РУБРИКИ |
Биоритмы человека |
РЕКЛАМА |
|
Биоритмы человекаp> 16Общая закономерность, – ведущая роль света как сигнала времени – оспаривалась только в отношение человека, частично потому, что люди, как и большинство других организмов, иногда в отсутствие регулярного цикла освещения используют для ориентации другие органы чувств. Но главная причина, заставившая усомнится в роли света для человека, состояла в том, что «дневной свет», использовавшийся в первых лабораторных экспериментах по изучению изоляции от времени, оказался не столь эффективным для захватывания циркадианных ритмов человека по сравнению со светом такой же интенсивности для ритмов других животных. Следует ли из этого заключить, что часы человека уникально безразличны к действию света? Отнюдь, скорее это говорит о том, что комнатный свет слишком слаб для биологических часов человека, чтобы приравнивать его к дневному. Есть всякие основания предполагать, что ведущие циркадианнае часы у
человека находятся в мозге и прямо связанны с глазами эпифизом (шишковидной
железой). Альфред Леви с коллегами из Национального института здоровья в Спонтанные циркадианные ритмы обнаружены едва ли не у каждого вида
живых существ. Возможно, исключение составляют обитатели морских глубин и
подземных пещер, а также прокариоты (бактерии и сине-зеленные водоросли,
клетки которых не имеют ядра и митохондрий). Циркадианные колебания обычно
наблюдаются у более высокоорганизованных одноклеточных организмов и у
изолированных тканях многоклеточных организмов. Тем не менее, и у
позвоночных, и у беспозвоночных животных часть нервной системы обычно
играет роль циркадианного ритмоводителя для всего организма. Мишель Менакер
с сотрудниками показал, что у некоторых птиц (не у всех) эту функцию
выполняет эпифиз, ритмично выделяющий в мозге гормон мелатонин. У грызунов эпифиз выделяет мелатонин тоже ритмично, но под контролем скопление нейросекреторных клеток – супрахиазменных ядер, расположенных слева и справа в гипоталамусе, над перекрестием зрительного нерва. Эти парные часы получают информацию о свете и темноте от глаз. Ежедневные порции мелатонина в свою очередь синхронизируют циркадианные колебания. У обезьян подобную роль играют супрахиазменные ядра. Люди – пациенты с травмами в этой области гипоталамуса – страдают расстройствам ритма, что позволяет предпологатьсходную роль 17
супрахиазменных ядер и у человека. Фазу ритмов этих ядер можно сдвинуть
светом через зрение, электрическим раздражителем, инъекцией в мозг аналога
нейромедиаторов, вызывающих нормальные разряды нейронов, а также
мелатонином. Покрайне мере у грызунов удаление эпифиза позволяет позволяет
супрахиазменным ядрам быстрее приспосабливаться к новым временным зонам. Секреция эпифизом мелатонина стимулируется психомиметиками – такими препаратами, как ЛСД, мескалин и кокаин, - и подавляется препаратами, используемыми для лечения психозов. Недавно выяснилось, что бензодиазепин, широко применяемый антидепрессант, подстраивает фазу циркадианных часов у грызунов, возможно, действуя на нейромедиаторы в супрахиазменных ядрах гипоталамуса. Это указывает на некоторую связь между психическими заболеваниями и расстройствами циркадианных ритмов, особенно между депрессией и нарушением сна. Любопытно, что человеку для подавление секреции мелатонина требуема гораздо больше света, чем другим млекопитающим. Интересно, разделяют ли домашние собаки со своими хозяевами эту странную не чувствительность к свету? Быть может, это последствие комнатного освещения в ночное время на протяжение жизни тысячи поколений? Если бы циркадианные ритмы человека реагировали на тусклое освещение (что, кстати, наблюдается у лабораторных грызунов), они должны были бы быть в постоянном разладе, и люди, помимо других проблем, постоянно испытывали бы дополнительный стресс. Индивидуумы, менее чувствительны к свету, могли страдать от этого, их репродуктивная система в меньшей степени была бы подвержена стрессу, стал быть, они имели бы большой успех при размножение. Что, если человек и его домашние животные испытывали давление естественного отборов на нечувствительность к тусклому свету? И если так, то значительно большая чувствительность могла сохраниться