РУБРИКИ |
Биоритмы человека |
РЕКЛАМА |
|
Биоритмы человекаБиоритмы человека3 Изучением ритмов активности и пассивности, протекающих в нашем организме, занимается особая наука – биоритмология. Согласно этой науке, большинство процессов, происходящих в организме, синхронизированы с периодическими солнечно-лунно-земными, а также космическими влияниями. И это неудивительно, ведь любая живая система, в том числе и человек, находится в состоянии обмена информацией, энергией и веществом с окружающей средой. Если этот обмен (на любом уровне – информационном, энергетическом, материальном) нарушается, то это отрицательно сказывается на развитии и жизнедеятельности организма. ИЕРАРХИЯ УПРАВЛЕНИЯ В ОРГАНИЗМЕ Тело человека состоит из клеток, соединяющих их тканей и систем: все это в целом представляет собой единую сверхсистему организма. Мириады клеточных элементов не смогли бы работать как единое целое, если бы в организме не существовал сложный механизм регуляции. Особую роль в регуляции играет нервная система и система эндокринных желез. Но в сложном механизме регуляции есть несколько уровней, первым из которых является клеточный. В каждой клетке тела заключена генетическая информация, достаточная для того, чтобы был воспроизведен весь организм. Эта информация записана в структуре дезоксирибонуклеиновой кислоты Клетка имеет свои внитереклеточные регуляторы, причем их структура
одинакова и у микробов, и в клетках высших организмов. Одна группа этих
регуляторов построена из продуктов обмена глюкозы (циклически
нуклеотиды), главным образом представителем которых является циклический
аденозимонофосфат (или цАМФ); вторая – из продуктов обмена жирных кислот Оболочка клетки - мембрана играет большую роль она является своего рода антенной или рецептаром, настроенным на восприятие одних сигналов и нечувствительных к другим. В соответствие с сигналами, поступающими с рецептаров мембраны, клетка меняет свою активность, скорость процесса деления и т.д. Так благодаря мембране клетка отвечает только на нужный ей сигнал или согласовывает первый уровень регуляции - внутриклеточный – с требованиями, предъявляемыми клетке организмом. Второй уровень регуляции – надклеточный – создается гормонами. Неслучайно высокоспециализированных живых системах, включая человека, функционирует особая эндокринная железа обедняющая деятельность ряда эндокринных желез – пульт управления и координации. У человека – гипофиз расположенный, в хорошо защищенной косными образованьями «турецком седле». Каждой периферической эндокринной железе соответствует в гипофизе специальный гормон – регулятор. Это создает ряд отдельных систем, между которыми осуществляется взаимодействие. 4 Гипофиз представляет, таким образом, третий уровень регуляции у
высших организмов. Но гипофиз
может получать сигналы, оповещающие о том, что происходит в теле, но он
не имеет прямой связи с внешней средой. Между тем для того, чтобы факторы
внешней среды постоянно не нарушали жизнедеятельность организма, должно
осуществляется приспособление тела к меняющимся внешним условиям. Гипоталамус выполняет множество функций. Во-первых, связь нервной системой, так как гипоталамус это типичная нервная ткань состоящая из нейронов, связанная со всеми отделами нервной системы. Во- вторых, гипоталамус регулирует гипофиз, так как является однокринной железой. Таким образом, с помощью гипоталамуса осуществляется взаимосвязь
между внешним миром и внутренней средой. Благодаря своему необычному
устройству гипоталамус преобразовывает быстродействующие сигналы из нервной
системы, в медленнотекущие, специализированные реакции эндокринной системы. Пятый уровень регуляции – центральная нервная система, включающая
и кору головного мозга. Нервная систем может вмешаться в течение автоматического осуществления некоторых функций, если возникнет необходимость приспособить деятельность организма к требованиям, предъявляемым внешней средой, но не контролирует эту деятельность без необходимости. Поэтому гипоталамус во многом функционирует автоматически, без надзора со стороны центральной нервной системы, повинуясь собственному ритму и сигналам, поступающим из тела. Гипоталамус регулирует также функции, как репродукция, рост тела В гипоталамусе имеются структуры, связанные с регуляцией удовольствия
