В природе в одном географическом регионе каждый вид рас­тений занимает экологическую нишу, соответствующую его био­логическим особенностям: влаголюбивые — ближе к водоемам, теневыносливые — под пологом леса и т. д. Наследственность растений формируется под влиянием определенных условий внешней среды. Важное значение имеют и внешние условия онтогенеза растений.

В большинстве случаев растения и посевы (посадки) сельско­хозяйственных культур, испытывая действие тех или иных небла­гоприятных факторов, проявляют устойчивость к ним как ре­зультат приспособления к условиям существования, сложившим­ся исторически, что отмечал еще К. А. Тимирязев. Способность к эффективной защите от действия неблагоприятных абиотичес­ких и биотических факторов среды, устойчивость к ним возделы­ваемых видов и сортов — обязательные свойства районирован­ных в данном регионе сельскохозяйственных культур.

Адаптация (приспособление) растения к конкретным условиям среды обеспечивается за счет физиологических механизмов (фи-

зиологическая адаптация), а у популяции организмов (вида) — благодаря механизмам генетической изменчивости, наследствен­ности и отбора (генетическая адаптация). Факторы внешней среды могут изменяться закономерно и случайно. Закономерно изменяющиеся условия среды (смена сезонов года) вырабатывают у растений генетическую приспособленность к этим условиям.

Границы приспособления и устойчивости

В естественных для вида природных условиях произрастания или возделывания растения в процессе своего роста и развития часто испытывают воздействие неблагоприятных факторов внеш­ней среды, к которым относят температурные колебания, засуху, избыточное увлажнение, засоленность почвы и т. д. Каждое рас­тение обладает способностью к адаптации в меняющихся услови­ях внешней среды в пределах, обусловленных его генотипом. Чем выше способность растения изменять метаболизм в соответ­ствии с окружающей средой, тем шире норма реакции данного растения и лучше способность к адаптации. Это свойство отли­чает устойчивые сорта сельскохозяйственных культур. Как пра­вило, несильные и кратковременные изменения факторов внеш­ней среды не приводят к существенным нарушениям физиологи­ческих функций растений, что обусловлено их способностью сохранять относительно стабильное состояние при изменяющих­ся условиях внешней среды, т. е. поддерживать гомеостаз. Одна­ко резкие и длительные воздействия приводят к нарушению многих функций растения, а часто и к его гибели.

При действии неблагоприятных условий снижение физиоло­гических процессов и функций может достигать критических уровней, не обеспечивающих реализацию генетической програм­мы онтогенеза, нарушаются энергетический обмен, системы ре­гуляции, белковый обмен и другие жизненно важные функции растительного организма. При воздействии на растение неблаго­приятных факторов (стрессоров) в нем возникает напряженное состояние, отклонение от нормы — стресс. Стресс — общая не­специфическая адаптационная реакция организма на действие любых неблагоприятных факторов. Выделяют три основные группы факторов, вызывающих стресс у растений (В. В. Поле­вой, 1989): физические — недостаточная или избыточная влаж­ность, освещенность, температура, радиоактивное излучение, ме­ханические воздействия; химические — соли, газы, ксенобиотики (гербициды, инсектициды, фунгициды, промышленные отходы и др.); биологические — поражение возбудителями болезней или вредителями, конкуренция е другими растениями, влияние жи­вотных, цветение, созревание плодов.

Сила стресса зависит от скорости развития неблагоприятной для растения ситуации и уровня стрессирующего фактора. При медленном развитии неблагоприятных условий растение лучше приспосабливается к ним, чем при кратковременном, но силь­ном действии. В первом случае, как правило, в большей степени проявляются специфические механизмы устойчивости, во вто­ром — неспецифические.

Защитные возможности растений

В неблагоприятных природных условиях устойчивость и про­дуктивность растений определяются рядом признаков, свойств и защитно-приспособительных реакций. Различные виды растений обеспечивают устойчивость и выживание в неблагоприятных ус­ловиях тремя основными способами: с помощью механизмов, которые позволяют им избежать неблагоприятных воздействий (состояние покоя, эфемеры и др.); посредством специальных структурных приспособлений; благодаря физиологическим свой­ствам, позволяющим им преодолеть пагубное влияние окружаю­щей среды.

Однолетние сельскохозяйственные растения в умеренных зонах, завершая свой онтогенез в сравнительно благоприятных условиях, зимуют в виде устойчивых семян (состояние покоя). Многие многолетние растения зимуют в виде подземных запасаю­щих органов (луковиц или корневищ), защищенных от вымерза­ния слоем почвы и снега. Плодовые деревья и кустарники умерен­ных зон, защищаясь от зимних холодов, сбрасывают листья.

Защита от неблагоприятных факторов среды у растений обес­печивается структурными приспособлениями, особенностями анатомического строения (кутикула, корка, механические ткани и т. д.), специальными органами защиты (жгучие волоски, ко­лючки), двигательными и физиологическими реакциями, выра­боткой защитных веществ (смол, фитонцидов, токсинов, защит­ных белков).