и у людей, живущих доныне в каменном веке: у тасадеев с филиппинских островов Минаданно, у маори и у жителей Огненной Земли, предки которых меньше подвергались действию ночного освещения – гипотического нарушителя циркадианных ритмов. Будет ли эта врожденная, генетически наследуемая чувствительность безвозвратно утрачена еще до конца нашего века? Если синхронность циркадианных ритмов действительно поддерживается путем ежедневной экспозиции при дневном освещение, то интересно, каким образом это достигается? И что даст исследование этого процесса для понимания природы внутренних часов? Модно поставить несложный опыт с фоточувствительным организмом,
циркадианный ритм которого остается четким и устойчивым, если нет никаких
сигналов времени. Удобный биологический объект для этого – комар. Как и
большинство других животных, комары обладают выраженным циркадианным ритмом
активности-покоя, сохраняющемся даже в замкнутом помещение при постоянной
темноте и неизменной температуре – в этом случае его период составляет
около 23 часов. В таких условиях активность комара регистрируется по звуку
его полета. Специальные приборы позволяют подсчитывать за каждый час число
минутных интервалов, когда слышится занудный писк. В камере с комарами этот
писк постепенно нарастает и перед рассветом достигает крещендо, переходя в
тонкий протяжный вой, затем смолкает – и вновь усиливается перед закатом Что может быть сигналом времени для комара? Чтобы не запутывать эксперимент, сигнал следует давать один раз в течение определенного периода времени. Петерсон использовал белый свет, по интенсивности соизмеримый с естественным дневным. Комары находились в постоянной темноте, и только один раз за весь эксперимент был дан яркий свет. В разных камерах этот световой 18 импульс приходился на разную фазу циркадианного цикла, и в каждой камере наблюдали, что ритм активности комаров возобновлялся, но с подстроенной фазой. В настоящем опыте ритм после воздействия стимула некоторое время может быть искаженным даже подавленным, но, в конце концов, возвращается к норме. Подстройку фазы можно считать сдвигом в сторону опережения или задержки. Опыт не позволяет сделать выбор в пользу одного из этих двух вариантов итерпритации процесса, происходящего внутри часов. Возможно, этот процесс вовсе не поддается описанию в терминах опережения или задержки. Дабы избежать допущения о ненаблюдаемом, принято говорить о подстройке фазы как о переходе от старой фазы – фазы ритма, на которую пришлось начало стимула, - к новой фазе – фазе сдвинутого ритма, экстраполированной назад, к моменту окончания стимула. (В этом случае, если стимул постепенно ослабевает и сходит на нет, за его конец принимают точку, относящуюся от начала на один период цикла.) Поскольку известно, что циркадианные часы поддаются захватыванию,
следует ожидать, что величена сдвига фазы при подстройке зависит от старой
фазы: ведь стимул, вызывающий один и тот же эффект в любое время, не может
быть полезным сигналом времени. Какова же зависимость новой фазы от старой? Каким образом происходит подстройка фазы? Результат подстройки, не
вдаваясь в сам процесс, можно описать – к счастью, ибо до сих пор никто не
знает механизм ни одних циркадианных часов. Сущность принципа подстройки
состоит в том, что любой сигнал времени (например, 14 часов дневного света)
по-разному действует на ход внутренних часов, в зависимости от того, когда
именно в цикле часов этот сигнал начался. В первом приближении конечный
результат действия сигнал времени можно рассматривать просто как сдвиг
фазы внутренних часов: если бы эффект не был по происшествие периода после
начала сигнала, часы вернулись бы к исходной, «старой» фазе, однако на деле
они оказываются в другой, «новой фазе». В данном случае часы подстройки
ничем не отличаются от невозмущенных (интактных) часов, которые еще период
назад, в момент окончание сигнала, уже находились в новой фазе. Поэтому
конечный результат подстройки для возмущенных часов таков, как будто сигнал
мгновенно сдвинул фазу часов из старого положения в новое. В характере
зависимости новой фазы от старой таится многое. Кривые такой зависимости
были неоднократно описаны в специальной литературе, но под разными
