РУБРИКИ

Очистка условно-чистых стоков на моделях по разработанной технологии

   РЕКЛАМА

Главная

Зоология

Инвестиции

Информатика

Искусство и культура

Исторические личности

История

Кибернетика

Коммуникации и связь

Косметология

Криптология

Кулинария

Культурология

Логика

Логистика

Банковское дело

Безопасность жизнедеятельности

Бизнес-план

Биология

Бухучет управленчучет

Водоснабжение водоотведение

Военная кафедра

География экономическая география

Геодезия

Геология

Животные

Жилищное право

Законодательство и право

Здоровье

Земельное право

Иностранные языки лингвистика

ПОДПИСКА

Рассылка на E-mail

ПОИСК

Очистка условно-чистых стоков на моделях по разработанной технологии

Электродиализные аппараты применяются двух типов: прокладочные и лабиринтные. Электродиализаторы прокладочного типа имеют горизонтальную ось электрического поля; их пропускная способность 2-20 м3/ч. Электродиализаторы лабиринтного типа имеют вертикальную ось электрического поля, их пропускная способность 1-25 м3/ч. Оптимальная область применения электродиализаторов – при концентрации солей в сточной воде 3-8 г/л. Во всех конструкциях электродиализаторов в основном применяют электроды, изготовленные из платинированного титана. Для эффективной работы аппаратов большое значение имеет промывка приэлектродных камер, что предохраняет крайние мембраны от разрушения продуктами электролиза. /27/

Технологические схемы электродиализных установок (ЭДУ) состоят из следующих узлов:

1) аппаратов предварительной подготовки исходной воды;

2) собственно электродиализной установки;

3) кислотного хозяйства и системы сжатого воздуха;

4) фильтров, загруженных активированным углем и бактерицидных установок. /27/

Технологические схемы бывают следующих типов.

1. Прямоточные ЭДУ, в которых сточная вода  последовательно или параллельно проходит через аппараты установки и солесодержащие воды снижается от исходного до заданного за один проход.

2. Циркуляционные (порционные) ЭДУ, в которых определенный объем частично обессоленной воды из бака дилюата перекачивается через мембранный электродиализный аппарат обратно и бак до тех пор, пока не будет достигнута необходимая степень обессоливания.

3. Циркуляционные ЭДУ непрерывного действия, в которых часть сточной воды непрерывно смешивается с частью не полностью обесссоленной воды (дилюата), проходит через электродиализатор и подается потребителю или в резервуар очищенной воды.

4. ЭДУ с аппаратами, имеющими последовательную гидравлическую систему движения потоков в рабочих камерах. /28/

Каждая из указанных выше технологических схем имеет определенные преимущества и недостатки, и их выбор производится на основании технико–экономических расчетов. Исходными параметрами для расчета являются: конкретные местные условия, пропускная способность ЭДУ, солесодержание и состав обрабатываемых сточных вод. Например. При суточном расходе более 300-500 м3 сточных вод считается рациональным применение технологических схем прямоточного типа.  /29/

1.2.4. Биологическая очистка производственных сточных вод

Биологическое окисление – широко применяемый на практике метод очистки производственных сточных вод, позволяющий очистить их от многих органических примесей. Процесс этот, по своей сущности, природный, и его характер одинаков для процессов, протекающих в водоеме, очистном сооружении, склянки для определения БПК, респирометре и т.п. Биологическое окисление осуществляется сообществом микроорганизмов (биоценозом), включающим множество высокоорганизованных организмов – водорослей, грибов и т.д., связанных между собой в единый комплекс сложными взаимоотношениями (метабиоза, симбиоза и антагонизма). Главенствующую роль в этом сообществе принадлежит бактериям, число которых варьируется от 106 до 1014 клеток на 1 г сухой биологической массы (биомассы). Число родов бактерий может достигать 5-10, число видов – нескольких – нескольких десятков и даже сотен.