К структурным приспособлениям относятся мелколистность и даже отсутствие листьев, воскообразная кутикула на поверхности листьев, их густое опущение и погруженность устьиц, наличие сочных листьев и стеблей, сохраняющих резервы воды, эректоидность или пониклость листьев и др. Растения располагают различными физиологическими механизмами, позволяющими приспосабливаться к неблагоприятным условиям среды. Это САМ-тип фотосинтеза суккулентных растений, сводящий к ми­нимуму потери воды и крайне важный для выживания растений в пустыне и т. д.

Многочисленными физиологическими изменениями сопро­вождается развитие холодоустойчивости и морозостойкости у

495

озимых, двулетних и многолетних растений при уменьшении длины дня и снижении температуры в осеннее время. У сельско­хозяйственных растений особое значение имеет устойчивость, определяемая выносливостью клеток растений, их способностью адаптироваться в изменяющихся условиях среды, вырабатывать необходимые для жизнедеятельности продукты метаболизма. Лучше всего растения переносят неблагоприятные условия в со­стоянии покоя.

Первым сигналом для перехода к состоянию покоя является сокращение светового периода. При этом в клетках растений начинаются биохимические изменения, приводящие в конечном счете к накоплению запасных питательных веществ, снижению оводненности клеток и тканей, образованию защитных структур, накоплению ингибиторов роста. Примером такой подготовки могут служить сбрасывание листьев в осенний период у много­летних растений, развитие запасающих органов у двулетних и образование семян у однолетних.


ХОЛОДОСТОЙКОСТЬ РАСТЕНИЙ

Устойчивость растений к низким температурам подразделяют на холодостойкость и морозоустойчивость. Под холодостойкос­тью понимают способность растений переносить положительные температуры несколько выше О 0С. Холодостойкость свойственна растениям умеренной полосы (ячмень, овес, лен, вика и др.). Тропические и субтропические растения повреждаются и отми­рают при температурах от 0 до 10 0С (кофе, хлопчатник, огурец и др.). Для большинства же сельскохозяйственных растений низ­кие положительные температуры негубительны. Связано это с тем, что при охлаждении ферментативный аппарат растений не расстраивается, не снижается устойчивость к грибным заболева­ниям и вообще не происходит заметных повреждений растений.

Степень холодостойкости разных растений неодинакова. Многие растения южных широт повреждаются холодом. При температуре 3 °С повреждаются огурец, хлопчатник, фасоль, ку­куруза, баклажан. Устойчивость к холоду у сортов различна. Для характеристики холодостойкости растений используют понятие температурный минимум, при котором рост растений прекращается. Для большой группы сельскохозяйственных растений его величина составляет 4 °С. Однако многие растения имеют более высокое значение температурного минимума и соответственно они менее устойчивы к воздействию холода.

Накопление зеленой массы кукурузой не происходит при тем­пературе ниже 10 оС. Устойчивость растений к холоду зависит от периода онтогенеза. Разные органы растений также различаются по устойчивости к холоду. Так, цветки растений более чувстви­тельны, чем плоды и листья, а листья и корни чувствительнее стеблей. Наиболее холодостойкими являются растения раннего срока посева.

Для сравнения рассмотрим особенности прорастания малоус­тойчивой к холоду кукурузы. При температуре 18—20 оС всходы у кукурузы появляются на 4-й день, а при 10—12 "С — только на 12-й день. О холодостойкости растений косвенно можно судить по показателю суммы биологических температур. Чем меньше эта величина, тем быстрее растения созревают и тем выше их устойчивость к холоду. Показатели суммы биологических темпе­ратур соответствуют скороспелости растений: очень раннеспелые имеют сумму биологических температур 1200 оС, раннеспелые — 1200—1600, среднераннеспелые — 1600—2200, среднеспелые — 2200—2800, среднепозднеспелые — 2800—3400, позднеспелые — 3400-4000 оС.

Физиолого-биохимические изменения у теплолюбивых расте­ний при пониженных положительных температурах.

Повреждение растений холодом сопровождается потерей ими тургора и из­менением окраски (из-за разрушения хлорофилла), что является следствием нарушения транспорта воды к транспирирующим органам. Кроме того, наблюдаются значительные нарушения физиологических функций, которые связаны с нарушением об­мена нуклеиновых кислот и белков. Нарушается цепь ДНК -> РНК -> белок -> признак.

У некоторых видов растений наблюдаются усиление распада белков и накопление в тканях растворимых форм азота. Из-за изменения структуры митохондрий и пластид аэробное дыхание и фотосинтез снижаются. Деградация хлоропластов, разрушение нормальной структуры пигментно-липидного комплекса приво­дят к подавлению функции запасания энергии этими органоида­ми, что способствует нарушению энергетического обмена расте­ния в целом. Основной причиной повреждающего действия низ­кой температуры на теплолюбивые растения является нарушение функциональной активности мембран из-за перехода насыщен­ных жирных кислот из жидкокристаллического состояния в со­стояние геля, а также общие изменения процессов обмена ве­ществ. Процессы распада преобладают над процессами синтеза, происходят нарушение проницаемости цитоплазмы (повышение ее вязкости), изменения в системе коллоидов, снижается (пада-

ет) осевой градиент потенциалов покоя (ПП), активный транс­порт веществ против электрохимического градиента.