или наслаждения. Многие из этих центров функционируют взаимосвязано,
например, отделы гипоталамуса, контролирующие аппетит, эмоции и
энергетический обмен. В гипоталамусе имеются специальные структуры, или
центры, с которыми связанна регуляция сердечной деятельности , тонуса
сосудов , иммунитета , водного и солевого балансов, функции желудочно-
кишечного тракта, мочеотделения и т.д. Более того, в гипоталамусе есть
отделы, имеющие прямое отношение к вегетативной нервной системе в целом. 5 которая не требовала бы участия гипоталамуса. Но в целом все его функции можно разделить на 2 группы. Во-первых, гипоталамус приспосабливает деятельность организмов к условиям среды, защищает организм от повреждающих влияний внешней среды, т. е. Противодействует факторам, могущим привести к смерти организма. Во-вторых, гипоталамус – это высший орган постоянства внутренней
среды. Вместе с регулируемыми органами гипоталамус работает как
своеобразная замкнутая система, обеспечивая постоянство внутренней среды в
соответствии с информацией, получаемой из внутреннего мира организма. Стабильность не следует понимать как нечто неподвижное застывшее. Организм в этих случаях как бы не интересуется деталями, тем, что составляет особенность каждого из стрессоров, а реагирует в целом на повреждающий фактор. Стрессорная реакция выгодна для организма тем, что она стереотипна: организм имеет возможность сразу преступить к защите, использовав для этого одну закрепленную реакцию в ответ на все многообразие чрезвычайных раздражителей. Реакция адаптации, или стресса, включается всегда автоматически, 6 без участия сознания, а лишь под влиянием безусловных рефлексов – боли или изменения состава внутренней среды Искусственное нарушение системы адаптации влечет за собой серьезные
последствия. Но и в естественных условиях организм нередко дорого платит за
свою способность защищаться путем приспособления. Большая группа болезней
адаптации возникает именно в условиях стресса. Именно эмоция является сильнейшим мобилизующим фактором. Регуляция эмоций в значительной мере сосредоточена в гипосталамусе. Он посылает сигналы вегетативной нервной системе. Сигнал быстро
поступает в надпочечники, и они выбрасывают свой гормон – адреналин. Выброс
адреналина в кровь способствует расширению сосудов головного мозга сердца,
легких и, напротив, сужению сосудов кожи и внутренних органов, вследствие
чего происходит перераспределение объема крови, выгодное для борьбы. Адреналин резко повышает способность сердца усваивать кислород. Для
человека эта защитная мера может стать крайне опасной. Слишком интенсивное
поглощение кислорода из крови при отрицательных эмоциях временно может
создать кислородное голодание, что иногда приводит к недостаточности в
работе сердца, и даже к инфаркту миокарда. Но при нормальном течении
стрессорной реакции адреналин, быстро разрушаясь, успевает дать стимул для
антистессорной защиты. Кортикотропин (гормон гипофиза) ведает деятельностью коры надпочечников и усиливает антистрессорную защиту. Кора надпочечников всегда включается, когда необходима защита. Сначала мозговым слоем коры надпочечников вырабатывается адреналин. Затем под влиянием кортикотропина выделяется группа гормонов, главным из которых является кортизол. Кортизол обладает сходными с адреналином свойствами, но время действия кортизола значительно больше. Кортизол препятствует усвоению глюкозы в мышечной ткани и активизирует процесс превращения белка в глюкозу. Однако при выделении большого количества кортизола вследствие очень сильного эмоционального воздействия у человека может даже развиться временный сахарный диабет из-за неспособности быстро усваивать вновь образуемый сахар. Если у того или иного индивидуума имеются к тому же определенные предпосылки, то длительный стресс может привести и к стойкому диабету. Белки являются структурными и функциональными элементами клеток. 7 порождена использованием лимфоцитов для обеспечения энергетических потребностей в период стресса. Но в разгар стресса все возможные последствия расчет не принимаются,
