РУБРИКИ

Очистка условно-чистых стоков на моделях по разработанной технологии

   РЕКЛАМА

Главная

Зоология

Инвестиции

Информатика

Искусство и культура

Исторические личности

История

Кибернетика

Коммуникации и связь

Косметология

Криптология

Кулинария

Культурология

Логика

Логистика

Банковское дело

Безопасность жизнедеятельности

Бизнес-план

Биология

Бухучет управленчучет

Водоснабжение водоотведение

Военная кафедра

География экономическая география

Геодезия

Геология

Животные

Жилищное право

Законодательство и право

Здоровье

Земельное право

Иностранные языки лингвистика

ПОДПИСКА

Рассылка на E-mail

ПОИСК

Очистка условно-чистых стоков на моделях по разработанной технологии


Таблица 6

Динамика процесса отстаивания смеси условно-чистых стоков и щелочных стоков


Номер

пробы

Наименование показателей качества смеси УЧС и ЩС

рН

Взвешенные

вещества

мг/л

Жесткость

общая

мг-экв/л

Жесткость кальциевая

мг-экв/л

ХПК

Мг/л

Эфиро-извлекаем

мг/л

Нефте-

продукты

мг/л

Сульфа-ты

мг/л

Хлори-

ды

мг/л

Общее

солесод.

мг/л

1

2

3

4

5

6

7

8

9

10

11

Исходная УЧС + ЩС

1

8,40

35,0

6,02

4,6

58,0

5,1

0,72

265,0

82,0

-

2

8,40

52,0

7,16

5,0

54,6

3,6

0,84

237,0

-

-

3

8,40

33,0

7,34

3,3

60,2

4,8

0,84

254,0

83,0

-

Среднее

значение

8,40

40,0

6,84

4,3

57,6

4,5

0,80

252,0

82,5

-

Отстаивание 30 мин.-

1

8,11

24,0

6,80

5,1

49,2

-

0,58

185,0

74,8

-

2

8,20

20,0

7,1

3,8

54,9

-

0,68


80,0

-

3

8,14

16,0

6,5

4,6

50,7

-

0,66

215,0

72,0

-

Среднее

значение

8,15

20,0

6,80

4,5

51,6

-

0,64

202,0

75,6

-

1

2

3

4

5

6

7

8

9

10

11

Отстаивание 60 мин

1

8,00

16,0

6,84

4,5

38,5

3,5

0,44

170,2

72,5


2

8,4

13,5

6,50

4,4

42,5

3,3

0,50

164,8

71,6


3

8,2

15,5

6,70

4,0

39,0

3,4

0,44

170,2

68,3


Среднее

значение

8,20

15,0

6,68

4,3

40,0

3,4

0,46

168,4

70,8


Отстаивание 90 мин

1

8,24

14,0

6,4

4,4

40,0

3,2

0,40

158,4

70,2


2

7,94

16,0

6,54

3,8

38,2

3,2

0,39

162,4

69,2


3

8,42

14,0

7,04

3,8

38,2

2,6

0,35

159,2

71,5


Среднее

значение

8,20

14,0

6,66

4,0

38,8

3,0

0,38

160,0

70,3



3.3. Процесс фильтрации.


Фильтрование применяют для выделения из сточных вод в основном грубо- и мелкодисперсных примесей удаление которых отстаиванием затруднено. Разделение  фаз ведут при помощт пористых перегородок, пропускающих жидкость и задерживающих диспергированную фазу, под действием гидростатического давления столба жидкости, повышенного давления до перегородки и вакуума после перегородки. Выбор перегородок зависит от свойств сточной воды, температуры, давления фильтрования и конструкции фильтра.

По характеру механизма задерживания взвешенных частиц различают два вида фильтрования: фильтрование через пленку (осадок) загрязнений, образующегося на поверхности фильтрующего   зернистого слоя, называемого загрузкой; фильтрование без образования пленки загрязнений. В первом случае задерживаются частицы размер которых больше пор материала, а затем образуется слой загрязнений, который является также фильтрующим материалом. Такой процесс характерен для так называемых медленных фильтров, которые работают на малых скоростях фильтрования. Во втором случае фильтрование происходит в толще  фильтрующего материала силами прилипания. Такой процесс характерен для скоростных фильтров.

Процесс фильтрации проводили на модели кварцевого фильтра. В качестве загрузочного  материала  использовали  кварцевый песок. Высоту рабочего слоя определили 100 см. Фильтрации подвергли осветленные стоки и смесь фильтрата и речной воды.

Программа испытаний.

1.                 Фильтрат УЧС + ЩС. Скорость фильтрации 3 мм/с; 6 мм/с; 9 мм/с.

2.                 Смесь фильтрата  УЧС + ЩС с РВ. Пропорции 1:1. Скорость фильтрации 3 мм/с; 6 мм/с; 9 мм/с.

Результаты лабораторных данных по исследованию процесса фильтрации смеси условно-чистые стоки и щелочные стоки  при рН =10 представлены в таблице 7.

Фильтрации подвергалась смесь  после 60 мин. отстаивания со скоростью фильтрации 3 мм/сек; 6 мм/сек; 9 мм/сек. Как видно по результатам анализов фильтрация дает на выходе высокое качество очистки. При фильтрации происходит незначительное снижение рН.  Зарегистрировано снижение общей жесткости в среднем на 21,4%, кальциевой жесткости на 23,9%, снижение ХПК в среднем на 67%, щелочности на 10%.  Показатели по сульфатам, хлоридам, общей жесткости, кальциевой жесткости меняются незначительно. Концентрация взвешенных веществ менее 3 мг/л. Оптимальная скорость фильтрации смеси условно-очищенных и щелочных стоков – 6 мм/сек.