названиями. В реферате будет использоваться сокращенное название термина Трудно переоценить важность получения КПФ для человека. Знание КПФ имеют решающие значение для разработки мер профилактики десинхроноза, возникающего из-за «перепада времени» – после трансмеридианных перелетов, при сменной работе, а также, возможно, при периодической серьезной депрессии, бессоннице и слабости в дневное время. Регулярное пребывание на дневном свету в строго определенное время суток может порой стать щадящей заменой кофеина, снотворных таблеток и антипрессантов. В настоящее время проводятся широко масштабные эксперименты по изменению КПФ человека. Они должны открыть возможности повышения эффективности захватывания циркадианных ритмов человека ежедневным циклом света-темноты. Если сигнал времени (дневной свет) повторяется регулярно, всякий раз, подстраивая часы в соответствии с КПФ, и если к тому же сама КПФ все время остается неизменной, то последствия (результирующую фазу) можно предсказать с математической точностью. Результаты захватывания хорошо объяснимы и вполне согласуются с данными экспериментов. Регулярное периодическое повторения воздействия одним и тем же стимулом может привести к вечному хаотическому блужданию фазы; либо к стабильному захватыванию, кода всякий раз к началу 19 воздействия часы приходят в одну и туже фазу: либо к ситуации, когда к началу сигнала часы приходят то в одну то в другую фазу – через раз: либо тоже самое, но с повторением каждые 4 или 5 периодов и т. д. Все зависит от соотношения собственного периода часов и периода стимуляции, а также, разумеется, от силы и характера стимула и от устройства часов. Для таких часов, которые сразу после воздействия стимула возвращаются к своему циклу (лишь со сдвигом фазы), чтобы предсказать результат, достаточно знать КПФ. Какие формы может принимать КПФ? Начнем с буквальной модели часов, к
часовой стрелке механических часов подвешен груз, который тянет стрелку
вниз, а за ней изменяет скорость хода и весь механизм часов. Представьте
себе, что циферблат часов рассчитан на 24часа, а не на 12, как обычно. Циркадианные часы похожи на механические в трех отношениях: их период после возмущения быстро возвращается к норме, соответствующим образом подобранный стимул может заставить их отклониться от диагональной линии « новая фаза «, и величина этого отклонения плавно зависит от времени воздействия. Однако циркадианные часы фундаментально отличаются от модели: их КПФ
не всегда является простым изгибом диагонали. Это свойство циркадианных
часов было открыто совсем недавно, и из него вытекают удивительные
следствия. Их КПФ легче представить в виде '' бублика'' или тора. Теперь рассмотрим ситуацию, когда фазы оказывают несколько большее
воздействие чуть более сильный стимул – КПФ изменится ненамного. В придельном случае этого нового типа подстройки фазы достаточно
сильный стимул независимого от времени воздействия возвращает систему
всякий раз в одно и тоже состояние: новая фаза постоянна и не зависит от
старой. Такой тип подстройки, представленный КПФ, которая вовсе не делает
витков во круг тора, называется подстройкой типа 0, или четной подстройкой,
потому что кольцо КПФ образует нуль (четное число) витков. Иногда его
называют сильной подстройкой, поскольку он с необходимостью предполагает
опережение и (или) задержки фазы, превышавшие по величине половину цикла. Вопросы о топологии КПФ впервые были поставлены (и решены) менее 20 лет назад. Как это часто бывает в науке, появление теории позволило признать, наконец, явление, которое давно уже 20 было описано, но как-то все не укладывалось в головах ученых, пока для него не были построены концептуальные рамки. Как и многие другие новые понятия в науке, четная подстройка фазы не воспринималась в течение десятилетия, несмотря на опубликование экспериментальных данных. Первые сведения о четной подстройке фазы были получены на одноклеточной свободноплавающей водоросли – жгутиконосце Gonyaulax. Она бурого цвета от хлорофилла и сопутствующих пигментов, которые очень эффективно используют в течение дня солнечный свет. Ночью Gonyaulax занята совсем другим делом: размножается путем деления клетки