напротив, обеспечение энергией – главное. Еще более суживается просвет
сосудов внутренних органов, усиливается работа сердца, повышается давление
крови в системе, ускоряется ток крови. Поэтому длительные отрицательные
эмоции опасны для гипертоника. Стрессы способствуют возникновению
гипертонической болезни. Но если повреждение тканей велико, то часть белков из травмированной
ткани, попадая в общий кроваток, достигает иммунной системы и, действуя на
нее подобно «чужим» белкам, производит иммунизацию организма против
собственных тканей. Антитела проникая в ткани, могут вызвать повреждение. Кортизол, кортикотропин и пролактин тормозит активность полового центра и центра аппетита гипоталамуса, что целесообразно во время борьбы. После окончания борьбы с ее высоким расходом энергии начинается фаза восстановления. Расширяются кожные сосуды, увеличивается потоотделение. Это охраняет от чрезмерного перегревания, возможного вследствие интенсивного сгорания жирных кислот и глюкозы в ходе борьбы. Избыток жирных кислот служит в период восстановления сырьем для синтеза холестерина, который необходим для ремонта поврежденных тканей с помощью деления клеток (каркас мембраны содержит много холестерина). Все эти изменения происходят при каждом эмоциональном стрессе. Поэтому частые и ли длительные волнения, создавая ложную ситуацию защиты, формируют типичную болезнь старения – атеросклероз. Затем срабатывает особый антидиуретический гормон – вазопрессин, – который задерживает выделение воды почками и помогает восстановлению потерянной крови. Усиливается функция щитовидной железы. Затухает выделение кортизола, что способствует восстановлению синтеза белка. Так последовательно, этап за этапом регулируется механизм защиты и восстановление потерь. Нарушение равновесия при стрессе возможно благодаря повышению гипоталамического порога. При его отсутствии стрессорная приспособительная реакция была бы кратковременной. Высшие организмы наделены высокой способностью защиты от стрессоров, что обусловлено появлением в процессе эволюции сложных гомеостатических систем. Создать необходимые отклонения для защиты возможно только за счет нарушения гомеостаза. Тем самым, защищаясь от внешних причин смерти, организм делает это ценой болезней адаптации. После эмоционального напряжения наступает апатия – признак истощения запасов нейромедиаторов, необходимости покоя для восстановления. Стрессовая ситуация забывается организмом, если во время стресса не произошло серьезных нарушений в организме. 8 Ввиду того, что каждая клетка представляет собой самостоятельную функциональную единицу и что активность действия отдельных клеток, логично начать рассмотрение биоритмов с клеточного уровня. Содержимым клетки является протоплазма, в которой постоянно идут два противоположных процесса: анаболизма и катаболизма. Анаболизм – это биологический процесс, при котором простые вещества соединяются между собой, что приводит к построению новой протоплазмы, росту и накоплению энергии. Катаболизм – это противоположный анаболизму процесс расщепление сложных веществ на более простые, при этом ранее накопленная энергия освобождается и производится внешняя или внутренняя работа. Таким образом, анаболические процессы ведут к наращиванию
протоплазмы, а катаболические, наоборот, – к уменьшению и ее
деструктуризации. Но эти два процесса, сочетаясь, взаимно усиливают друг
друга. Так, процессы распада клеточных структур стимулируют их последующий синтез, а чем больше сложных структур накапливается в протоплазме, тем
активнее может идти последующее расщепление с высвобождением большого
количества энергии. В этом случае наблюдается максимальная
