РУБРИКИ

Проектирование малых водопропускных сооружений и водоотвода

   РЕКЛАМА

Главная

Зоология

Инвестиции

Информатика

Искусство и культура

Исторические личности

История

Кибернетика

Коммуникации и связь

Косметология

Криптология

Кулинария

Культурология

Логика

Логистика

Банковское дело

Безопасность жизнедеятельности

Бизнес-план

Биология

Бухучет управленчучет

Водоснабжение водоотведение

Военная кафедра

География экономическая география

Геодезия

Геология

Животные

Жилищное право

Законодательство и право

Здоровье

Земельное право

Иностранные языки лингвистика

ПОДПИСКА

Рассылка на E-mail

ПОИСК

Проектирование малых водопропускных сооружений и водоотвода

Проектирование малых водопропускных сооружений и водоотвода

СОДЕРЖАНИЕ

ВВЕДЕНИЕ 4

1 ОПРЕДЕЛЕНИЕ РАЗМЕРОВ ВОДОСБОРНОЙ ПЛОЩАДИ 5

2 ГИДРОЛОГИЧЕСКИЙ РАСЧЕТ 6

3 ГИДРАВЛИЧЕСКИЙ РАСЧЕТ МАЛОГО МОСТА 9

4 ГИДРАВЛИЧЕСКИЙ РАСЧЕТ ТРУБ (БЕЗНАПОРНОЙ, ПОЛУНАПОРНОЙ, НАПОРНОЙ)

12

5 ГИДРАВЛИЧЕСКИЙ РАСЧЕТ ФИЛЬТРУЮЩЕЙ НАСЫПИ 15

6 ГИДРАВЛИЧЕСКИЙ РАСЧЕТ КАНАВ 17

7 СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 19

1 ОПРЕДЕЛЕНИЕ РАЗМЕРОВ ВОДОСБОРНОЙ ПЛОЩАДИ

Разбиваем площадь водосборного бассейна на треугольники и рассчитываем каждый треугольник по формуле

F= (р(р-а)(р-в)(р-с) , р=а+в+с/2 (1.1)
Где: F- площадь , р- полупериметр треугольника, а,в,с- стороны треугольника.

F1=(0,144(0,144-0,074)(0,144-0,125)(0,144-0,09)= 0,329 км2 (1.2)

F2=(0,135(0,135-0,09)(0,135-0,054)(0,135-0,127)= 0,206 км2 (1.3)

F3=(0,139*0,012*0,053*0,074= 0,255 км2 (1.4)

Складываем площади и получаем общую площадь водосборного бассейна

F= 0,329+0,206+0,255= 0,79 км2 (1.5)

5

2 ГИДРОЛОГИЧЕСКИЙ РАСЧЕТ

2.1 Определяем расход Qл3%

Qл= 16,7*Ар*ар*F*(*Ki*Кф, м3/с (2.1)

Расчетная интенсивность осадков

Ар= ач*Кт , мм/мин (2.2) ливневый район №4 ,
Где, ач- часовая интенсивность осадков;

Кт – коэффициент редукции часовой интенсивности осадков; ач= 0,74 (по таблице 1, страница 4),

Кт= 1,60 (по таблице 2, страница 4),
По формуле 2.2 расчетную интенсивность осадков

Ар= 0,74*1,60= 1,12 мм/мин

Склоновый сток ар= а0*( (2.3) где, а0- коэффициент стока при полном насыщении почвы влагой (по таблице 3, страница 4); а0= 0,65
(- коэффициент, учитывающий естественную аккумуляцию стока,

(= 1-(*(*П (2.4) где, ( - коэффициент проницаемости почво-грунтов (по таблице 6, страница
4),

(= 0,15
(- коэффициент, учитывающий состояние почво-грунтов (таблица 7, страница
5),

(= 1,0
П- поправочный коэффициент на редукцию проницаемости (таблица 10-11, страница 5),

П= 1,0
По формуле 2.4 рассчитываем коэффициент (

(= 1-0,15*1*1= 0,85 по формуле 2.3 рассчитываем склоновый сток ар= 0,65*0,85= 0,55