пополам. По ночам она еще светится тусклым еле заметным голубым светом – до тех пор, пока клетки не подвергнутся механическому возбуждению. Если проплывающая мимо рыбка заденет клетки, они тут же ярко вспыхнут, и мы увидим тянущийся за рыбой мерцающий шлейф биолюминесценции. В лабораторных условиях, без всяких рыб, фотоумножитель показывает, что клетки все равно спонтанно светятся, причем особенно ярко, – когда по их внутренним часам ночь (при изоляции от обычного цикла света-темноты пик свечения наблюдается каждые 23 часа). В эксперименте большое число одинаковых пробирок с водорослями содержались в условиях изоляции от времени. На каждую пробирку действовали импульсом яркого света – в разное время, при различных старых фазах циркадианного цикла клеток. Для разных пробирок, (по мере возрастания старой фазы) импульс приходит спустя все большее время после максимума свечения. Подстройка часов во время светового импульса происходит в каждой пробирке в зависимости от величины старой фазы. Последующие максимумы свечения наступают соответственно с опережением или опозданием. При старой фазе около 6 часов реакция клетки резко меняет знак: от значительной задержки фазы к еще большему опережению. Так проявляется критический момент в механизме циркадианной ритмичности. Или, быть может, это лишь видимость критического момента. В самом деле, данные о задержках и опережениях фазы правильнее было бы назвать одним из вариантов объяснения данных. Рассмотрим другой вариант. Пики свечения можно соединить и непрерывной линией, изгибающейся вдоль диагонали, параллельной полосе световых импульсов, и другой кривой, лежащей на 23 часа ниже, и еще ниже и так далее – нет никакого разрыва. Непрерывные кривые изгибаются вдоль горизонтали, а не диагонали, и повторяются одна под другой с интервалом 23 часа. Новая фаза в момент окончания стимула (или спустя 23, 46, или 69 часов после этого) есть время, истекшее с момента предыдущего пика свечения. И здесь тоже нет разрыва. С таким же парадоксом мы сталкивались при пересечении линии смены дат. Дело в том, что ни один из двух графиков не доказывает ни разрывность, ни непрерывность: на самом деле мы располагаем лишь горсткой эмпирических точек, и любая кривая, проведенная через них, есть не более чем линия интерпретации наблюдателя. Выбор непрерывной или разрывной кривой - дело вкуса. Тем не менее, с годами накапливалось все больше данных, собранных в
разных лабораториях на разных организмах, но при одинаковой схеме
эксперимента. Все труднее стало рисовать правдоподобную разрывную кривую. 21 Если этот прыжок фазы, не содержащий ни одной экспериментальной точки,
оказывается артефактом, то его альтернатива – непрерывная кривая – приводит
к еще более странному следствию. Для плавной подстройки фазы характерна КПФ, однозначная про любых значениях старой фазы: на поверхности тора эта кривая всегда имеет вид замкнутого кольца. У некоторых организмов она делает петлю, проходя через отверстие тора один раз (нечетная подстройка), у других она вообще не делает витков (четная подстройка). Может ли это быть основанием для классификации механизмов часов или механизмов действия стимулов? Но, с другой стороны, каждый организм должен подстраивать фазу по нечетному типу, по крайне мере при очень слабых, очень коротко временных стимулах. В этом случае новая фаза = старая фаза (диагональная КПФ – прототип любой нечетной подстройки). Вряд ли нужно доказывать, что этот вывод из мысленного эксперимента прекрасно подтверждает на деле для любого организма. Справедливо ли обратное утверждение: можно ли организовать с исходно нечетным типом реакции заставить подстраиваться по четному типу, усилив стимул? Увеличив время действия света на комара с 7,5 минуты до 2 часов, мы получим кривую, которая меняет свою топологию с нечетной на четную. Шестикратное усилие стимула вызывает разительную перемену, однако эффект можно получить и меньшим изменением, переходя от самого продолжительного стимула, который все же еще вызывает нечетную подстройку, к ближайшему, более длительному – кратчайшему, способному вызвать четную реакцию. Так одним ударом мы опровергли гипотезу о том, что топологически разные типы подстройки обусловлены