Такое разнообразие видов бактерий обусловлено наличием в очищаемой воде органических веществ различных классов. Если же в составе сточных вод присутствует лишь один или несколько близких по составу источников органического углерода, т.е. одни или несколько близких гомологов органического соединения, то возможно развитие монокультуры бактерий. /29,40/

Сообщество микроорганизмов представлено одними бактериями в том случае, если очистку проводят в анаэробных условиях (в отсутствии растворенного в воде кислорода) или при слишком неблагоприятном уровне питания, который представляет собой отношение количества органических веществ к числу микроорганизмов. Неблагоприятным уровнем питания может оказаться, например, слишком высокое соотношение количеств подаваемых на очистку загрязнений и биомассы микроорганизмов. Если очистку проводят в анаэробных условиях (в присутствии растворенного кислорода), то при благоприятной обстановке в сообществе микроорганизмов развиваются простейшие, представленные числом видов от 1 до 15-30. /40/. Среди бактерий в очистных сооружениях сосуществуют гетеротрофы и автотрофы, причем преимущественное развитие та или иная группа получает в зависимости от условий работы системы. Эти две группы бактерий различаются по своему отношению к источнику углеродного питания. Гетеротрофы используются в качестве источника углерода готовые органические вещества и перерабатывают их для получения энергии и биосинтеза клетки. Автотрофные организмы потребляют для синтеза клетки неорганический углерод, а энергию получают за счет фотосинтеза, используя энергию света, либо хемосинтеза путем окисления некоторых неорганических соединений (например, аммиака, нитритов, солей двухвалентного железа, сероводорода, элементарной серы и др.). /41/.

II. ИССЛЕДОВАТЕЛЬСКАЯ ЧАСТЬ

2.1. Объекты исследования.


Объектами исследования явились сточные воды ОАО «Уфаоргсинтез». 

На заводе имеются два потока сточных вод: условно-чистые стоки и химически загрязненные стоки.

В систему промливневых стоков поступают стоки:

- от продувки водооборотных систем;

- стоки от технологических  установок (от охлаждения  технологического оборудования, насосов, от мытья производственных помещений и оборудования, технологические утечки и пропуски и т.д.);

- дождевые стоки с площадок, технологических установок, с крыш производственных и административных зданий, с проезжей части и территории предприятия.

- стоки, образовавшиеся от таяния снега;

- хозяйственно-бытовые стоки от бытовых, административных и производственных зданий.

Количество промливневых сточных вод:

- средний расход стоков: 300 м3/ч; 7200 м3/сут; 262800 м3/год.

- максимальный расчетный часовой расход стоков 500 м3/час.


2.2. Методы исследований.

2.2.1. Определение взвешенных веществ в сточных водах  гравиметрическим методом

Сухой остаток характеризует общее содержание растворенных в воде минеральных и частично органических веществ, температура кипения которых превышает 110 оС , нелетучих с водяным паром и не разлагающихся при указанной температуре /42/

Гравиметрический метод определения взвешенных веществ основан на выделении из  пробы фильтрованием воды через мембранный фильтр с диаметром пор 0,45 мкм или бумажный фильтр «синяя лента» и взвешивании осадка на фильтре после высушивания его до постоянной массы.

Определение общего содержания примесей (суммы растворенных и взвешенных веществ) осуществляют выпариванием известного объема нефильтрованной анализируемой воды на водяной бане, высушиванием остатка при 105 оС до постоянной массы и взвешиванием.

Ход определения.

Взвешенный бумажный фильтр помещают в воронку, смачивают небольшим количеством дистиллированной воды для хорошего прилипания и фильтруют отмеренный объем тщательно перемешанной анализируемой воды.

По окончании фильтровании дают воде полностью стечь, затем фильтр с осадком трижды промывают дистиллированной водой порциями по 10 см3, осторожно вынимают пинцетом и помещают в тот же бюкс, в котором его взвешивали до фильтрования. Фильтр высушивают 2 часа при 105 оС, охлаждают в эксикаторе и закрыв бюкс крышкой взвешивают. Повторяют процедуру  сушки, пока разница между взвешиваниями будет не более 0,5 мг при массе осадка 50 мг и менее 1 мг при массе более 50 мг.