Результаты лабораторных данных процесса фильтрации смеси фильтрата и речной воды приведены в таблице 8.  Испытания были выполнены в пропорциях 1:1, рН смеси 8,9.  По отношению к речной воде наблюдается увеличение сульфатов на 18%, жесткость общая снижается на 23,5%, жесткость кальциевая снижается на 26,4%, хлориды уменьшаются на 6,0%, общее солесодержание увеличивается на 14,6%. При фильтровании смеси фильтрата и речной воды скорости фильтрации 6 мм/сек. Качественные показатели: рН, сульфаты, жесткость общая, жесткость кальциевая, хлориды, общее солесодержание меняются не значительно. Взвешенные вещества отсутствуют.

Процесс восстановления параметра рН очищенной смеси  условно-очищенных стоков и щелочных стоков после процесса фильтрации приведен в таблице 9. Восстановление рН путем добавления серной кислоты  0,2 н. раствора приводит к некоторому увеличению сульфатов примерно на 10,7% и снижению общей жесткости на 25,74%, кальциевой жесткости на 25,7%.


Таблица 7

Результаты лабораторных данных процесса фильтрации смеси условно-чистых и щелочных стоков


Скорость

Фильтрации

Смеси

УЧС + ЩС


Наименование показателей качества


ХПК

мг/л


рН

Щелоч

ность

мг-экв/л

Суль-

фаты

мг/л

Жест-

кость

мг-экв/л

Жесткость

кальциевая

мг-экв/л

Нефте-

прод.

мг/л


Взвешен.

в-ва

мг/л

Хлори-

ды

мг/л

Общее

соле-

содер.

мг/л


Исходная

Смесь УЧС + ЩС

(отстаивание

60 миню)


100



10,0


8,0


168,4


4,30


2,30


0,1


< 3


60,97


926

3 мм/сек.

54,0

9,45

7,4

160,5

3,60

2,30

0,0095

< 3

60,97

926

6 мм/сек.

43,0

9,20

7,0

156.6

3,38

1,75

0,008

< 3

60,84

920

9 мм/сек.

43,7

9,10

7,2

156,0

3,45

1,70

0,0083

< 3

60,94

920


Таблица 8

Результаты лабораторных данных процесса фильтрации смеси фильтратов и речной воды



Наименование процесса

Наименование показателей качества


ХПК

мг/л


рН

Щелоч

ность

мг-экв/л

Суль-

фаты

мг/л

Жест-

кость

мг-экв/л

Жесткость

кальциевая

мг-экв/л

Нефте-

прод.

мг/л

Взвешен.

в-ва

мг/л

Хлори-

ды

мг/л

Общее

соле-

содер.

мг/л

Фильтрат

(УЧС + ЩС )

при

 V= 6 мм/сек.

20,00

9,70

-

168,4

3,09

1,44

0,315

< 3

60,97

920,0

Фильтрат + РВ

Пропорция 1:1

22,0

8,87

-

126,3

5,40

3,74

0,155

< 3

55,3

710,0

Скорость

фильтрации

6 мм/сек.

18,0

8,86

-

126,0

5,00

3,70

0,18

< 3

55,3

710,0


Таблица 9

Восстановление рН очищенных условно-чистых и щелочных стоков после процесса фильтрации.


пробы

Доза кислоты

Наименование показателей качества


ХПК

мг/л


рН

Щелоч

ность

мг-экв/л

Суль-

фаты

мг/л

Жест-

кость

мг-экв/л

Жесткость

кальциевая

мг-экв/л

Нефте-

прод.

мг/л

1

1,8

44,0

8,20

7,2

212,0

2,77

1,44

-

2

1,9

48,0

7,90

6,8

236,0

1,62

1,08

-

3

0,5

38,5

7,90

6,8

278,0

2,88

1,38

-

4

0,5

41,5

8,20

6,4

236,8

2,75

1,30

-

Среднее

значение


43,0

8,05

6,8

240,9

2,51

1,30

-


3.4. Процесс сгущения и центрифугирования.


Сгущению подвергается осадок после отстаивания сточных вод. Сгущение происходит путем дополнительного отстаивания в стандартном  мерном цилиндре, высота слоя- 50 см. Для определения полноты осаждения определяли влажность исходного осадка и сгущенного осадка.

Программа испытаний.

- осадок после 30 мин. отстаивания. Сгущение осадка в течение  4 час.; с.

- осадок после 60 мин. Отстаивания,  Сгущение осадка в течение  4 час.

- осадок после 90 мин. Отстаивания,  Сгущение осадка в течение  4 час.

Результаты экспериментальных данных по исследованию осадка условно-чистых стоков  и смеси условно-чистых  и щелочных стоков показали (табл.10) , что содержание взвешенных веществ в осадке отстоя смеси условно-чистых и щелочных стоков в течение 60 мин. Составляет 243,0 мг/л., эфироизвлекаемых- 22,1 мг/л.

Далее осадок подвергался сгущению в течение 4 часов. Осадок мелкодисперсный  с небольшим содержанием углеводородов. Влажность осадка условно-чистых вод составляет 96,1%; влажность осадка смеси условно-чистых и щелочных составляет 95,5%.

Осаждение взвешенных частиц под действием центробежной силы проводится в гидроциклонах и центрифугах. Для очистки сточных вод, как правило, используют напорные и открытые гидроциклоны.