различиями в механизме часов или в характере воздействия. Оказалось, что разнообразие типов подстройки свидетельствуют не о многообразии механизмов, как могло показаться, но, напротив, доказывает универсальность, стереотипность поведения! Но тогда перед нами новая загадка. Если подстраивать любые циркадианные часы, начиная с любой старой фазы, то зависимость новой фазы от величены стимула будет плавной. Однако невозможность плавно перейти от нечетного к четному типу подстройки, от закрученного кольца к незакрученному. Как можно изогнуть, деформировать кольцо, навивающееся на тор и проникающее сквозь его отверстие, чтобы это кольцо улеглось на одной стороне тора? Без ножниц никак этого не сделать. То же в природе. Например в случае с комаром, если величена стимула превышает некий критический порог, то КПФ резко меняет форму: прежде она проходит через все значение новой фазы, а теперь избегает целый ряд значений. Стало быть, существует какая-то «уязвимая» старая фаза, в которой при переходе стимулов критического порога новая фаза совершает прыжок. Под прыжком подразумевается резкое, скачкообразное изменение, разрыв. 22 подстройка старого ритма. В экспериментах двадцати летней давности на это уникальное «нечто» не было и намека. Лишь теперь тщательно спланировав эксперименты, в которых четко регистрируются смещение фазы, плавно зависящие от внешних условий, доказывают существование чего-то необычного, никогда прежде не виданного. Удивительная вещь: топология дает совет, как обнаружить точку сингулярности путем лабораторного опыта. Эта «схема ловушки сингулярности» позволила осуществить первые эксперименты с целью выявления сингулярности биологических часов. На сегодня подавляющие большинство математических моделей биологических часов остаются непроверенными или непроверяемыми. К счастью, во многих вопросах без них можно спокойно обойтись: основные биологические свойства живых часов нетрудно получить путем логических рассуждений о подстройке фазы. Более того, эти рассуждения можно подкрепить простыми и наглядным фаз в виде цветных диаграмм. Такие диаграммы позволяют увидеть непосредственно, увидеть поразительные следствия, вытекающие из открытия подстройки четного типа, не прибегая к головоломным топологическим доказательствам. Начнем с самого простого – с крайних, идеализированных случаев нечетной и четной подстройки. Пусть при нечетной новая фаза равна старой, а при нечетной новая фаза остается неизменной независимо от старой. Для удобства примем именно эту фазу за нулевую. Тогда при нулевой старой фазе любой стимул – и довольно сильный, и пренебрежимо слабый – оставит новую фазу тоже нулевой. Предположим, что она останется нулевой и при всех промежуточных величинах стимула. Что можно сказать о стимулах некой промежуточной величены, действующие при других значениях старой фазы? По-видимому, разумно предполагать, что малые изменения величены стимула и времени его воздействия приведут к столь же малым изменениям новой фазы. Без этого постулата непрерывности вообще ничего сказать нельзя: поскольку стимул невозможно повторить с абсолютной точностью, ни один полученный результат ничего не дает для предсказанья исхода нового эксперимента. При постоянности воздействия любого стимула и величены старой фазы в некоторой точке, при определенном сочетание величены стимула и значения старой фазы, получается неопределенность, хотя близлежащие точки вокруг нее представляют все разнообразие цветов радуги. Эта странная точка – точка сингулярности. Эту точку можно сравнить с тем как временные зоны сливаются в географический плюс – точку, лежащую вне времени, а изохроны приливов на карте Мирового океана сливаются в амфидромные точки. Подстройка биологических часов означает перемещение их в другую временную зону. Здесь, как в случае с изохронами приливов, складывается замкнутый путь, вдоль которого каждая временная зона (фаза) встречается только однажды, в строгой последовательности. Значит, внутри этого контура непременно должна существовать точка в неопределенной зоне. В топологии есть теорема об этой неустранимой, неизбежной неопределенности фазы, так называемая теорема о нестягиваемости. В ней рассматривается попытка