Содержание взвешенных веществ в анализируемой пробе воды

(мг/дм3 )рассчитывают по формуле:


С = М1 – М2   100%

V

где  М1 и М2 – масса тигля с фильтром с высушиванием осадком после фильтрования и с чистым фильтром, мг;

V – объем пробы, взятой для анализа, мл.

2.2.2.Определение общей жесткости в сточных водах комплексонометрическим методом

Общая жесткость воды обусловлена главным образом присутствием растворенных соединений кальция и магния и варьирует в широких пределах в зависимости от типа пород и почв, слагающих бассейн водосбора, а также от сезона года.

При жесткости до 4 мг-экв/л вода считается жесткой; 4-8 мг-экв/л- средней жесткости; 8-12 мг-экв/л- жесткой; более 12 мг-экв/л- очень жесткой./42/

Метод основан на образовании прочного комплексного соединения при РН 10 ионов кальция и магния с этилендиаминтетраацетатом натрия ( трилон Б). Определение проводят титрованием пробы в присутствии индикатора. Минимально определяемая концентрация ).05 мг-экв/л (при тировании 100 мл пробы) /4

Ход определения.

Объем исследуемой воды берут с таким расчетом, чтобы содержание в нем ионов кальция и магния не превыщало 0,5 мг-экв/л в 100  мл профильтрованной пробы. В коническую колбу вносят 100 мл или меньший объем, разведенный до 100 мл дистиллированной водой, прибавляют 5 мл буферного раствора, 5-7 капель индикатора )или 0,1 г сухого индикатора) и сразу же титруют при сильном перемешивании 0,05 н. трилоном Б до изменения окраски в эквивалентной точке.

Нечеткое изменение окраски в эквивалентной точке указывает на присутствие меди и цинка. Для устранения влияния этих веществ к пробе воды до внесения буферного раствора добавляют 1-2 мл 5% сульфида натрия, после чего проводят анализ, как указано выше.

Общую жесткость воды  (мг-экв/л) вычисляют по формуле:

                                     С = А  н  К    1000

                                                 V

где  А- объем раствора трилона Б, израсходованного на титрование пробы, мл - ;

н – нормальность ратвора трилона Б;

К – поправочный коэффициент к титру раствора трилона Б;

V – объем пробы воды, взятой для титрования, мл.


2.2.3. Определение ХПК в сточных водах.

Окисляемость- общее количество содержащихся в воде восстановителей (неорганических и органических), реагирующих с сильными окислителями, например, бихроматом, перманганатом и др. Наиболее полное окисление достигается бихроматом калия, поэтому бихроматную окисляемость нередко называют «химическим потреблением кислорода(ХПК). Это основной метод определения окисляемости. Большинство соединений окисляется при этом на 95-100%. Однако есть небольшое число соединений (бензол, толуол, пиридин и др), которые совсем не окисляются бихроматом калия даже в присутствии катализатора. Окисление органических веществ бихроматом происходит до образования диоксида углерода и воды, азот выделяется в виде газа./42/

В 50% по объму серной кислоте бихромат калия при кипячении действует как сильный окислитель, особенно при использовании в качестве катализатора сульфата серебра. После окисления избыток бихромата находят титорованием раствором соли Мора.

Метод позволяет определить окисляемость от 15 мгО/л и выше при применении 0,1 н. раствора бихромата калия и от 5 до 50 мгО/л при использовании 0,05 н.раствора.

Ход определения.

В отсутствии хлоридов. Отбират порцию воды, чтобы на ее окисление расходовалось около 50% раствора бихромата калия, разбавляют ее дистиллированной водой, переносят в круглодонную колбу вместимость 300 мл, прибавляют 10 мл 0,1 н. бихромата калия и осторожно , малыми порциями, тщательно перемешивая смесь после дбавления каждой порции, 30 мл серной кислоты. Затем добавляют 0,3-).4 г. Сульфата серебра, вводят в колбу несколько стеклянных капилляров, присоединяют к обратному холодильнику, нагревают до слабого кипения и кипятят 2 часа. Затем охлаждают, обмывают стенки холодильника 25 мл дистиллированной воды и переносят содержимое колбы в коническую колбу вместимостью 500 мл, доводя объем до 350 мл. Вводят  4-5 капель феррона или 10-15 капель N- фенилантраниловой кислоты и оттитровывают избыток бихромаьа калия солью Мора.