При вращении жидкости в гидроциклонах на частицы действуют центробежные силы, отбрасывающие тяжелые частицы к периферии потока; силы сопротивления движущегося потока, гравитационные силы и силы инерции.

Процесс центрифугирования проводился в течение 3 мин. Со скоростью вращения 300 об/мин. на лабораторной центрифуге. Осадок достаточно хорошо уплотняется и отдает воду при центрифугировании. Так влажность кека после сгущения осадка условно-чистых стоков в течение 4 часов составила 88,0%, смеси условно-чистых и щелочных стоков- 85,6%. При этом влажность осадка Условно-чистых стоков уменьшается на 7,76%, смеси условно-чистых и щелочных стоков- 9,90%.

Объем осадка, в результате сгущения и центрифугирования уменьшился в 600 раз ( в 187,5 раза -сгущение, центрифугирование по отношению к сгущению еще в 3,2 раза).

Таблица 10

Результаты экспериментальных данных по исследованию осадка.



Наименование

потока

Наименование показателей осадка

Взвешенные вещества

мг/л

Эфироизвле

каемые

мг/л

Влажность

%

Осадок после отстоя

УЧС (60 мин)

233,0

19,8


Осадок после отстоя

УЧС + ЩС (60 мин)

223,0

22,1


Осадок после отстоя

УЧС + ЩС (90 мин)

200,0

200,0


Осадок после отстоя УЧС (60 мин) повторное отстаивание в течение 4 час.



96,1

Осадок после отстоя УЧС + ЩС ( 60 мин.) повторное отстаивание в течение 4 час.



95,5

УЧС (60 мин) повторное отстаивание в течение 4 час.

Центрифугирование 3 мин. со скоростью 3000 об/мин.



88,0

Осадок после отстоя УЧС и ЩС (60 мин) Повторное отстаивание в течение 4 час. Центрифугирование 3 мин. со скоростью 3000 об/мин.



85,6


3.5 Обобщение результатов исследований.


Обобщенные результаты изменения содержания взвешенных веществ, жесткости общей, жесткости кальциевой, ХПК в потоках: условно-чистых стоков; щелочных стоков, речной воды; смеси Условно-чистых  щелочных стоков при рН=8,4 и 10,0; отстаивание условно-чистых стоков; отстаивание  смеси условно-чистых и щелочных стоков при рН=8,4 и 10,0; фильтрование смеси условно-чистых и щелочных стоков при рН=10, скорости фильтрации 6 мм/сек.; повторное фильтрование фильтрата и речной воды в соотношении 1:1 приведены в таблице 11.

Таблица11

Обобщенные результаты изменения содержания взвешенных веществ, жесткости общей, жесткости кальциевой, ХПК в исследуемых потоках


Наименование

потока

Взвешенные

вещества

мг/л

Жесткость

Общая

мг-экв/л

Жесткость

кальциевая

мг-экв/л

ХПК,

мг/л

1

2

3

4

5

Условно-чистые стоки

30,0

8,7

7,04

24,3

Щелочные стоки

62,50

-

-

588,60

Речная вода

16,80

6,73

4,50

4,60

УЧС + ЩС рн=8,4

35,0

7,86

5,60

57,60

УЧС + ЩС рн=10

55,00

3,72

1,44

77,50

Отстаивание УЧС

60 мин.

20,0

8,50

6,72

20,00

Отстаивание УЧС + ЩС 60 мин.

рН =10,0

20,0

3,35

1,44

45,00



Фильтрование УЧС + ЩС рН=10

Vф = 6 мм/сек.

Менее 3

3,35

1,44

23,0

Восстановление рН

Смеси УЧС + ЩС

После фильтрации

-

2,50

1,30

43,0

Фильтрат + РВ 1:1

5,0

5,45

3,56

20,0

Повторное фильтрование

Менее 3

5,20

3,45

19,0

IV. ЭКОЛОГО - ЭКОНОМИЧЕСКАЯ ЧАСТЬ

4.1. Платежи за использование водными объектами.


В России действует весьма разветвленная система платежей за пользование природными ресурсами. Для субъектов хозяйственной деятельности платным является пользование всеми основными природными ресурсами: земельными, лесными, объектами животного мира и водными биологическими ресурсами, месторождениями полезных ископаемых./45/

В настоящее время в Российской федерации, согласно Федерального закона «О плате за пользование водными объектами» плата взимается за:

- забор воды из водных объектов;

-  удовлетворение потребностей в воде гидроэнергетики;

- использование акватории водных объектов для лесосплава, добычи полезных ископаемых, организованной рекреации, размещения плавательных средств, коммуникаций, зданий, сооружений, установок и оборудования для проведения буровых, строительных и иных работ;

- осуществление сброса сточных вод в водные объекты.

При этом минимальные и максимальные ставки платы за пользование водными объектами по бассейнам рек, озер, морям, экономическим районам России устанавливаются централизованно Правительством РФ. Так, в настоящее время за забор из поверхностных водных источников 1 тыс.м3 воды минимальная и максимальная ставки соответственно равны 30,0-176,0 руб. На этой основе законодательными (представительными) органами субъектов Российской Федерации определяются конкретные ставки платы по категориям плательщиков в зависимости от вида пользования водными объектами, их состояния и т.п. Суммы платы включается в себестоимость продукции (работ, услуг). /46,47/

Платежи за сбор воды из водных объектов, а также за сброс сточных вод доводятся до плательщиков в совокупности с лимитами водопользования (месячными и годовыми). При превышении этих лимитов ставки платы в соответствии с Законом « О плате за пользование водными объектами» увеличиваются в 5 раз в сравнении с базовым уровнем. Одновременное применение платежей и экологических нормативов является примером совместного использования экономических и административных подходов к управлению природопользованием. И такой порядок призван стимулировать охрану и рациональное использование водных ресурсов. Пользование водными объектами, как и недрами, осуществляется на основе лицензионного договора. При его отсутствии ставки платежей также увеличиваются в 5 раз.