стянуть все точки многообразия к его границам так, что бы они приняли окраску ближайших пограничных точек, при этом, однако, не нарушая связности множества (не делая в нем разрывов и не выкладывая отдельных точек), когда соседние цвета плавно переходят друг в друга. В теореме доказывается, что это не возможно: хотя бы одна точка должна оставаться неопределенной. Стало быть, должно существовать уникальное сочетание величены стимула и времени воздействия, после которого не произойдет закономерной подстройки фазы. Что же случиться? Измениться вид ритма? Наступит аритмия? Полная неподвижность? Ответ на этот вопрос может дать только эксперимент. Что же представляют собой данные биоритмологического эксперимента? Это не сами значения фаз, а времена событий, по которым нам предстоит вычислить фазы. Как на деле измеряется старая 23
фаза? Это доля цикла, прошедшая с его начала (обычно за начало цикла
принимают какое-либо наблюдаемое дискретное событие вроде момента
пробуждения) до воздействия стимула. Длительность цикла равна собственному
периоду биологического ритма, скажем, 24 часам или около того. Чтобы
измерить новую фазу, отмечают время с момента приложения стимула. Новая
фаза – доля периода, истекшая от регистра следующего события от момента,
наступившего через 1 период после стимула. Практически обычно новую фазу
измеряют не через один период после стимула (когда организм, быть может,
еще не оправился после возмущения, вызванного стимулом), а спустя
нескольких периодов, когда колебания вернуться к норме, «устаканяться». Если у нас есть выбор часов и набор стимулов, то результат каждого воздействия можно представить отдельно вдоль оси старых фаз. В этом случае график будет иметь вид двумерной решетки, повторяющийся периодически в обоих направлениях. По горизонтали период отражает ритмичность циркадианных часов до воздействия стимулов: неважно, действует ли стимул сейчас или спустя ровно один цикл, когда часы снова будут в той же фазе, - результат должен быть одинаковым. По вертикали период отражает ритмичность циркадианных часов после воздействия: по завершении подстройки часы продолжают идти по-прежнему (за исключением, быть может, восстановительного интервала). Соединив экспериментальные точки на решетке, мы получим обычные кривые подстройки фазы (КПФ) для стимула определенной величены. Однако при увеличении стимула нечетная КПФ постепенно все больше изгибается, но все еще лежит вдоль диагонали. По достижении некоторой величины стимула кривая подстройки становится четной – она уже изгибается вдоль горизонтали. Каким образом осуществляется данный переход? Изображения двумерной решетки можно выстроить в ряд бок обок вдоль горизонтали, слой за слоем в порядке увеличения стимула. Новая фаза повторяется по вертикали, старая фаза повторяется слева направо, а сила или длительность стимула возрастает в «глубину». Каждый слой в этой пачке состоит из 2*2 ячеек, как паркетный пол, и такую фигуру вполне естественно назвать кристаллом времени. В кристалле времени кривые подстройки фазы сливаются и образуют
волнообразную поверхность, напоминающую спираль. Таким образом,
оказывается, что поверхность подстройки фазы напоминает серпантин или
винтовую лестницу. Внутри должно находится нечто странное: либо провал,
либо ось винтовой поверхности, область с бесконечной крутизной. Способа
залатать отверстие куском поверхности, просто имеющем достаточную крутизну
просто не существует: вертикальная ось (настоящий разрыв) – неизбежность. Предположение о том, что млекопитающим присущи внутренние часы, которые ежедневно синхронизируются суточным циклом, возникло из экспериментов Мейнарда Джонсона в Гарварде 24
незадолго до второй мировой войны, но о нем скоро забыли. Лишь в 50-х годах В экспериментах на одноклеточной водоросли Conyaulax было получено одно из первых, хотя до сих пор непризнанных, свидетельств четной подстройки. Одновременно или несколько раньше аналогичные данные были получены на обыкновенной плодовой мушке Drosophila pseudoobscura в лабораториях в Принстоне. С начала ХХ века плодовые мушки стали самым подробно изучаемым
многоклеточным организмом на планете. В настоящее время составлен огромный