Если в анализируемой воде содержатся хлориды, то можно проводить определение, не добавляя катализатор сульфат серебра. Хлориды-ионы окисляются до свободного хлора.

Для холостого опыта берут 20 мл дистиллированной воды и проводят ее через все ступени анализа.

Величину ХПК (мг О/л) вычисляют по формуле:

ХПК = (А – В) н К 8    1000

                                                             V

где А и В – объем растворов соли Мора, израсходованных на титрование холостого опыта и пробы, мл;

Н – нормальность раствора соли Мора;

К – поправоный коэффициент к титру раствора соли Мора;

V – объем  анализируемой воды, мл;

8 – эквивалент кислорода.


2.2.4. Определение нефтепродуктов в сточных водах методом ИКС.

Нефтепродукты относятся к числу наиболее распространенных загрязняющих веществ. В воде находятся в различных миграционных формах- растворенный, эмульгированный, сорбированный на взвешенных частицах, в виде пленки. Нефтепродукты при анализе воды условно принято считать только неполярные и малополярные углеводороды, растворимые в гексане, т.е сумму алифатических, нафтеновых, ароматических углеводородв, составляющих основную часть нефти./42,43/

Метод определения нефтепродуктов заключается в экстракции эмульгированных и растворенных нефтепродуктов из воды четыреххлористым углеродом: отделение нефтепродуктов от сопутствующих органических соединений других классов на колонке, заполненной оксидом алюминия и измерением массовой концентрации нефтепродуктов методом ИК-спектрометрии.

Ход определения.

В сосуд с пробой воды приливают серную кислоту из расчета 2 см3 кислоты на 100 см3 пробы и переносят пробу в экстратор. Сосуд, в котором была проба ополаскивают 10 см3 четыреххлористого  углерода и добавляют  этот растворитель в экстратор. Прибавляют еще 20 см3 СCL4 и включают экстрактор на 4 мин, отстаивают эмульсию в течение 10 мин. После расслоения эмульсии нижний слой сливают в цилиндр вместимостью 100 см3. Экстракт сушат безводным сульфатом натрия в течение 30 мин. После чего экстракт осторожно сливают в цилиндр  вместимостью 50 мл.

В подготовленную хроматографическую колонку наливают 8 см3 СCL4 для смачивания, а затем промывают 5 мл этого растворителя. Как только раствор достигнет верхнего уровня оксида алюминия, в колонку вливают небольшими порциями подготовленный экстракт, собирают элюат в мерную колбу вместимостью 50 см3, пропуская в конце хроматографирования чистый растворитель. Измеряют объем элюата. Элюат заливают в кювету и устанавливают в прибор АН-1 или КН-1. Фиксируют показания прибора, соответствующие количеству нефтепродуктов в 1 см3 элюата. Концентрацию нефтепродуктов  (мг/дм3)  воде вычисляют по формуле:

С = С изм. В  К

V

где С изм – содержание нефтепродуктов в элюате, измеренное на приборе;

В – объем экстракта, пошедшего на анализ, см3;

V – объем пробы воды, взятой для определения, см3;

К – коэффициент разбавления элюанта.


2.2.5. Определение хлоридов в сточных водах меркуриметрическим методом.

Много хлоридов попадает в водоемы со сбросами хозяйственно-бытовых и промышленных сточных вод.

Метод основан на титровании хлоридов раствором нитрата ртути со смешанным индикатором (дифенилкарбазоном и бромфеноловый синий). При этом ионы ртути связываются с ионами хлора в молодиссоциирующее соединение хлорида ртути, а избыток их образует с индикатором комплекс фиолетового цвета./42,43/.