жизнедеятельность клетки, а, следовательно, всего организма в целом. Таким образом, главным водителем и синхронизатором внутриклеточных биоритмов является смена дня и ночи. Угнетают биоритм клеток несколько факторов. 9 Каждый организм, существующий на Земле, является своеобразными часами. Физиологическое время, так же как и местное время на вращающейся планете, имеет циклический характер. Для любых часов, внешних или внутренних, подстройка (сдвиг) на один или нескольких полных циклов не дает заметного эффекта. Однако сдвиг биологических часов на часть цикла приводит к ощутимым физиологическим последствиям, как показывает феномен перепада времени при трансмеридианных перелетах. Такое смещение внутри цикла называется сдвигом фазы, то есть положения повторяющегося процесса в его собственном цикле (например, фазы Луны). Помимо эффекта перепада времени, открытого лишь недавно в связи с трнсмередианными перелетами, существует постоянная необходимость подстраивать фазу биологических часов из-за небольшого расхождения между собственным периодом этих часов и периодом вращения Земли. Несоответствие этих периодов на час или около того обычно для многих биологических видов, имеющих достаточно точные внутренние часы. У человека, например, период часов близок к 24 часам. Отклонение на час составляет всего 4% суток, – очевидно, это вполне допустим о. Из-за близости периода к земным суткам биологические часы этого класса были названы циркадианными (от лат. Circa – около, приблизительно и dies – день, сутки). Час по сравнению с сутками кажется незначительным, но эффект разности
периодов быстро накапливается. Но для живых организмов важна синхронность
и, чтобы ее поддерживать, нужно постоянно вносить поправку. Если фазу
убегающих или отстающих часов нельзя было сдвигать, то, они должны были все
время двигаться (для компенсации одного часа на экваторе нужна скорость 40
миль в час). Если бы часы были абсолютно точными и фаза неуправляемой, то
их владелец был бы навсегда прикован к временной зоне своего рождения. Не имея возможности подстраивать фазу своих 25-часовых внутренних часов, – а эту способность утратили отдельные, в том числе многие слепые, - их владельцы, оставаясь на месте, будут смещаться во времени и утрачивать согласованность с окружающим 24-часовым миром. Если расхождение составляет ровно час в сутки, то согласованность будет восстанавливаться периодически, каждые 24 дня. Если улучшить соответствие собственного периода часов внешнему периоду, это не снимет проблемы, а лишь удлинит процесс утраты и приобретения синхронности. Следовательно, для того чтобы поддерживать синхронность наших внутренних часов с вращением Земли требуется нечто большее, чем просто близкое соответствие двух периодов: требуется сигнал, внешний такт, который бы ежедневно подстраивал фазу наших часов к местному времени. Сигнал времени должен быть строго связан с вращением планеты и ежедневно достаточно точно повторяться. Таким сигналом времени для большинства биологических видов является свет. Постоянное освещение с интенсивностью лунного света оказывается достаточным, чтобы остановить ход циркадианных часов у плодовой мушки и у грибов в лаборатории. У млекопитающих часы менее чувствительны, а у человека еще меньше, но и для нас лучший способ узнать время – посмотреть на свет. 10 ВРОЖДЕННЫЕ БИОЛОГИЧЕСКИЕ ЧАСЫ ЧЕЛОВЕКА ( 25 – ЧАСОВОЙ ПЕРИОД ) Что может быть привычнее смены дня и бодрствования, однообразные череды наших дней и ночей? Одновременно с вращением Земли «ткань» нашего сознания совершает обороты, от безотчетных фантазий сонного уединения до коллективных фантазий общественной жизни. Каждый, кто пытался вырваться из этого круговорота, знает, что такой порядок вовсе не навязан жестоко чередованием света и темноты, хотя и уклоняться от него долго не удается. Мерный ход геофизического маятника имеет свое подобие внутри каждого из нас и непросто в виде привычки подчиняться ритмам планеты – внутри нас идут подлинные физиологические часы, составляющие часть нашего наследственного багажа. В обычных условиях ход этих врожденных биологических часов полностью подчиняется грандиозным геофизическим часам, чей моделью они являются. Но все же внутренние часы «тикают» и оказывают свою важную роль в нашей повседневной жизни. Давайте же рассмотрим те редкие ситуации, когда удается расслышать независимое, самостоятельное биение биологических часов. В Баварии был произведен эксперимент в условиях изоляции от времени. В