Изменение проницаемости мембран приводит к тому, что нарушаются поступление и транспорт веществ в растения и отток ассимилятов, токсичных веществ из клеток. Все эти изме­нения существенно снижают жизнеспособность растений и могут привести к их гибели. Кроме того, в этих условиях растения более подвержены действию болезней и вредителей, что также приводит к снижению качества и количества урожая.

Приспособление растений к низким положительным темпера­турам.

У растений более холодостойких отмеченные наруше­ния выражены значительно слабее и не сопровождаются гибе­лью растения (табл. 1). Устойчивость к низким температу­рам — генетически детерминированный признак. Изменение уровня физиологических процессов и функций при действии низких положительных температур может служить диагности­ческим показателем при сравнительной оценке холодостойкос­ти растений (видов, сортов). Холодостойкость растений опре­деляется способностью растений сохранять нормальную струк­туру цитоплазмы, изменять обмен веществ в период охлаждения и последующего повышения температуры на до­статочно высоком уровне.

Для оценки холодостойкости растений используют различные методы диагностики (прямые и косвенные). Это холодный метод проращивания семян, сверхранние посевы в сырую и непрогре­тую почву, учет интенсивности появления всходов, темпов роста, накопления массы, содержание хлорофилла, соотношение коли­чества электролитов в надземной и подземной частях растения, оценка изменчивости изоферментного состава и др.

1. Минимальные температуры роста вегетативных и генеративных органов различных растений, оС

Культуры по степени устойчивости к холоду


Всходы и вегетативные органы


Генеративные органы


Устойчивые: яровая пшеница, ячмень, овес, горох, чина, сахарная свекла


4-5


8-10


Среднеустойчивые: люпин однолетний, бобы, лен, под­солнечник, гречиха


5-6

7-8


10-12

12-15


Малоустойчивые: просо, кукуруза, соя, сорго, фасоль Неустойчивые: рис, хлопчатник, бахчевые, арахис


11-13 14-15


15-18 18-20


Способы повышения холодостойкости некоторых растений.

Хо­лодостойкость некоторых теплолюбивых растений можно повы­сить закаливанием прорастающих семян и рассады, которое сти­мулирует защитно-приспособительную перестройку метаболизма растений. Наклюнувшиеся семена или рассаду теплолюбивых культур (огурец, томат, дыня и др.) в течение нескольких суток (до месяца) выдерживают при чередующихся (через 12 ч) пере­менных температурах: от 0 до 5 °С и при 15—20 оС. Холодостой­кость ряда растений повышается при замачивании семян в 0,25%-ных растворах микроэлементов.

Повысить холодостойкость растений можно прививкой тепло­любивых растений (арбуз, дыня) на более холодоустойчивые под­вои (тыква). Положительное влияние этих приемов связано со стабилизацией энергетического обмена и упрочением структуры клеточных органоидов у обработанных растений. У закаленных растений увеличение вязкости протоплазмы при пониженных температурах происходит медленнее.

Заморозки. Большой ущерб сельскому хозяйству наносят крат­ковременные или длительные заморозки, отмечаемые в весенний и осенний периоды, а в северных широтах и летом. Заморозки — снижение температуры до небольших отрицательных величин, могут быть во время разных фаз развития конкретных растений. Наиболее опасны летние заморозки, в период наибольшего роста растений. Устойчивость к заморозкам обусловлена видом расте­ния, фазой его развития, физиологическим состоянием, условия­ми минерального питания, увлажненностью, интенсивностью и продолжительностью заморозков, погодными условиями, пред­шествующими заморозкам.

Наиболее устойчивы к заморозкам растения раннего срока посева (яровые хлеба, зернобобовые культуры), способные вы­держивать в ранние фазы онтогенеза кратковременные весенние заморозки до —7...-10 оС. Растения позднего срока посева раз­виваются медленнее и не всегда успевают подготовиться к низким температурам. Корнеплоды, большинство масличных культур, лен, конопля переносят понижение температуры до —5...—8 °С, соя, картофель, сорго, кукуруза — до —2...—3, хло­пок—до -1,5...-2, бахчевые культуры — до -0,5...-1,5 оС.

Существенную роль в устойчивости к заморозкам играет фаза развития растений. Особенно опасны заморозки в фазе цвете­ние — начало плодоношения. Яровые хлеба в фазе всходов пере­носят заморозки до -7...-8 оС, в фазе выхода в трубку до -3, а в фазе цветения — только 1—2 оС. Устойчивость растений зави­сит от образования при заморозках льда в клетках и межклеточ­никах. Если лед не образуется, то вероятность восстановления растением нормального течения функций возрастает. Поэтому первостепенное значение имеет возможность быстрого транспор­та свободной воды из клеток в межклеточники, что определяется

высокой проницаемостью мембран в условиях заморозков. У устойчивых к заморозкам культур при снижении температур в составе липидов клеточных мембран увеличивается содержание ненасыщенных жирных кислот, снижающих температуру фазово­го перехода липидов из жидкокристаллического состояния в гель до уровня О оС. У неустойчивых растений этот переход имеет место при температурах выше О °С. В целях максимального сни­жения повреждения растений заморозками необходимо прово­дить посев их в оптимальные сроки, использовать рассаду овощ­ных и цветочных культур. Защищают от заморозков дымовые завесы и укрытие растений пленкой, дождевание растений перед заморозками или весенний полив. Для вертикального перемеще­ния воздуха около плодовых деревьев используют вентиляторы.