Определению не мешают цветность воды. Мешают иодиды и бромиды в концентрациях эквивалентных хлоридам, сульфиды и железо в концентрациях выше 10 мг/л.

Ход определения.

 Отбирают 100 мл исследуемой воды, прибавляют 10 капель смешанного индикатора, затем по каплям 0,2 н. азотной кислоты до появления желтой окраски (рН 3,6), после чего еще 5 капель той же кислоты. Титруют раствором нитрата ртути, к концу титрования окраска приобретает оранжевый оттенок. Для более четкого определения конца титрования используют контрольную пробу, к 10 мл которой прибавляют индикатор, 2 мл 0,2 н. азотной кислоты и одну каплю нитрата ртути.

Концентрацию хлоридов (мг/л)  рассчитывают по формуле:

С = А  К  н    1000

                                                            V

где А- объем раствора нитрата серебра, израсходованного на титрование, мл;

К- поправочный коэффициент к титру раствора нитрата серебра, мг;

V – объем пробы, взятой для определения, мл.


2.3. Требования, предъявляемые к качеству сточных вод для повторного использования

Процессы, применяемые для очистки сточных вод делятся на физико-химические и биологические. Обычно первая стадия очистки это физико-химические процессы, вторая стадия -биологические. Уровень требований, предъявляемых к качеству воды для повторного использования, позволяет решить эти задачи с помощью физико- химических процессов.

Требования по качеству к воде, направляемой на повторное использование:

Взвешенные вещества-                                             не более 25 мг/л

Сульфаты                                                                   не более 130 мг/л

Хлориды                                                                    не более 50 мг/л

Общее солесодержание                                            не более 500 мг/л

Временная жесткость                                               не более 2,5 мг-экв/л

Постоянная жесткость                                             не более 3,3 мг-экв/л

Для исследования возможности использования очищенных стоков для повторного использования  были смоделированы следующие процессы:

- процесс перевода бикарбонатов кальция и магния в малорастворимые карбонаты;

- процесс отстаивания;

- процесс фильтрации;

- процесс сгущения;

- процесс центрифугирования.

Для эксперимента были отобраны исходные реальные стоки: условно чистые стоки ( УЧС) с отделения механической очистки до песколовок, речная вода (РВ), щелочные стоки (ЩС) с отделения приемной камеры перед насосной станцией.

Анализы потоков проводились по следующим качественным показателям: рН, взвешенные вещества, жесткость общая, жесткость кальциевая, ХПК, эфироизвлекаемые, нефтепродукты, щелочность, сульфаты, общее солесодержание, хлориды.


2.4. Данные о результатах анализов условно-чистых стоков.

Данные о результатах анализов условно-чистых стоков по приведенным качественным показателям представлены в таблице 1.

Как видно, по представленным результатам условно-чистые воды характеризуются незначительными загрязнениями ХПК ( в 1,02 раза) и значительной общей жесткостью, превышение в 1,4 раза. Кальциевая жесткость составляет 74,33% от общей жесткости.  Содержание сульфатов, хлоридов общее солесодержание  превышает требования к очищенным стокам, направляемым  на повторное использование  в 2;  1,6  и  1,5 раза соответственно. Зарегистрировано превышение содержания взвешенных веществ в 1,52 раза.

Таблица 1

Качество условно- чистых стоков


Наимнование показате-

лей качества УЧС

Номер пробы

1

2

3

4

5

6

∑ср

рН

7,31

7,86

7,60

7,90

7,76

8,20

7,77

Взвешенные вещества,

мг/л

50,0

42,0

30,0

36,0

40,0

30,0

38,0

Жесткость общая,

мг-экв/л

7,02

8,13

8,70

7,20

7,70

7,90

7,79

Жесткость кальцивая,

мг-экв/л

5,76

6,12

7,04

5,00

5,00

5,04

5,79

ХПК, мг/л

43,0

25,6

24,3

16,0

17,0

18,0

25,4

Эфироизвлекаемые,

мг/л

4,3

3,1

3,4

3,8

3,3

3,7

3,6

Щелочность, мг-экв/л

9,2

8,8

9,4

9,0

9,1

8,5

9,0

Сульфаты, мг/л

264,0

271,0

288,0

260,0

282,0

255,0

270,0

Нефтепродукты, мг/л

0,18

0,23

0,22

0,20

0,20

0,29

0,22

Хлориды, мг/л

69,8

80,2

81,4

81,2

76,9

77,9

77,9

Общее солесодержание,

мг/л

684,6

715,9

760,6

726,8

772,1

730,0

730,0


2.5. Данные о результатах анализов щелочных стоков.