Платежи за пользование водными объектами зачисляются федеральный и бюджет субъекта РФ в пропорции 40 и 60% соответственно. Централизуемые в результате этого средства не менее чем на половину должны направляться на мероприятия по восстановлению и охране водных объектов.


5.2. Расчетная экономия от внедрения предлагаемой схемы:


Эксплутационные расходы приняты условно-постоянными, так как не предполагается увеличение численности обслуживающего персонала и изменения объема потребления воды и энергоносителей. Увеличение потребления электроэнергии предполагается компенсировать за счет установки на существующем насосном оборудовании частотных регуляторов.

1. Сокращение платы за потребленную речную воду от ОАО «НУНПЗ» на:

П= Nгод  х С х 1,2 ,

где Nгод - - годовой объем сточных вод, м3/год; отходов, м3;

С- ставка за сброс загрязняющих веществ, руб/м3;

1,2- коэффициент, учитывающий НДС.

П1=  2628000 х 2,1 х 1,2 = 6622560,00 руб.

2.                 Сокращение платы за очистку сбрасываемых на ОАО «Уфанефтехим» стоков на:

П2 = 2628000 х 6,1 х 1,2 = 19236960,00 руб.

3.                 Сокращение платы в бюджет за сброс загрязнений со стоками в р.Белая на:

П3 = 2628000 х 0,02 = 52560,00 руб.

4.                 Сокращение платы в бюджет за пользование водными объектами (речная вода) на:

П4 = 2628000 х 0,2 = 525600,00 руб.

5.                 Сокращение платы в бюджет за пользование водными объектами (стоки) на:

П5 = 2628000 х 0,035 = 91980,00 руб.

6.                 Сокращение платы за хранение и размещение отходов. Песок с песколовок на:

П6 = 283  х 16,23 = 4593,09 руб.

    Осадок грязевых площадок на:

П7 = 1700 х 433,48 = 736916,00 руб.

7.                 Расчетная годовая экономия составляет:

Э = П1 + П2 + П3 + П4 + П5 + П6 + П7

Э = 6622560 + 19236960 + 52560 + 525600 + 91980 + 4593,09 + 736916 = 27271169,09 руб.

Расчетная окупаемость предложенной схемы- 1,66 года

V.  Безопасность жизнедеятельности


Техника безопасности труда изучает вопросы безопасности и безвредности труда на производстве и является системой организационных и технических мероприятий и средств, с помощью которых предотвращается воздействие на работающих  опасных производственных факторов. Она непрерывно связана с техникой производства и организацией труда и занимается изучением не только производственного оборудования и производственных условий, но и трудовых процессов, поведения людей на работе.


5.1. Производственная безопасность

Производственный шум

Шум – это беспорядочное  сочетание звуков различной частоты и интенсивности (силы), возникающих при механических колебаниях в твердых, жидких или газообразных средах, воспринимаемых органами слуха человека и вызывающих неприятное субъективное ощущение.

Характер производственного шума зависит  от вида его источников: механический – в результате работы различных механизмов; ударный – ковка, клепка; аэродинамический – при движении воздуха по трубопроводам, вентиляционным системам; взрывной – при работе двигателей внутреннего сгорания, дизелей.

Неблагоприятное действие шума на организм зависит от нескольких факторов: длительности, интенсивности, спектрального состава, сопутствующих вредных производственных факторов.

Различают 4 степени шума:

1 степень – шум с интенсивностью до 40-50 дБ, при котором возникают психические реакции;

2 степень – шум с интенсивностью до 60-80 дБ, при котором наблюдаются расстройства вегетативной нервной системы;

3 степень – 90-100 дБ – отмечается понижение слуха;

4 степень – уровень шума выше 120 дБ – повреждение органов слуха.

Человеческое ухо воспринимает звуковые колебания с частотой f  = 16…20000 Гц. Колебания с частотой ниже 16 Гц  (инфразвук) и выше 20000 Гц (ультразвук) не воспринимаются органами слуха, хотя они в определенной степени оказывают вредное влияние на организм человека.

Воздействие интенсивного шума приводит к головной боли, несистематическому головокружению, снижению памяти, понижению слуховых функций и глухоте, нарушениям сна, снижению производительности труда, значительному нарушению умственной работоспособности.

Нормирование допустимых уровней шума производится в соответствии с ГОСТ 12.1.003 – 88 “Шум. Общие требования безопасности” и СН 3223- 85 “Санитарные нормы допустимых уровней шума на рабочих местах”.

В результате измерений шума получены следующие значения звука:

L1 = 54 дБ, L2 = 52 дБ, L3 = 50 дБ.

Нам необходимо определить средний уровень звука, средние октавные уровни звукового давления постоянного шума, эквивалентные уровни звука.  Среднее значение уровней звукового давления определяется по формуле:

Lср =  Lсумм  - 10 lgn

Суммирование измеренных уровней L1, L2, L3 … Ln производится попарно и последовательно.

1)                по разности двух уровней L1 и L2 по табл. 12  определяем величину добавки DL;

2)                величину добавки DL прибавляем к большему уровню, в результате чего получаем уровень L1,2 = L + DL;

3)                уровень L1,2 таким же образом суммируют с уровнем L3 и получают уровень L1,2,3  и т.д.