МОРОЗОУСТОЙЧИВОСТЬ РАСТЕНИЙ

Морозоустойчивостьспособность растений переносить тем­пературу ниже О °С, низкие отрицательные температуры. Моро­зоустойчивые растения способны предотвращать или уменьшать действие низких отрицательных температур. Морозы в зимний период с температурой ниже —20 °С обычны для значительной части территории России. Воздействию морозов подвергаются однолетние, двулетние и многолетние растения. Растения пере­носят условия зимы в различные периоды онтогенеза. У однолет­них культур зимуют семена (яровые растения), раскустившиеся растения (озимые), у двулетних и многолетних — клубни, корне­плоды, луковицы, корневища, взрослые растения. Способность озимых, многолетних травянистых и древесных плодовых куль­тур перезимовывать обусловливается их достаточно высокой мо­розоустойчивостью. Ткани этих растений могут замерзать, одна­ко растения не погибают. Большой вклад в изучение физиологи­ческих основ морозоустойчивости внесли Н. А. Максимов (1952), Г. А. Самыгин (1974), И. И. Туманов (1979) и другие оте­чественные исследователи.

Замерзание растительных клеток и тканей и происходящие при этом процессы.

Способность растений переносить отрицательные температуры определяется наследственной основой данного вида растений, однако морозоустойчивость одного и того же растения зависит от условий, предшествующих наступлению морозов, вли­яющих на характер льдообразования. Лед может образовываться как в протопласте клетки, так и в межклеточном пространстве. Не всякое образование льда приводит клетки растения к гибели.

Постепенное снижение температуры со скоростью 0,5—1 °С/ч приводит к образованию кристаллов льда прежде всего в меж­клеточниках и первоначально не вызывают гибели клеток. Одна­ко последствия этого процесса могут быть губительными для

клетки. Образование льда в протопласте клетки, как правило, происходит при быстром понижении температуры. Происходит коагуляция белков протоплазмы, кристаллами образовавшегося в цитозоле льда повреждаются клеточные структуры, клетки поги­бают. Убитые морозом растения после оттаивания теряют тургор, из их мясистых тканей вытекает вода.

Условия и причины вымерзания растений.

Образующийся при медленном промерзании в межклеточниках и клеточных стенках лед оттягивает воду из клеток; клеточный сок становится кон­центрированным, изменяется рН среды. Выкристаллизовавший­ся лед действует как сухой воздух, иссушая клетки и сильно изменяя их осмотические свойства. Кроме того, цитоплазма под­вергается сжатию кристаллами льда. Образующиеся кристаллы льда вытесняют воздух из межклеточников, поэтому замерзшие листья становятся прозрачными.

Если льда образуется немного и клетки не были механически повреждены его кристаллами, то при последующем оттаивании такие растения могут сохранить жизнеспособность. Так, в лис­тьях капусты при температуре —5...—6 оС образуется некоторое количество льда в межклеточниках. Однако при последующем медленном оттаивании межклеточники заполняются водой, ко­торая поглощается клетками, и листья возвращаются в нормаль­ное состояние.

Однако клетки, ткани и растения могут погибнуть от мороза. Основными причинами гибели клеток растений при низких от­рицательных температурах и льдообразовании являются чрезмер­ное обезвоживание клеток или механическое давление, сжатие клеток кристаллами льда, повреждающее тонкие клеточные структуры. Оба эти фактора могут действовать одновременно. Летальность действия мороза определяется несколькими обстоя­тельствами. Последствия воздействия низких отрицательных тем­ператур зависят от оводненности тканей растения. Насыщенные водой ткани легко повреждаются, сухие же семена могут выно­сить глубокие низкие температуры (до —196 °С). Низкое содер­жание воды предохраняет от образования льда в растениях при промораживании. Разные растения, их клетки имеют свой кри­тический предел обезвоживания и сжатия, превышение которо­го, а не только снижение температуры приводит к их гибели.

Гибель клеток, тканей и растений под действием морозов обусловливается необратимыми изменениями, происходящими в протопласте клеток: его коагуляцией, денатурацией коллоидов протопласта, механическим давлением льда, повреждающим по­верхностные структуры цитоплазмы, кристаллами льда, наруша­ющими мембраны и проникающими внутрь клетки. Вредное влияние оказывает повышение концентрации и изменение рН клеточного сока, сопровождающие обезвоживание клеток.