Данные о результатах анализов щелочных стоков приведены в табл. 2. Щелочные стоки характеризуются высоким водородным показателем рН=11,66  и значительными органическими загрязнениями, при чем необходимо отметить, что большое количество органических загрязнений находится в растворенном виде. Содержание взвешенных  веществ составляет 62,5 мг/л, что в 2,5 раза выше  требований по качеству к воде, направляемое на повторное использование. Также зарегистрировано превышение по хлоридам, нефтепродуктам,   общему солесодержанию в 2,9; 34,0; 8,3 раза соответственно.

Таблица 2

Качество щелочных стоков


Наимнование показате-

лей качества ЩС

Номер пробы

1

2

3

4

5

6

∑ср

рН

11,60

11,89

11.59

11,52

11,4

11,70

11,66

Взвешенные вещества,

мг/л

40,0

90,0

50,0

65,0

60,0

70,0

62,5

Жесткость общая,

мг-экв/л

-

-

-

-

-

-

-

Жесткость кальцивая,

мг-экв/л

-

-

-

-

-

-

-

ХПК, мг/л

522,0

618,8

522,0

620,0

-

660,0

588,6

Эфироизвлекаемые,

мг/л

40,0

44,0

40,7

42,5

40,8

41,6

41,6

Щелочность, мг-экв/л

51,4

54,0

56,0

57,2

58,3

59,1

56,0

Сульфаты, мг/л

-

-

-

-

-

-

-

Нефтепродукты, мг/л

8,4

11,2

10,3

7,8

12,6

11,5

10,3

Хлориды, мг/л

140,8

150,2

145,7

151,0

143,4

141,9

145,5

Общее солесодержание,

мг/л

4087,4

4267.7

4145,0

4120,8

4078,5

4176,6

4146,0


2.6. Данные о результатах анализов речной воды.


Речная вода имеет нейтральную среду рН=7,43 и имеет общую жесткость 6,73 мг-экв/л. При этом кальциевая жесткость 4,5 мг-экв/л (66,87% от общей жесткости). Такой уровень жесткости является граничным для использования речной воды для подпитки водооборотных систем. Незначительное содержание взвешенных веществ. По другим загрязняющим веществам не зарегистрировано превышение. Качество речной воды соответствует требованиям, которые предъявляются к  воде, направляемой на повторное использование.

Данные о результатах анализов речной воды приведены в табл.3

Таблица 3

Качество речной воды


Наимнование показате-

лей качества РВ

Номер пробы

1

2

3

4

5

6

∑ср

рН

7,56

7,34

7,51

7,31

7,56

7,30

7,43

Взвешенные вещества,

мг/л

10,0

30,0

12,0

16,2

17,6

15,0

16,8

Жесткость общая,

мг-экв/л

5,19

5,84

5,52

6,34

5,44

6,05

5,73

Жесткость кальцивая,

мг-экв/л

2,53

4,40

3,76

3,3

4,2

2,81

3,5

ХПК, мг/л

1,8

3,6

2,9

10,0

6,0

3,3

4,6

Эфироизвлекаемые,

мг/л

1,0

1,16

1,1

1,2

1,0

1,08

1,09

Щелочность, мг-экв/л

-

-

-

-

-

-

-

Сульфаты, мг/л

80,0

84,9

92,2

80,6

82,6

84,9

84,2

Нефтепродукты, мг/л

0,091

0,068

0,1

0,076

0,064

0,027

0,071

Хлориды, мг/л

39,5

48,2

40,0

36,8

45,9

52,4

43,8

Общее солесодержание,

мг/л

576.4

610,1

610,7

593,3

567,9

603,6

606,0

III. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В целях возможности использования очищенных стоков для повторного использования были смоделированы  процессы перевода бикарбонатов кальция и магния в малорастворимые карбонаты, отстаивания сточных вод, фильтрации, процессов сгущения осадка повторным отстаиванием, процесс центрифугирования сгущенного осадка,


3.1. процесс перевода бикарбоната кальция и магния в малорастворимые карбонаты.