самом начале месячного эксперимента, поведение испытуемого изучается при
обычном 24-часовом режиме освещения: каждый раз вечер в 23 часа свет
выключался, а утром в 7 включался в соответствие с распорядком, принятым Доверим теперь контроль освещения в изолированном помещение самому испытываемому. Обычно его (или ее) ритм температуры тела и чередование сна – бодрствование в таких условиях сохраняется, но начинается запаздовать ежедневно примерно на час. Сдвиг будет 24 часа каждые 25 внешних дней, то есть каждые 24 внутренних дня. Если газета продолжает поступать к испытуемому «раз в день» - когда он спит, то примерно через 25 внешних дней настанет время, когда сегодняшняя газета придет в лабораторию раньше, чем живущему в изоляции от времени будет передана вчерашняя. Некоторые люди в ходе экспериментов, переключаются на 25 часовой цикл,
показывают удивительные результаты: человек в условиях изоляции от времени
обычно уже через неделю переключаются с 25-часового периода (примерно 11 Врачи предложили ему отказаться от бесплодной борьбы за соблюдением Когда же он вернулся на месяц к обычной жизни, его сон вновь оказался, разбит на куски, несмотря на его героические усилия, применения кофеина и снотворных. Но теперь уже было ясно, что его дневная сонливость оказалась замаскированной продолжением внутреннего 25-часового ритма. Подобным недугом страдает около полвины слепых людей. Биологическим ритмом с периодом 25 часов обладают не только слепые, но и совершенно здоровые, зрячие люди. Хотя естественный ход их внутренних часов ежедневно отстает на час, в норме они согласованны с 24-часовым циклом чередования дня и ночи и им удается «идти в ногу с ним». Тем не менее, многие слепые, да и некоторые зрячие люди лишены этой способности 12 ежедневно на час подстраивать свои внутренние часы, не могут поддерживать синхронность с вращением Земли и ритмом жизни их окружения. У людей с нормальным зрением, живущих в условиях ежедневного чередования света и темноты, такие случаи исключение. Но, когда человек умышленно покидает белый свет, скажем, спускаясь в вечную тишину подземной пещеры или просто затворяясь в комнате без окон, его ритм сна- бодрствования практически всегда возвращается к своему естественному периоду около 25часов. Очевидно, и природа, и общество постоянно торопят нас: чтобы не отстать от 24-часового мира, мы вынуждены спешить, каждый день, опережая себя на час. У человека переход к внутренней системе отсчета времени менее
очевиден, чем у других млекопитающих, быть может, потому, что наша
сознательная жизнь слабее связанна с физиологическими процессами. Порой
достаточно небольшого толчка, чтобы вывести ритм сна или какого-либо
другого отдельного показателя из-под влияния мощной волны биологических
приливов и отливов. Тем не мение наши внутренние часы надежно определяют
общую картину распределения сна и гарантируют, что примерно раз за один
оборот планеты вокруг оси мы будем спать (или отчаянно хотеть спать). Будем исходить из того, что у человека есть цикадные часы. Каково бы
ни был их неизвестный период, часы продолжают тикать, неустанно отсчитывая
время, несмотря на то, что их владелец подвергаемый охлаждению или
перегреву, переходит из темноты к свету, от возбуждения к унынию, получает
хорошие или плохие известия, когда ему вздумается. Если эти циркадианные
часы в какой-то мере определяют время его непроизвольного пробуждения, то
длительность сна должна закономерно зависеть от той точки внутреннего цикла Прежде всего, нам надо приписать значение фазы каждому часу, когда сон