Действие льда,   особенно  при длительном  влиянии   низких

температур, сходно с обезвоживанием клеток при засухе. При­знаками повреждения клеток морозом являются потеря ими тур-гора, инфильтрация межклеточников водой и выход ионов из клеток. Выход ионов К+ и Сахаров из клеток, по-видимому, связан с повреждением мембранных систем их активного транс­порта. Поврежденные растения при переносе в теплое место имеют вид ошпаренных, утрачивают тургор, листья быстро буре­ют и засыхают. При оттаивании мороженых клубней картофеля, корнеплодов кормовой и сахарной свеклы вода легко вытекает из тканей. Важно отметить, что состояние переохлаждения (без об­разования льда) растения переносят без вреда; при тех же темпе­ратурах, но с образованием льда в тканях растения гибнут.

Растения по-разному реагируют на образование льда в тканях: клубни картофеля и георгина быстро погибают, капуста и лук переносят лишь умеренное промораживание, рожь и пшеница выдерживают на уровне узла кущения морозы до —15...—20 °С. У устойчивых к морозу растений имеются защитные механизмы, в основе которых лежат определенные физико-химические изме­нения. Морозоустойчивые растения обладают приспособления­ми, уменьшающими обезвоживание клеток. При понижении температуры у таких растений отмечаются повышение содержа­ния Сахаров и других веществ, защищающих ткани (криопротек-торы), это прежде всего гидрофильные белки, моно- и олигоса-хариды; снижение оводненности клеток; увеличение количества полярных липидов и снижение насыщенности их жирнокислот-ных остатков; увеличение количества защитных белков.

На степень морозоустойчивости растений большое влияние оказывают сахара, регуляторы роста и другие вещества, образую­щиеся в клетках. В зимующих растениях в цитоплазме накапли­ваются сахара, а содержание крахмала снижается. Влияние саха-ров на повышение морозоустойчивости растений многосторонне. Накопление Сахаров предохраняет от замерзания большой объем внутриклеточной воды, заметно уменьшает количество образую­щегося льда.

Сахара защищают белковые соединения от коагуляции при вымораживании; они образуют гидрофильные связи с белками цитоплазмы, предохраняя их от возможной денатурации, повы­шают осмотическое давление и снижают температуру замерзания цитозоля. В результате накопления Сахаров содержание прочнос-вязанной воды увеличивается, а свободной уменьшается. Особое значение имеет защитное влияние Сахаров на белки, сосредото­ченные в поверхностных мембранах клетки. Сахара увеличивают водоудерживающую способность коллоидов протоплазмы клеток; связанная с коллоидами вода в виде гидратных оболочек био­полимеров при низких, температурах не замерзает и не транспор­тируется, оставаясь в клетке.

Криопротекторами являются также молекулы  гемицеллюлоз

(ксиланы, арабиноксиланы), выделяемые цитоплазмой в клеточ­ную стенку, обволакивающие растущие кристаллы льда, что предотвращает образование крупных кристаллов, повреждающих клетку. Так клетки защищаются как от внутриклеточного льда, так и от чрезмерного обезвоживания. Значительное количество защитных белков и модификации молекул липидов увеличивают структурированность клеток. У большинства растений возрастает синтез водорастворимых белков. Белковые вещества, частично гидролизуясь, увеличивают содержание свободных аминокислот. В тканях морозоустойчивых растений в конце лета и осенью накапливаются в достаточном количестве запасные вещества (прежде всего сахара), которые используются весной при возоб­новлении роста, обеспечивая потребности растений в строитель­ном материале и энергии. Необходимо также учитывать устойчи­вость растений к болезням, вероятность развития которых увели­чивается при повреждении тканей морозом.

Закаливание растений.

Морозоустойчивость — не постоянное свойство растений. Она зависит от физиологическо­го состояния растений и условий внешней среды. Растения, выращенные при относительно низких положительных темпера­турах, более устойчивы, чем выращенные при относительно вы­соких осенних температурах. Свойство морозоустойчивости фор­мируется в процессе онтогенеза растения под влиянием опреде­ленных условий среды в соответствии с генотипом растения, связано с резким снижением темпов роста, переходом растения в состояние покоя.

Жизненный цикл развития озимых, двуручек, двулетних и многолетних растений контролируется сезонным ритмом свето­вого и температурного периодов. В отличие от яровых однолет­них растений они начинают готовиться к перенесению неблаго­приятных зимних условий с момента остановки роста и затем в течение осени во время наступления пониженных температур.

Повышение морозоустойчивости растений тесно связано с закаливанием — постепенной подготовкой растений к воздейст­вию низких зимних температур. Закаливание — это обратимая физиологическая устойчивость к неблагоприятным воздействиям среды.

Способностью к закаливанию обладают не все растения. Рас­тения южного происхождения не способны переносить морозы. Способность к закаливанию у древесных и зимующих травянис­тых растений северных широт, переживающих значительное по­нижение температуры в зимний период, в период летней вегета­ции отсутствует и проявляется только во время наступления осенних пониженных температур (если растение к этому време­ни прошло необходимый цикл развития). Процесс закалки при­урочен лишь к определенным этапам развития растений. Для

приобретения способности к закаливанию растения должны за­кончить процессы роста.