Для достижения  требований по качеству к воде, направляемой на повторное использование, в целях снижения жесткости условно-чистых стоков  были опыты по  смешению  условно-чистых стоков со щелочными.

Известно, что общая жесткость воды обусловлена главным образом присутствием в воде растворенных соединений кальция и магния,  и варьирует в широких пределах. В сильнощелочной среде  комплекс ионов магния разрушается.  Путем смешения двух стоков переводим бикарбонат-ионы в карбонат- ионы. Последние образуют с ионами кальция и магния нерастворимые основные соли. При этом происходит снижение жесткости.

Процесс исследовали при различных рН смеси стоков: рН 8,4 и 10,0 Контролировали параметры: жесткость общая, жесткость временная и рН.

Как видно по результатам исследований (табл.4 ) при доведении рН смеси до 8,4 происходит снижение общей жесткости в среднем на 5,65%, кальциевой жесткости на 13,98%. При этом возрастает загрязненность органикой по эфироизвлекаемым  в среднем на 15,28%, ХПК на 77,95%.

При доведении рН смеси до 10,0  происходит снижение общей жесткости в среднем на 52,25%, кальциевой жесткости на 75,13%. Увеличение ХПК в среднем в три раза, нефтепродуктов в четыре раза. Увеличение общего солесодержания на 50,69%. Уменьшение сульфатов на 14,44%, Для поддержания водородного показателя РН= 10,0 доза щелочных стоков составляет 150-160 мл на 1000 мл условно-чистых стоков.


Таблица 4

Результаты лабораторных данных смеси условно-чистых стоков и щелочных стоков.


Номер

пробы

Наименование показателей качества смеси УЧС и ЩС

рН

Взвешенные

вещества

мг/л

Жесткость

общая

мг-экв/л

Жесткость кальциевая

мг-экв/л

ХПК

мг/л

Эфиро-извлекаем

мг/л

Нефте-

продукты

мг/л

Сульфа-ты

мг/л

Хлори-

ды

мг/л

Общее

солесод.

мг/л

1

8,40

40,00

6,84

4,32

57,60

4,50

-

-

-

-

2

8,40

32,00

7,56

5,14

36,80

3,80

-

-

-

-

3

8,40

33,00

7,65

5,48

41,2

4,15





Средн.

знач.

8,40

35,0

7,35

4,98

45,20

4,15

-

-

-

-

4

10,0

55.00

3,74

1,44

83,0

-

0,89

231,0

71,75

-

5

10,0

53,00

3,70

1,45

70,00

-

0,80

252,0

60,97

-

6

10,0

57,00

3,72

1,43

79,00

-

0,95

231,0

82,50

1100,00

Средн.

знач.

 10,0

55,0

3,72

1,44

77,50

-

0,88

231,0

71,74

1100,00


Примечание: 1 Доза щелочных стоков составляет 150-160 мл условно-чистых стоков для поддержания водородного показателя рН=10

3.2. Процесс отстаивания


Отстаивание применяют для осаждения из сточных вод грубодисперсных примесей. Осаждение происходит под действием силы тяжести. Как правило, сточные воды, содержащие взвешенные примеси, имеют частицы различной формы и размера. Такие воды представляют собой полидисперсные гетерогенные агрегативно-неустойчивые системы. В процессе осаждения размер, плотность и форма частиц, а также физические свойства системы изменяются. Кроме того, при слиянии различных по химическому составу сточных вод, могут образоваться твердые вещества, в том числе и коагулянты, что также оказывает влияние на форму и размеры частиц.