начинался или кончался на протяжении всех 127 суток «изоляции от времени». Если мы правильно выведем периодичность часов, то можно предсказать время засыпания и время пробуждения. Эта предсказуемость обнаруживает ритмическую организацию, скрытую в узоре несинхронезированных циклов сна- бодрствования Можно было бы ожидать зависимость продолжительности засыпания, если бы мы, например, чаще всего просыпались в определенной фазе циркадианного цикла или, уснув позже обычного, просыпались соответственно позже и, наоборот, уснув раньше – просыпались раньше. На самом деле, однако, ни одна из этих зависимостей не следует из данных эксперимента. Общепринятое представление о том, что восстановительная функция сна пропорциональна его деятельность, не подтверждается результатами исследования сна, по крайне мере столь продолжительного, каким мы имеем обыкновение наслаждаться по ночам. 13 Первые, еще не вполне ясные сведения об этой закономерности сна
собраны при исследовании отдыха железнодорожных машинистов: оказалось, что
продолжительность дремоты и эффектные попытки уснуть всегда зависят от
времени суток. Спустя несколько лет Чарльз Сайслер и Эллиот Вайцман стали
анализировать «пещерные» записи Шабера, просто предполагая существования
внутренних часов, и попытались угадать период путем сведения к минимуму
вариаций длительности сна в каждой фазе. Полученный таким образом Время засыпания и пробуждения находится в определенной зависимости и напоминает перископ подводной лодки. Неизвестно когда ион впервые покажется над водой? Если всплытие почти вертикально или если волны очень пологие, прорыв на поверхность может, случится в любой точке волны. Но если траектория всплытия имеет большой наклон или если волны достаточно крутые, то прорыв никогда не произойдет на восходящем склоне волны. Но если волны будут круче – настолько, что вода будет вздыматься быстрее, чем подлодка – то, в этом случае восходящая часть волны оказывается совершенно не доступной для появления из-под нее. На сто пробных всплытиях все случаи протыкания поверхности воды соберутся в кучки, разделенный совершенно пустыми интервалами, где волна поднималась круче, чем путь подлодки. Полная длинна волны, от одного пика до другого, соответствует
длительности одного цикла циркаднианных часов. Волна соответствует какому-
то ритму в человеческом мозге (никто пока не знает, какому именно), что,
подобно температуре тела и десятку других физиологических показателей,
плавно поднимается и опускается в такт с циркадианным циклом. Это «нечто»
задает тот порог, переступая через который, спящий (в данном случае
всплывающая подлодка) просыпается. Разные участки волны соответствуют
изменения уровня порога пробуждения в разных фазах циркадианного цикла. Подобному принципу, видимо подчиняется время спонтанного пробуждения
у мужчин и женщин. На протяжение суточного цикла нашего сознание
переживает приливы и отливы. Пробуждение от сна, видимо наступает, когда
что-то в мозге, постепенно изменяется на протяжение сна, достигает
порогового уровня, который в свою очередь, как и все внутри нас, колеблется
с циркадианным периодом. Если это что-то начинает плавно меняется в
определенной фазе (в момент засыпания), оно достигает порога в более
поздней, заранее предсказуемой фазе, – и вы проснетесь. Продолжительность
вашего сна может меняется в довольно широких пределах в зависимости от
времени засыпания. Она составляет в среднем 8 часов только потому, что люди
обычно ложатся спать примерно в одной и той же определенной фазе своего
циркадианного цикла. Если ваш циркадианный ритм имеет большую амплитуду,
ваш сон может оказаться коротким (всего 4 часа) или длинным (целых 18
часов), смотря по тому, в какой части вы стартуете. можно переключится с
самого короткого на самый длинный сон, отсрочив момент засыпания настолько,
чтобы опоздать к минуемому ритма изменения порога пробуждения. 14 засыпание продолжительность сна несколько сокращается, а далее, при еще большем запаздывание, понемногу возрастать: никаких разрывов плавной кривой, никаких запретных для пробуждения зон. Такое состояние возможно в результате длительного пребывания в условиях полярного дня (у эскимосов, живущих летом под открытым небом, ритмы сильно сглаживаются) или после трансмеридианного перелета (который временно сбивает и ослабляет циркадианные колебания). Время окончание сна и начала бодрствования – это всего лишь полдела. А