Разные органы растений имеют неодинаковую способность к закаливанию, например, листья листопадных деревьев (яблоня, груша, вишня) не обладают способностью к закаливанию; цве­точные почки закаливаются хуже, чем листовые. У вегетирующих растений легко вымерзают растущие и не закончившие рост органы. Выносливость растений к низким температурам в этот период незначительная.

Эффект закаливания может не проявиться, если по каким-либо причинам (засуха, поздний посев, посадки и др.) произо­шла задержка развития растений. Так, если в течение лета у плодовых растений процессы роста из-за летней засухи не успе­ли закончиться, то зимой это может привести к гибели растений. Дело в том, что засуха, приостанавливая рост летом, не позволя­ет растениям завершить его к осени. Одновременно при закалке должен произойти отток различных веществ из надземных орга­нов в подземные зимующие (корневые системы, корневища, лу­ковицы, клубни). По этой же причине закалку травянистых и древесных растений ухудшает избыточное азотное питание, удли­няющее период роста до поздней осени, в результате растения не способны пройти процессы закаливания и гибнут даже при не­больших морозах.

Яровые злаки при озимом посеве по сравнению с озимыми растут при более пониженных положительных температурах, в осенний период почти не снижают темпов роста и не способны к закаливанию. Большую роль в закаливании играют условия внеш­ней среды. Так, на озимых культурах убедительно показана необхо­димость света для процесса закаливания. Сокращение фотопериода служит для растений сигналом к прекращению роста и стимулом для накопления ингибиторов в растениях. Вероятно, с этих процес­сов начинается формирование морозоустойчивости у растений.

Растения, выращенные при несоответствующем фотопериоде, не успевают завершить летний рост и не способны к закаливанию. Установлено, что длинный день способствует образованию в лис­тьях черной смородины фитогормонов стимуляторов роста, а ко­роткий — накоплению ингибиторов. В естественных условиях к закаливанию способен лишь организм в целом, при обязательном наличии корневой системы. По-видимому, в корнях вырабатыва­ются вещества, повышающие устойчивость растения к морозу.

Фазы закаливания.

По И. И. Туманову (1979), процесс зака­ливания растений требует определенного комплекса внешних ус­ловий и проходит в две фазы, которым предшествуют замедление роста и переход растений в состояние покоя. Прекращение роста и переход в состояние покоя — необходимые условия прохожде­ния первой фазы закаливания. Однако само по себе оно лишь немного повышает морозоустойчивость растения. У травянистых

растений переход в состояние покоя происходит в период первой фазы закаливания. У древесных покой наступает в начале осени, до прохождения первой фазы закаливания.

При переходе в состояние покоя изменяется баланс фитогормо-нов: уменьшается содержание ауксина и гиббереллинов и увеличи­вается содержание абсцизовой кислоты, которая, ослабляя и инги-бируя ростовые процессы, обусловливает наступление периода покоя. Поэтому обработка растений озимой пшеницы, люцерны и других культур в этот период ингибиторами роста (например, хлор-холинхлоридом — ССС или трииодбензойной кислотой) повышает устойчивость растений к низким температурам.

Первая фаза закаливания проходит на свету и при низких положительных температурах в ночное время (днем около 10 °С, ночью около 2 °С), останавливающих рост, и умеренной влаж­ности почвы. Озимые злаки проходят первую фазу на свету при среднесуточной температуре 0,5—2 °С за 6—9 дней, древесные — за 30 дней. В эту фазу продолжается дальнейшее замедление и даже происходит полная остановка ростовых процессов.

Свет в этой фазе необходим не только для фотосинтеза, но и для поддержания ультраструктур клетки. В таких условиях за счет фотосинтеза образуются сахара, а понижение температуры в ночное время значительно снижает их расход на дыхание и процессы роста. В результате в клетках растений накапливаются сахароза, другие олигосахариды, растворимые белки и т. д., в мембранах возрастает содержание ненасыщенных жирных кис­лот, снижается точка замерзания цитоплазмы, отмечается неко­торое уменьшение внутриклеточной воды.

Благоприятные условия для прохождения первой фазы зака­ливания озимых растений складываются при солнечной и про­хладной (дневная температура до 10 °С) погоде, способствующей накоплению в тканях растений углеводов и других защитных веществ. В естественных условиях оптимальный срок первой фазы закаливания озимых злаков до двух недель. За это время количество сахаров в растениях возрастает до 70 % на сухую массу или до 22 % на сырую массу, т. е. близко содержанию Сахаров в корнеплодах лучших сортов сахарной свеклы.

Растения озимой пшеницы можно закалить и в темноте при 2 °С, если их корни или узлы кущения погрузить в раствор сахарозы. Такие растения выдерживают морозы до —20 °С (И. И. Туманов, 1979). Накапливающиеся в процессе закалива­ния сахара локализуются в клеточном соке, цитоплазме, клеточ­ных органеллах, особенно в хлоропластах. При закаливании рас­тений высокоморозоустойчивого сорта озимой пшеницы при температуре, близкой к О °С, количество Сахаров в хлоропластах листьев увеличивалось в 2,5 раза, благодаря чему хлоропласты продолжали функционировать. Повышение содержания сахаров в хлоропластах коррелирует с морозоустойчивостью растений.