4)                результат Lсумм. Округляют до целого числа;

5)                 по табл. 13 находим величину 10 lgn для трех уровней и вычисляем окончательный результат.

Таблица 12

Величина добавки


Разность слагаемых уровней L1  и  L2,  дБ

  0

  1

  2

  3

  4

  5

  6

  7

  8

 10

Добавка прибавляе-мая к большему из уровней. ДБ

   3

 2,5

 2,2

 1,8

 1,5

 1,2

  1

 0,8

 0,6

 0,4


Таблица 13

Значение 10 lgn в зависимости от n


Число уровней или источников, n

  1

  2   

  3

  4

  5

  6

  8

 10

 20

 30

 50

100

10 lgn, АЕ 

  0

  3

  5

  6

  7

  8

  9

 10

 13

 15

 17

 20


Результаты расчетов:      54 – 52 = 2 дБ,  т.е.  DL = 2,2;

L1,2 = 54 + 2,2 = 56,2  дБ;

56,2 – 50 = 6,2 дБ,  т.е.  DL = 1

Lсумм. =  56,2 + 1 = 57 дБ;

Значение 10 lgn для трех уровней  равно 5.

Окончательный результат 57– 5 = 52 дБ.

Вывод: уровень звука в пределах нормы.


Производственное освещение.

Освещение - использование световой энергии  солнца и искусственных источников света для обеспечения зрительного восприятия окружающего мира. В производственных помещениях используется  три вида освещения: естественное (источником является солнце), искусственное (когда используются только искусственные источники света), совмещенное или смешанное (одновременное сочетание естественного и искусственного освещения).

Совместное освещение применяется в том случае, когда только естественное освещение не может обеспечить необходимые условия для выполнения производственных операций.

Основным количественным показателем освещения являются: световой поток, сила света, освещенность и яркость.

Для того, чтобы обеспечить требования, предъявляемые действующими нормами (СниП 23-05-95) к освещению производственных помещений (как естественного, так и искусственного), требуется проводить расчет выбранной системы освещения. Целью таких расчетов является обеспечение на рабочих местах достаточного уровня освещения соответствующего нормативному значению качественных показателей систем освещения.


Естественное освещение

Расчет естественного освещения сводится к определению необходимой площади световых проемов (окон, световых фонарей), обеспечивающих нормированные значения  К.Е.О (коэффициент естественного освещения), т.е. достаточный уровень освещения.

К.Е.О. –  это отношение освещенности в данной точке помещения к  одновременной наружной освещенности в условиях рассеянного света, выраженное в  процентах.

Необоснованное увеличение остекленных поверхностей, например, сплошное остекление наружных стен может привести к дискомфорту, ухудшению видимости.

“Строительными нормами и правилами” (СниП 23-05-95) рекомендуется определять требуемую площадь светопроемов следующим образом:

Sο = Sn Ен η Кзд / 100 το r1,   где

Sο  - площадь световых проемов окон, м2;

Sn  -  площадь пола, м2;

Ен  -  нормированное значение К.Е.О., лк;

 η  -  световая характеристика окна, равная площади светового проема в % от  площади пола при К.Е.О. = 1% (определяемая в зависимости от соотношения длины помещения к его глубине, а также расстояния от уровня рабочей поверхности до верхнего края окна);

το - общий коэффициент  светопропускания , определяемый как произведе-ние частных  коэффициентов светопропускания;

το = τ1 · τ2 · τ3,  где

τ1, τ2, τ3  -  соответственно коэффициенты, учитывающие потери света в  светопропускающем материале вследствие затенения переплетами, от слоя загрязнения стекла, вследствие затенения несущими конструкциями;

r1 - коэффициент, учитывающий повышение К.Е.О. при боковом освеще-нии за счет света, отраженного от внутренних поверхностей помещения (стен, потолка, рабочих поверхностей).

Кзд – коэффициент, учитывающий затенение окон противостоящими зда-ниями;

Произведем расчёт:

το =  0,8 · 0,6 · 0,7 = 0,336

Sο =  40 ·1,5 ·11 ·1 / 100 · 0,336 · 1,73 = 11,55 м2.

Это и есть необходимая площадь световых проемов.


Искусственное освещение

Источниками света при искусственном освещении являются газоразрядные лампы и лампы накаливания.

Газоразрядные лампы предпочтительнее для применения в системах искусственного освещения. Световой поток от газоразрядных ламп по спектральному составу близок к естественному освещению и потому более благоприятен для зрения. Однако эти дампы имеют существенные недостатки к числу которых относится пульсация светового потока, благодаря которой возникает стробоскопический  эффект, который проявляется в искажении зрительного восприятия объектов. Это явление ведет к увеличению опасности производственного травматизма и делает невозможным выполнение некоторых производственных операций.

Лампы накаливания, в которых свечение возникает путем нагревания нити накала до высоких температур. Недостатком этих ламп является низкая световая отдача и преобладание излучения в желто-красной части спектра, что искажает цветовое восприятие. Все большее распространение получают лампы накаливания с йодным циклом – галоидные лампы, которые имеют лучший спектральный состав света.

Расчет искусственного освещения сводится к определению светового потока одной лампы, исходя из условий создания нормируемой освещенности. Определение светового потока производятся по следующей формуле:

Ф = Ен S K Z / n η, где

Ф -  световой поток, лм;

Ен  -  нормированное значение К.Е.О., лк;

S  -  площадь освещаемого помещения, м2;

К -  коэффициент запаса, учитывающий снижение освещенности, вслед-ствии старения ламп, светильников;

Z  -  коэффициент минимальной освещенности;

η  -   коэффициент использования светового потока. Это отношение потока, падающего на расчетную поверхность, к суммарному потоку всех ламп.