каталог ее мутантов – незаменимый инструмент в руках исследователя. Такой
инструмент совершенно необходим: всякий критический эксперимент нуждается в
тщательном контроле, без которого эксперимент вряд ли будет однозначным. До
тех пор пока биолог-экспериментатор не поставит вопрос абсолютно точно, Зачатие плодовой мушки происходит обычным путем. Оплодотворенное яйцо развивается, и из него вылупляется крошечная личинка. Затем в жизненном цикле всякой мухи наступает стадия, когда личинка должна превратиться в половозрелую крылатую особь. На время этого превращения насекомое укрывается в толстой коричневой капсуле – это закованное в панцирь существо называется куколкой. Внутри оболочки каждой куколки почти все личиночные органы растворяются и образуют жидкую массу, из которой заново строится тело взрослой особи. Только мозг остается неизменным, и в нем продолжают тикать циркадианные часы. Наконец, приходит срок, когда самка должна выбраться на волю, опробовать свои крылья и подыскать себе партнера. Самка раздувает на голове маленький пузырек и выталкивает «крышку-люк» – выход из оболочки. Через несколько минут она на свободе. В естественных условиях, а также в лаборатории при чередовании 12 часов света 12 часов темноты это событие – вылупление взрослой особи - происходит в первые светлые часы. Момент вылупления задают циркадианные часы. Куколка с каждым днем все более созревает, готовясь к моменту, когда она выйдет на свет и вступит в конкурентную борьбу. Эта готовность, нарастающая изо дня в день, зависит также еще одного фактора – времени суток предпочтительного для вылупления. Мушке нет смысла появляться, когда день уже кончился или подставлять свое нежное влажное тельце зною дня. Целесообразнее всего появиться рано поутру. Это можно обеспечить внутренний ритм – повышая или понижая порог готовности. Если изменения порога не велики, мушки все равно будут вылупляться в любое время циркадианного цикла, но в одно время с большей вероятностью, чем в другое. Если же порог изменяется в широких пределах, если в некоторые часы он поднимается быстрее, чем нарастает готовность, то в эти часы не появится ни одна мушка. В зависимости от возраста зреющей куколки она присоединяется к той или другой кучки вылупляющихся, но никогда не начнет вылупление в промежуточные часы. Появления мушек будут распределены во времени дискретными пачками – это распределение отражает работу часов, задающих ритм изменения порога. 25 У эмбрионов плодовой мушки циркадианные часы не включаются сами собой
автоматически. Если с момента зачатия мушки находятся в постоянной темноте,
момент вылупления определяется возрастом и совершенно не зависит от времени
суток. Если популяция состоит из особей разного возраста (в пределах
нескольких дней), то моменты отдельных вылуплений образуют плавное
распределение, охватывающее несколько дней, без признаков ежедневного
сгущения и разрежения. Но если на этапе раннего развития будет подан какой-
либо сигнал времени, то через несколько дней вылупление будет происходить При таких условиях содержания состояние внутренних часов чутко
реагирует на малейшие вариации температуры, на самую незначительную
засветку. Если личинки содержать при постоянном освещении, то оно остановит
ход часов, даже если они были пущены. Оказывается, часы дрозофилы не
замечают красного и желтого, – но голубой, даже такой слабый, как лунный
свет, сразу подавляет циркадианные колебания. В лабораториях для этого
используют яркие лампы дневного света. Если куколок, выращенных на свету,
перенести в красную или желтую темноту, все часы разом, одновременно
возобновят ход и будут тикать синхронно. Примерно через 17 часов наступит
пик массового вылупления, потом еще через 24 и так далее, пока не созреют
самые молодые куколки. Однако даже кратковременная вспышка света,
прорезающая вечную ночь, способна сдвинуть все последующие пики вылупления В экспериментах с дрозофилой подстройку фазы вызывают на ранней стадии развития у куколок. Специальный аппарат, способный на протяжении нескольких недель регистрировать появление мушек, позволяет наблюдать моменты. Когда циркадианные часы оказываются в нулевой фазе (вылупление), а следовательно, вычислять фазу в любое время, поскольку период часов составляет 24 часа. Таким образом, можно установить, на сколько, например, сдвинулась фаза часов под влиянием светового импульса, приложенного за несколько дней до момента вылупления. При первых поисках сигуляции биологических часов в экспериментах,