вот как насчет времени окончания бодрствования и начала сна? Возможно,
циркадианные закономерности имеют отношение и к этой, второй стороне
вопрос, но несколько иначе: время сна и время бодрствования существенно
различаются. В циркадианном цикле существует одна широкая зона, где
спонтанное пробуждение практически запрещено, лишь узкий диапазон – на
самом деле два диапазона, относящихся друг от друга примерно на 12 часов, Обнаружена только обратная зависимость: длительность бодрствования, предшествовавшего данному засыпанию, удлиняется примерно на час для каждого часа отсрочки начала сна. После некоторой определенной фазы засыпания длительность предшествовавшего бодрствования совершает резкие скачок, так как при этом фаза предыдущего пробуждения избегает запретную зону. Таким образом, обнаружена обратная зависимость, но не для последующего пробуждения. Однако при этом точки разбросаны вдвое шире, чем для предсказуемой фазы рассмотренной ранее закономерности последующего пробуждения. Сон имеет тенденцию начинаться вблизи минимума температуры тела, – но только эта одна слабая статическая закономерность связывает его с циркадианным циклом. Вероятно, у человека волевой контроль в большей степени распространяется на окончание бодрствования, чем на окончание сна, поэтому время засыпания зависит от многих факторов, а не только от циркадианнных часов. Вся наша повседневная жизнь строго укладывается в 24-часовые рамки, в
том числе и интенсивность физиологических функций, колеблется в
соответствие с наиболее заметным циклом чередования сна-бодрствования. Поставим диагноз значительно проще, если рассматривать клиническую
норму с учетом ее ритмичности. Скажем, нормальная температура тела ночью
ниже 36,6 ос, поэтому «нормальное» показание термометра в 3 часа ночи –
симптом лихорадки. Аддисова болезнь (бронзовая болезнь) и болезнь Иценко – Не только диагноз, но и терапевтические меры могут быть более эффективными, если их строить на основе циркадианного цикла. Поскольку многие типы делящихся клеток предпочитают 15 определенное время суток для репликации ДНК, циркадианные вариации особенно ярко проявляются в токсичности различных лекарственных препаратов и эффектах облучения, применяемого с целью поразить делящиеся опухолевые клетки. Нет ничего особенного в том, что доза, при которой 80% популяции подопытных организмов выживет в одно и тоже время суток, в другое окажется смертельным для тех же 80% осыбей. Эта мрачная статистика, однако, весьма перспективная, если стоит задача избирательно убить опухолевые клетки, не повредить здоровые. Эрхад Хаус с коллегами добился значительного повышения процента вживания среди мышей, больных раком, не увеличивая дозы лекарства, но сконцентрировал ее в то время суток, когда опухолевые клетки предположительно более чувствительны, чем нормальные. Врачи и ветеринары, применяющие гормональную терапию, давно знают,
насколько важно правильно выбрать время для введения препарата. Например,
при недостаточной функции надпочечников больным обычно делают инъекцию
кортизона по утрам, когда в норме активность коры надпочечников
максимальна. Если ежедневно требуема только однократная доза препарата,
утренние инъекции годится и для собак, но для кошек, у которых циркадианные
ритмы организованны по-другому, кортизон следует вводить по вечерам. Ритмические закономерности связывают секрецию гормонов мозга,
нарушение сна и более серьезные психические заболевания, включая
клиническую депрессию. Томас Веер, Фредерик Гудвин и Норман Розенталь из Считается, что действие света опосредовано его влиянием на секрецию
мелатонина – гормона, выделяемого в головном мозге и тесно связанного с
циркадианными ритмами. Для нормального ежедневного контроля секреции
мелатонина нужен свет, существенно более яркий, чем тот, который обычно
бывает в помещениях. Однако современный человек редко должным образом Часы слишком хороши, если вы не имеете возможность их подстраивать. Страницы: 1, 2 |
|
© 2000 |
|