В хлоропластах содержатся те же формы сахаров, что и в листьях: фруктоза, глюкоза, сахароза, олигосахара (Т. И. Труно­ва, 1970). Имеются данные, что при накоплении сахаров процесс фотофосфорилирования продолжается даже при отрицательных температурах. Более морозоустойчивые виды и сорта растений лучше накапливают сахар именно при сочетании пониженной температуры и умеренной влажности почвы. Дело в том, что в первой фазе закаливания происходит уменьшение содержания свободной воды, а излишняя влажность почвы при дождливой осени затрудняет этот процесс, повышается вероятность в после­дующем образования внутриклеточного льда и гибели растений.

Метаболические изменения, наблюдаемые во время первой фазы, могут быть вызваны изменением гормонального и энерге­тического балансов, что определяет синтез и активацию специ­фических ферментов, свойства клеточных мембран закаленных тканей. Накапливающаяся в тканях абсцизовая кислота увеличи­вает проницаемость мембран для воды, водоотдачу клеток. К концу первой фазы закаливания все зимующие растения перехо­дят в состояние покоя. Однако процессы закалки, перестройки процессов обмена веществ продолжаются.

Вторая фаза закаливания не требует света и начинается сразу же после первой фазы при температуре немного ниже О °С. Для травянистых растений она может протекать и под снегом. Длится она около двух недель при постепенном снижении температуры до -10...-20 °С и ниже со скоростью 2—3 °С в сутки, что приво­дит к частичной потере воды клетками, освобождению клеток тканей от избыточного содержания воды или витрификации (переходу воды в стеклообразное состояние). Явление витрифи­кации воды в растительных клетках наступает при резком охлаж­дении (ниже —20 °С). Стеклообразная растительная ткань долго сохраняет свою жизнеспособность.

При постепенном понижении температуры в межклеточниках образуется лед и начинают функционировать механизмы, предо­храняющие подготовленные в первой фазе закаливания растения от чрезмерного обезвоживания. Накопившиеся в первой фазе закаливания сахара изменяют устойчивость биоколлоидов цито­плазмы к низким температурам, возрастает относительное коли­чество коллоидно-связанной воды.

Вторая фаза обеспечивает отток из цитозоля клеток почти всей воды, которая может замерзнуть при отрицательной темпе­ратуре. При критических температурах отток воды из клеток значительно ухудшается, появляется много переохлажденной воды, которая затем замерзает внутри протопласта и может при­вести к гибели клеток. Следовательно, чем менее морозоустойчи­во растение, тем медленнее должна протекать вторая фаза зака­ливания.

Действующими факторами второй фазы закаливания являют-

ся обезвоживание, вызывающее сближение молекул в цитозоле, вязкость которого соответственно увеличивается; низкая темпе­ратура, уменьшающая тепловое движение молекул в протопласте. В результате во второй фазе закаливания происходит перестрой­ка белков цитоплазмы, накапливаются низкомолекулярные водо­растворимые белки, более устойчивые к обезвоживанию, синте­зируются специфические белки. Содержание незамерзающей (связанной) воды в тканях зимостойкой пшеницы почти в 3 раза выше по сравнению с незимостойкой.

Перестройка цитоплазмы увеличивает проницаемость ее для воды, способствует более быстрому оттоку воды в межклеточни­ки, что снижает опасность внутриклеточного льдообразования. При обезвоживании, происходящем под влиянием льдообразова­ния, наблюдаются сближение и деформация белковых молекул, связи между которыми могут рваться и не восстанавливаются, что пагубно для клетки. Очевидно, при таких условиях происхо­дит быстрое смещение структурных частиц по отношению друг к другу, что приводит к разрушению субмикроскопической струк­туры протопласта (И. И. Туманов).

Цитоплазма закаленных растений более устойчива к механи­ческому давлению. Поэтому важно наличие у молекул белков сульфгидрильных и других гидрофильных группировок, которые способствуют удержанию воды, препятствуют слишком сильному сближению молекул белка. Между содержанием сульфгидриль­ных групп и морозоустойчивостью клеток растений установлена положительная связь. Благодаря изменению свойств молекул белков и межмолекулярных связей в процессе закаливания по­степенное обезвоживание приводит к переходу цитоплазмы из состояния золя в гель.

Первая фаза закаливания повышает морозоустойчивость рас­тений с —5 до -12 °С, вторая увеличивает морозоустойчивость, например, у пшеницы до —18...—20 °С, у ржи — до —20...—25 "С. Растения, находящиеся в глубоком органическом покое, отлича­ются способностью к закаливанию и выдерживают проморажи-вание до —195 °С. Так, черная смородина после наступления состояния глубокого покоя и завершения первой фазы закалива­ния переносила охлаждение до —253 °С (И. И. Туманов, 1979).