Произведем расчёт:

Ф = 1,1 40 1,5 1,1 / 9 60 = 0,135

Освещение помещения соответствует СниП 23-05-95

5.2 Защита населения и территорий от чрезвычайных ситуаций

21.12.1994 г. Был принят закон “О защите населения  и территорий от чрезвычайных ситуаций природного и техногенного характера”.

В соответствии с ним  Министром РФ по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий была утверждена “Программа подготовки рабочих, служащих, работников сельского хозяйства и неработающего населения к действиям в чрезвычайных ситуациях”./53/

27.07.1995 г. Постановлением Правительства РФ № 738 определен порядок подготовки населения в области защиты от чрезвычайных ситуаций, который устанавливает, что подготовка населения от чрезвычайных ситуаций природного и техногенного характера должна осуществляться на предприятиях, в учреждениях, организациях, независимо от их организационно-правовой формы, а также по месту жительства, по соответствующим возрастным или социальным группам.

В результате крупных аварий, катастроф на химических и радиационно-опасных объектах, при перевозке сильнодействующих ядовитых веществ люди, окружающая среда, здания, сооружения, транспортные средства и техника, вода, продовольствие и пищевое сырье могут быть поражены СДЯВ и РВ. Необходимость обеззараживания возникает также при массовых инфекционных заболеваниях людей и животных.

Для того чтобы исключить вредное воздействие на человека и животных радиоактивных, отравляющих, сильнодействующих веществ и болезнетворных микробов, обеспечить нормальную жизнедеятельность, необходимо выполнить комплекс работ по обеззараживанию территорий, помещений, техники, приборов, оборудования, мебели, одежды, обуви, открытых частей тела. Причем делать это надо только в средствах индивидуальной защиты (противогазах, респираторах, перчатках, переднике, сапогах), при строгом соблюдении мер безопасности./54/

Обеззараживание предусматривает, прежде всего, механическое удаление, а также нейтрализацию химическим, физическим способами вредного вещества и уничтожение болезнетворных микробов, угрожающих здоровью и жизни людей. Оно включает выполнение таких работ как: дезактивация, дегазация, дезинфекция зараженных поверхностей, а также проведение санитарной обработки людей.


Дегазация

Дегазация – это уничтожение (нейтрализация) сильнодействующих ядовитых и отравляющих веществ или их удаление с поверхности таким образом, чтобы зараженность снизилась до допустимой нормы или полностью исчезла.

Известно немало способов дегазации, но чаще всего  прибегают к механическому, физическому или химическому.

Механический – удаление отравляющего или сильнодействующего   вещества  с какой-либо поверхности, территории, техники, транспорта и других отдельных предметов. Обычно зараженный слой грунта срезают и вывозят в специально отведенные места для захоронения или засыпают песком, гравием, щебнем.

При физическом способе верхний слой прожигают паяльной лампой или специальными огнеобразующими приспособлениями. Из растворителей используют дихлорэтан, бензин, спирт, керосин, четыреххлористый углерод.

Наибольшее распространение нашел химический способ дегазации, основанный на применении веществ окисляющего и хлорирующего действия-хлорной извести, двухосновной соли гипохлорита кальция (ДС-ГК), дветретиосновной соли гипохлорита кальция (ДТС-ГК), хлористого сульфурила (ХС), монохлорамина Б (ДТ-1), дихлорамина Б (ДТ-2), а из веществ основного характера – едкого натра, аммиака, гашенной извести, сернистого натрия, углекислого натрия, двууглекислого аммония.


Отравляющие вещества

Отравляющие вещества – это химические соединения, которые при применении способны поражать людей и животных на больших площадях, проникать в различные сооружения, заражать местность и водоемы.

По действию на организм человека отравляющие вещества (ОВ) делятся на нервно-паралитические (VX, зарин), кожно-нарывные (иприт), удушающие (фосген), общеядовитые (синильная кислота, хлористый циан), раздражающие (CS, адамсит) и психохимические (BZ).

Отравляющие вещества нервно-паралитического действия

К этой группе относятся в основном фосфорорганические вещества (ФОВ), обладающие высокой токсичностью. Такие вещества способны вызвать поражения при действии через органы дыхания и кожные покровы. Основной причиной поражения является расстройство центральной нервной системы. Наиболее важными представителями  являются фосфорил-тиохолины, V-газы и зарин.

V-газы способны проникать через кожу и обладают высокой резорбтивной токсичностью. Для нанесения смертельного поражения человеку достаточно попадания капли вещества весом в несколько миллиграмм на кожу. Их токсичность превышает в несколько раз токсичность других фосфорорганических отравляющих веществ.

Зарин – фторангидрид изопропилового эфира метилфосфиновой кислоты. Поражающее действие зарина проявляется при вдыхании его паров, проникании через кожные покровы, а также употреблении зараженной пищи. При взаимодействии с водой, зарин медленно гидролизуется. Водными растворами едких щелочей зарин гидролизуется с большей скоростью. В результате образуются нетоксичные продукты. Для дегазации используется реакция зарина с водными растворами едких щелочей, аммиака и аминов.