организованных по схеме «ловушки сингулярности», было использовано более Что это за поверхность, на которой лежат экспериментальные точки? 26
рефрактерности - нечувствительности – не является логической
необходимостью, и в других случаях ее может не быть. Впрочем, постоянство
новой фазы на боковых стенках, стенках кристалла времени не играет роли в
наших рассуждениях.) Далее, при максимальной величине стимула на задней
стенке кристалла, двигаясь справа налево на один цикл старой фазы, видно,
что точки поднимаются и опускаются вокруг горизонтали. Волнистая
поверхность четный тип подстройки. Здесь, на один цикл раньше той точки, от
которой мы свернули вглубь, мы окажемся в той же самой нечувствительной
фазе. Теперь будем уменьшать величину стимула при постоянной старой фазе:
на этом пути возвращения из глубинны кристалла новая фаза, остается не
изменой. Так мы вернулись в точку, лежащую на один цикл выше точки старта. Это весьма примечательно. Обходя единичную ячейку, мы наблюдали только
результат экспериментов, в которых воздействие не дает никакого эффекта,
плюс серия опытов с такими сильными стимулами, что результат подстройки
ритма всякий раз оказывался практически одинаковым. Трудно поверить, что
столь поверхностное исследование поведения часов, столь бледные
результаты могут таить в себе семена чего-то необычного. Однако
биологические часы, как заметил однажды Г. К. Честертон по другому поводу, Прежде всего, что это за стимул? Если яркость голубого света такова,
что при нем едва можно читать, то длительность экспозиции – около минуты. Однако в XX веке подобные лабораторные организмы порой попадают в необычные условия, невозможные в природе. Их циркадианные часы, изолированные е от внешних сигналов времени, предаются свободному бегу – при этом они доступны и открыты действию исследуемых стимулов и наше любопытному взору. Что будет с чашечкой «куколок» после воздействия сингулярного стимула? Оказывается, последующее циркадианное поведение становится неопределенным вполне естественно, как и предсказывает винтовая поверхность подстройки фазы. Однако вероятны взаимно исключающих способов реализации такой неопределенности. Может быть, куколки погибнут, не дожив до их вылупления? Или они по прежнему будут вылупляться в виде суточных пиков, но положение этих пиков во времени будут не предсказуемым? На самом деле ни то ни другое. Просто вылупление происходит непрерывно. Начиная с момента сингулярного стимула до тех пор, пока какой-либо другой сигнал не даст покоящимся куколкам точку для отсечение времени, они остаются как бы вне времени, будто ждут толчка, который бы подтолкнул, запустил их стоящие часы. И в случае, когда часы ни разу не получали стимула с самого момента зачатия, и в случае, если такой стимул ранее обеспечил ритмичность, а затем другой, сингулярный, вновь приостановил ее, - картина одна: у каждой дрозофилы циркадианные часы не идут. В таком состояние отдельные особи выходят из метаморфозы в любой час суток, совершенно не ритмично. 27 Более того, если за тем восстановится циркадианный режим вылупление вторым
импульсом света, то новая фаза совсем не будет зависеть от времени подачи
этого второго стимула: всякий раз будет одна и та же фаза, как будто
между двумя стимулами не прошло никакого времени, то есть если бы первый
стимул по величине равнялся сумме двух. Получив первую дозу, циркадианная
система куколке сразу замирает и далее продолжает «скучать» в ожидание
новое порции света. СПИСОК ЛИТЕРАТУРЫ 1. Дильман В. М. Большие биологические часы. Введение в интегральную медицину. – М.: Знание,1986. 1994. 2 ПЛАН (25-часовой период). в) Свободный ход и захватывание биологических часов. г) Автоматическая установка внутреннего будильника. Ярославский педагогический университет имени К. Д. Ушинского Выполнили студентки II курса ФИЯ группы 421 Казакова Елена Сергеевна и Лундина Екатерина Павловна Ярославль,1998.
Страницы: 1, 2 |
|
© 2000 |
|