Свойства сточных вод отличаются от свойств чистой воды, в частности, более высокими значениями вязкости и плотности.

При отстаивании сточных вод наблюдается стесненное осаждение, которое сопровождается столкновением частиц, трением между ними и изменением скоростей как больших, так и малых частиц.  Скорость стесненного осаждения меньше скорости свободного осаждения вследствие возникновения восходящего потока жидкости и большей вязкости среды. Скорость осаждения полидисперсной системы непрерывно изменяется во времени.

Динамика процесса отстаивания изучалась на условно чистых стоках  и на смеси условно-чистых и щелочных стоков при разных рН (8,4 и 10,0).  Отстаивание проводили  в стандартном мерном цилиндре, высота слоя стока 50 см.

Программа испытаний:

- отстаивание УЧС- 30 мин; 60 мин; 90 мин.

- отстаивание УЧС + ЩС – 30 мин; 60 мин; 90 мин.

Проанализировали исходные и осветленные  условно-чистые стоки на : РН, механические примеси, эфироизвлекаемые соединения.  Динамику процесса отстаивания смеси условно-чистых стоков и щелочных стоков  определяли по изменению показателей: взвешенные вещества, жесткость общая, жесткость кальциевая, эфироизвлекаемые, щелочность, нефтепродукты, сульфаты, ХПК и хлориды

Как видно по результатам лабораторных исследований, отстаивание условно-чистых стоков  (табл.5) приводит к осветлению в соответствии с данными, приведенными в нормативно-технической литературе. Эффективность очистки от взвешенных веществ при 30 мин. отстаивании  составляет 40%, при 60 мин. отстаивании   80%, при 90 мин. отстаивании 90%. Зарегистрировано уменьшение по ХПК при 90 мин.  отстаивании на 28 %.

При изучении процесса отстаивании смеси условно-чистых стоков и щелочных при рН= 8,4  выявлены несколько худшие результаты. Но при смещении водородного показателя рН=10,0    эффективность очистки при 60 мин. отстаивании смеси условно-чистых стоков и щелочных стоков составляет 64% (табл.6). Жесткость общая при 60 мин. отстаивании в среднем снижается незначительно (9,95%), жесткость кальциевая в целом не меняется. ХПК снижается на 42%, хлориды на 8,15%.


Таблица 5

Результаты лабораторных данных процесса отстаивания условно-чистых стоков



Номер

пробы

Наименование показателей качества УЧС


рН

Взвешенные

Вещества мг/л

Жесткость

Общая мг-экв/л

Жесткость

Кальциевая мг/л


ХПК мг/л

Эфиро-

Извлекаемые мг/л

1

2

3

4

5

6

7

Исходная УЧС

1

7,31

50,0

7,02

5,76

43,0

4,3

2

7,86

42,0

8,13

6,12

35,6

3,1

3

7,60

30,0

8,7

7,04

24,3

3,4

Среднее

значение

7,59

40,6

7,95

6,30

34,3

3,6

Отстаивание 30 мин.

1

7,00

32,0

8,11

8,31

30,6

-

2

7,21

26,00

8,90

8,14

28,9

-

3

7,15

32,00

7,83

8,39

32,4

-

Среднее

значение

7,12

30,00

8,28

8,28

30,6

-

Отстаивание 60 мин.

1

7,04

9,0

8,6

6,60

31,7

2,2

2

7,11

11,0

7,9

6,54

32,2

2,3

3

7,30

10,0

9,0

7,02

29,7

2,7

Среднее

значение

7,15

10,0

8,5

6,72

31,6

2,4

Отстаивание 90 мин.

1

7,20

7,2

6,11

5,90

31,0

1,6

2

7,00

4,6

5,98

6,21

22,0

1,2

3

7,25

3,2

6,27

5,17

22,0

1,6

Среднее

значение

7,15

5,0

6,12

5,76

25,0

1,0

Страницы: 1, 2, 3


© 2000
При полном или частичном использовании материалов
гиперссылка обязательна.