Фосфорорганические ОВ обладают кумулятивными свойствами, т.е. действие каждой последующей дозы накладывается на действие предыдущих доз. Благодаря этому даже очень малые концентрации ОВ при длительных экспозициях могут привести к серьезным поражениям. При вдыхании паров ФОВ в высоких концентрациях смерть наступает после нескольких или даже одного вдоха.

Отравляющие вещества раздражающего действия

К ним относятся: адамсит (рвотное ОВ), хлороцетофенон (слезоточивое ОВ), и “CS” (сверхслезоточивое ОВ). Эти вещества вызывают сильное раздражение глаз, слезотечение, раздражение дыхательных путей (жжение в носу, гортани, легких), тошноту. Смертельная концентрация 20 мг/л в течение 1 минуты.

Психохимические отравляющие вещества

К этим веществам относятся “BZ”. “BZ” – действует на нервную систему, вызывая головную боль, ухудшение зрения, сонливость, повышение температуры, галлюцинации и нарушение психики. При вдыхании зараженного “BZ” воздуха концентрации 0,1 мг/л в течении 1 минуты действие начинает проявляться через 0,5-3 часа и продолжается 2-5 суток.

ВЫВОДЫ


1.                  Проведено обоснование по  возможности использования условно-чистых и щелочных стоков для повторного использования, в целях минимально возможного потребления свежей воды и минимального сброса сточных вод в поверхностные водные объекты.

2.                  Выявлено, что условно-чистые  и щелочные стоки не соответствую требованиям  по качеству к воде, направляемой на повторное использование. Зарегистрировано превышение по взвешенным веществам, жесткости, хлоридам, сульфатам, нефтепродуктам.

3.                  В основные технологические процессы очистки сточных вод предлагается ввести подщелачивание условно-чистых стоков щелочной составляющей химически загрязненных стоков, что приведет к снижению жесткости очищаемых сточных вод;

4. Введение в процесс очистки сточных вод   гравитационного  сепарирования  (отстаивания) смеси условно-чистых и щелочных стоков,  позволит снизить концентрации загрязняющих веществ по ХПК, хлоридам, общей жесткости.

5. Безнапорная фильтрация осветленной смеси условно-чистых и щелочных стоков  даст снижение общей жесткости, кальциевой жесткости, снижение  ХПК, щелочности взвешенных веществ.

6. Для возможности повторного использования  сточных вод   рекомендуется проводить повторную безнапорную фильтрацию очищенных стоков с речной водой.

7. В результате сгущения и центрифугирования  резко уменьшатся объемы осадков, что сэкономит затраты на их вывоз. 

8. Расчетная годовая экономия составит 27271169,09 рублей.

СПИСОК ЛИТЕРАТУРЫ


1. Алфёрова А.А., Нечаев А.П. Замкнутые системы водного хозяйства промышленных предприятий, комплексов и районов. М.: Стройиздат, 1987.

2. Яковлев С.В., Карелин Я.А., Ласков Ю.М., Воронов Ю.В. Очистка производственных  сточных вод. М.: Стройиздат, 1990.

3. Жуков А.И., Монгайт И.Л., Родзиллер И.Д. Методы очистки производственных сточных вод. М.: Стройиздат, 1992 .

4. Беспамятнов Г.П., Кротов Ю.А. Предельно допустимые концентрации химических веществ в окружающей среде. Л.: Химия, 1990 .

5. Ласкорин Б.Н., Громов Б.В., Цыганков А.П., Сенин В.Н. Проблемы развития безотходных производств. М.: Стройиздат, 1995 .

6. Кафаров В.В. Принципы создания безотходных  химических производств М.: Химия, 1984 .

7. Яковлев С.В., Калицун В.И. Механическая очистка сточных вод. М.: Стройиздат, 1982.

8. Ласкорин Б.Н., Громов Б.В., Цыганков А.П. Безотходная технология в промышленности. М.: Стройиздат, 1986.

9. Родионов А.И., Клушин В.Н., Торошечников Н.С. Техника защиты окружающей среды. М.: Химия, 1989 .

10. Проскуряков В.А., Шмидт Л.И. Очистка сточных вод в химической промышленности. Л.: Химия, 1977 .

11. Жмур Н.С. Управление процессом и контроль результата очистки сточных вод на сооружениях с аэротенками. М.: Луч, 1997 .

12. Бедимогов С.С. Задержание и удаление механических включений из сточных вод. //  Водоснабжение и санитарная техника  2002 г. №2

13. Яковлев С.В., Калицун В.И. Механическая очистка сточных вод. М.: Стройиздат, 1992 . 

14. Перов А.Г., Дудкин Е.В., Мотовилова Н.Б., Андрианов А.П. Ультрафильтрация - технология будущего. // Водоснабжение и санитарная техника 2001 г. № 9.

15. Лукиных Н.А. и др. Методы доочистки сточных вод. М.: Стройиздат, 1989.

16. Гвоздяк П.И., Дмитриенко Т.М., Куликов Н.И. Очистка промышленных сточных вод. // Химия и технология воды 1995 г. т.9. № 1.

17. Карелин Я.А., Жуков Д.Д., Журов В.Н., Репин Б.Н. Очистка производственных сточных вод в аэротенках. М.: Стройиздат, 1989 .

18. Яковлев С.В., Воронов Ю.В. Биологические фильтры. М.: Стройиздат, 1975 .

19. Лукиных Н.А., Липман Б.Н., Кришгуль В.П. Методы доочистки сточных вод. М.: Стройиздат, 1978 .

20. Кожен Дж. Обзор физико-химических методов очистки сточных вод. М.: Химия, 1986 .

21. Запольский А.К. и др. Коагулянты и флокулянты в процессах очистки воды. Л.: Химия, 1987.