Не у всех растений процесс закаливания проходит в две фазы. У древесных растений, имеющих в тканях достаточное количест­во Сахаров, сразу же протекают процессы, свойственные второй фазе закаливания. Однако не все растения способны к закалива­нию. Теплолюбивые растения (хлопчатник, рис, бахчевые куль­туры) при длительном пребывании при температурах немного выше О °С не только не становятся устойчивыми, но еще силь­нее повреждаются или даже погибают, так как в них накаплива­ются ядовитые вещества, усиливающие губительное действие на растения низких температур.

Обратимость процессов закаливания.

В период прохождения фаз закаливания формируется морозоустойчивость растений. Мо­розоустойчивость представляет собой процесс, а не постоянное свойство растений. Процесс закаливания обратим, при этом мо­розоустойчивость растений снижается. Развитие процесса зака­ливания в значительной степени зависит от условий его протека­ния. Особенно заметное влияние на морозоустойчивость оказы­вают условия закаливания растений в осенний период, определяемые в первую очередь соотношением числа ясных дней с пониженными положительными температурами ночью и числа пасмурных, дождливых дней с относительно сближенными высо­кими температурами днем и ночью. Чем это отношение выше, тем лучше условия для закалки (табл. 2).

2. Критические температуры ('С) повреждения растений озимой пшеницы при разных условиях закалки

Регион


Условия закалки


хорошие


средние


плохие


Украина, Северный Белоруссия


Кавказ,


-20


-16


-14


Центрально- Черноземная зона, северные районы Нечер­ноземной зоны


-22


-18


-16


Поволжье, Западная Северный Казахстан


Сибирь,


-25


-20


-18


У хорошо закаленных растений благодаря высокой концент­рации клеточного сока, пониженному содержанию воды образу­ется значительно меньше кристаллов льда, причем не в клетке, а в межклеточниках. Такие растения погибают только при очень сильных морозах. При закаливании происходят обратимые фи­зиологические изменения. При неустойчивой осенней и зимней погоде приобретенная в процессе закалки морозоустойчивость снижается. Наблюдается тесная связь между морозоустойчивос­тью растений и ростовыми процессами. Переход к состоянию покоя всегда сопровождается повышением устойчивости, а от состояния покоя к росту — снижением. В связи с этим морозо­устойчивость одного и того же вида растений довольно сильно меняется в течение года: летом она минимальная (растения могут погибнуть при температурах намного выше тех, которые они выдерживают зимой), осенью увеличивается, а в конце зимы и в начале весны опять снижается. Повышение температуры весной сопровождается противоположными закаливанию физио-лого-биохимическими. изменениями — происходит процесс раз-закаливания растений. Весной растения часто гибнут даже от небольших заморозков.

Способы повышения морозоустойчивости.

Основа решения этой задачи — селекция морозоустойчивых сортов растений, хо­рошо адаптирующихся к климатическим условиям данного ре­гиона. Следует еще раз отметить, что процесс закаливания пред­ставляет собой временную адаптацию цитоплазмы, определяю­щую степень устойчивости к последующим повреждениям низкими температурами. Морозоустойчивость же формируется в соответствии с генотипом в процессе онтогенеза под влиянием определенных условий внешней среды и связана с наступлением периода покоя, его глубиной и длительностью.

Агротехника конкретного вида растений (срок и способ посе­ва и др.) должна максимально способствовать формированию в процессе закалки реализации возможной генетически детерми­нированной морозоустойчивости сорта. В северных и централь­ных районах России с неустойчивой весной и частым возвраще­нием весенних заморозков более устойчивы и урожайны сорта озимых хлебов и плодовых многолетних культур с более глубо­ким зимним покоем, с поздним сроком возобновления весенней вегетации (ВВВ). Наоборот, в районах с устойчивым нарастани­ем положительных температур весной преимущество имеют ра-новегетирующие виды и сорта растений.

Морозоустойчивость сортов озимой пшеницы определяется не только количеством Сахаров, накопленных с осени, но и их экономным расходованием в течение зимы. У растений зимо­стойких сортов озимой пшеницы в зимний период с понижени­ем температуры содержание моносахаридов (глюкоза, фруктоза) увеличивается за счет расщепления сахарозы на глюкозу и фрук­тозу, что снижает точку замерзания клеточного сока. Узел куще­ния злаков, корневая шейка бобовых — своеобразная кладовая энергетических ресурсов растения в зимний период и орган по­бегообразования весной.

Морозоустойчивость растений озимой пшеницы положитель­но коррелирует с содержанием Сахаров в узлах кущения. В хороших посевах озимой пшеницы в листьях в декабре содер­жание растворимых углеводов достигает 18—24 % (на сухое вещество), а в узлах кущения — 39—42 %. В опытах более морозоустойчивый сорт озимой пшеницы Мироновская 808 расходовал за зиму всего 10 % углеводов, а менее устойчивый сорт Безостая 1—23 % углеводов. Растения, закладывающие узлы кущения глубоко (3—4 см), как правило, более морозо­устойчивы, чем те, у которых узел кущения находится близко к поверхности (1—2 см). Глубина залегания узла кущения и мощность его развития зависят от качества семян, способа посева, обработки почвы.

Страницы: 1, 2, 3


© 2000
При полном или частичном использовании материалов
гиперссылка обязательна.