22. Будыкина Т.А., Яковлев С.В., Ханин А.Б. Коагулянты для очистки сточных вод. // Водоснабжение и санитарная техника 2001 г. № 10.   

23. Вейцер Ю.И., Минц Д.М. Высокомолекулярные флокулянты в процессах очистки природных и сточных вод. М.: Стройиздат, 1974.

24. Кузнецов О.Ю., Данилина Н.И. Экологически безопасные и полимерные биоциды. М.: ИЭТП, 2000.

25. Ефимов К.М., Гембицкий П.А., Дюмаева И.В., Данилина Н.И. Дезинфицирующие флокулянты для очистки и обеззараживания питьевых и сточных вод. // Водоснабжение и санитарная техника 2001 г. № 6.

26. Мацнев А.И. Очистка сточных вод флотацией Киев: Будiвельник, 1976 .

27. Медрим Г.Л., Тейшева А.А., Басин Д.А. Обеззараживание природных и сточных вод с использованием электролиза. М.: Стройиздат, 1982.

28. Новиков В.К., Паскуцкая Л.Н., Рыбакова Л.Н. Очистка воды для хозяйственно-питьевых целей с применением окислителей и сорбентов. М.: 1992.

29. Кузубова Л.И., Кобрина В.Н. Химические методы подготовки воды (хлорирование, озонирование, фторирование). // Аналит.обзор.Сер.Эколо-гия. Вып. 42. Новосибирск, 1998.

30. Гончарук В.В., Потапченко Н.Г. Современное состояние, проблемы обеззараживания воды. // Химия и технология воды 1998г. 20. №2.

31. Майстренко В.Н., Хамитов Р.З., Будников Г.К. Эколого-аналитический мониторинг супертоксикантов. М.: Химия, 1996.

32. Гюнтер Л.И., Алексеева Л.П., Хромченко Я.Л. Влияние органических примесей в природной воде на образование токсичных галогеналканов при её хлорировании. // Химия и технология воды 1986 г. т 8. № 1.

33. Драгинский В.Л., Алексеева Л.П. Образование токсичных продуктов при использовании различных окислителей для очистки воды.// Водоснабжение и санитарная техника 2002 г. № 2.

34. Драгинский В.Л., Алексеева Л.П. Методические рекомендации по применению озонирования и сорбционных методов в технологии очистки воды от загрязнений природного и антропогенного происхождения. М.: НИИ КВОВ, 1995.

35. Смирнов А.Д. Сорбционная очистка воды. Л.: Химия, 1982.

36. Смирнов А.Д., Миркин В.И., Кантор Л.И. Углевание воды при экстраординарных загрязнениях водоисточника – р.Уфа. // Водоснабжение и санитарная техника 2001 г. № .

37. Петошина Н.П. Поэтапное предотвращение загрязнений водоемов сточными водами. // Водоснабжение и санитарная техника 1999 г. № 6.

38. Дрозд Г.Я., Зотов Н.И., Маслак В.Н. Технико-экологические записки по проблемам утилизации осадков городских и промышленных сточных вод. Донецк, 2001 г.

39. Беляева С.Д., Гюнтер Л.И., Аграноник Р.Я. Комплексные подходы к решению проблемы обработки и размещения осадков сточных вод. // Водоснабжение и санитарная техника 2002 г. № 2.

40. Чертес К.Л., Стрелков А.К., Быков Д.Е. и др. Утилизация осадков  сточных вод в качестве материала для изоляции ТБО. // Водоснабжение и санитарная техника 2001 г. № 6.

41. Чертес К.Л., Стрелков А.К., Быков Д.Е. и др. Новое направление использования избыточного активного ила. // Водоснабжение и санитарная техника 2001 г. № 5.

42. Новиков Ю.В., Ласточкин К.Щ. Методы исследования качества воды водоемов.-М.:Медицина,1998.

43. Брызгалов В.А. Методы определения загрязняющих веществ в поверхностных водоемах.-Л.:Гидрометиздат,1987.

44. Беспамятнов Г.П., Кротов Ю.А. Предельно допустимые концентрации химических веществ в окружающей среде.-Л.:Химия,1989.

45. Макар С.В. Основы экономики природопользования. М.: Институт международного права и экономики им. А.С. Грибоедова, 1998.

46. Балацкий О.Ф., Мельник Л.Г., Яковлев А.Ф. Экономика и качество окружающей среды. Л., 1984.

47. Инструктивно-методические указания по взиманию платы за загрязнения окружающей среды (в ред. Приказа Госкомэкологии РФ от 15.02.2000 г. № 77).

48. Кукин П.П., Лапин В.Л., Пономарев Н.Л., Сердюк Н.И. Безопасность жизнедеятельности. Безопасность технологических процессов и производств (охрана труда). М.: Высшая школа, 2001.

49. Трудовой кодекс РФ 2003.

50. Бобков А.С., Блинов А.А., Роздин И.А., Хабарова Е.И. Охрана труда и экологическая безопасность в химической промышленности. М.: Химия, 1998

51. Михеев Г.М., Исмагилов Ф.Р., Абдюкова Г.М. Безопасность жизнедеятельности. Защита населения в чрезвычайных ситуациях. Уфа: Юниграф, 2002.

52. Стихийные бедствия, аварии, катастрофы. Правила поведения и действия населения. / Сборник методических разработок для проведения занятий с населением по тематике ГО и ЧС/ М., 1998.


Страницы: 1, 2, 3


© 2000
При полном или частичном использовании материалов
гиперссылка обязательна.