Коэффициент редукции максимальных расходов (таблица 4, страница 4),

(= 0,57

Коэффициент крутизны водосборного бассейна Кi, для чего рассчитываем уклон лога

Iл= (Нвтл-Нтр)/L (2.5)
Где, Нвтл- высшая точка лога

Нвтл=172,5
Нтр- точка сооружения

Нтр= 167,5
L- длина лога

L= 1240 м
Рассчитываем по формуле 2.5 уклон лога

Iл= (172,5-167,5)/1240= 0,004= 4%0
Тогда по таблице 5, страница 4 находим

Кi= 0,78
Коэффициент, учитывающий форму водосборной площади, Кф
6

Кф=((Ф/L)(F (2.6)
Принимаем форму водосборной площади в виде треугольника.
Принимаем поправочный коэффициент (Ф, для чего находим L2/F

L2/F=1,242/7,9=0,19
По таблице 8, страница 5 находим поправочный коэффициент

(Ф= 0,98 по формуле 2.6 рассчитываем коэффициент Кф

Кф=(0,98/1,24)(0,79= 0,70
По формуле 2.1 рассчитываем расход

Qл3%= 16,7*1,12*0,55*0,79*0,57*0,78*0,70= 2,5 м3/с

2.2 Определяем расход от талых вод, Qсн

Qсн= (Кд*hp*F/(F+1)n(*Коз*Кл.б. (2.7)
Определяем коэффициент дружности половодья, Кд
Для чего определяем категорию рельефа:

(= iл/iтип (2.8) находим типовой уклон iтип=25/(F+1=25/(0,79+1=18,66 %0 (2.9) тогда по формуле 2.8 получаем

(= 4/18,66= 0,21
0,21(1, значит категория рельефа- III
По таблице 14, страница 6 находим коэффициент Кд

Кд= 0,006

Определяем расчетный слой суммарного стока,hр hр=К*h0 (2.10) где, К- модульный коэффициент

К=Сv*Ф+1 (2.11) где, Сv- коэффициент вариации слоя стока, определяется по приложению 3, страница 3

Сv= 0,3
Ф- отклонение кривой ВП от среднего значения Сv= 1, находим по таблице 16, страница 6, для чего рассчитываем коэффициент асимметрии Сs

Сs= 3 Сv= 3*0,3= 0,9
Далее

Ф= 2,45
По формуле 2.11 рассчитываем модульный коэффициент

К= 0,3*2,45+1= 1,73 h0 – исходная величина стока, соответствующая конкретному территориальному району. Принимается по приложению 2, страница 2. h0= 180 мм
Так как грунты глинистые, то h0=180*1,1= 198 мм
По формуле 2.10 рассчитываем hр hр= 1,73*198= 342,54
По формуле 2.7 рассчитываем расход от талых вод

Qсн= 0,006*342,54*0,79/(0,79+1)0,25= 1,62/1,16= 1,4 м3/с

7

2.3 С учетом аккумуляции стока
Вычерчиваем живое сечение

Н= 168,75-165,5= 3,25 iАС= 1/0,0178= 56 iВС= 1/0,0089= 112

Определяем объем дождевого стока

W= 1000*Ар*ар*F*tф (2.12)
Где, tф- расчетная продолжительность осадков, формирующих ливень часовой продолжительности. Определяется по таблице 12, страница 5 tф= 30 мин
Тогда

W= 1000*1,12*0,55*0,79*30= 14599 м3
Определяем объем пруда

Wп= 220*В*h2/i0 (2.13)

Для Qр= 2,5(Vдоп= 0,5 м/с
Отсюда находим площадь сечения пруда

(= Q/V=2,5/0,5= 5 м2 (2.14)
Определяем глубину пруда h= ((*2/H= (5*2/168= 0,2 м (2.15)
Далее, по формуле 2.13, рассчитываем объем пруда

Wп= 220*34*0,22/4= 75 м3
Определяем расход с учетом аккумуляции

Qак= Qл(1- (Wп/W)0.75(= 2,5(1-(75/14599)0,75(= 2,45 м3/с (2.16)
Вывод: погрешность составляет менее 5%, аккумуляцию учитывать не надо.
Следовательно принимаем Qр= 2,5 м3/с.

8

3 ГИДРАВЛИЧЕСКИЙ РАСЧЕТ МАЛОГО МОСТА


Вычерчиваем живое сечение

Qл= Qр= 2,5 м3/с n= 0,033 m= 0,46

Продольный уклон лога 4 %0=

= 0,004

Грунт - глины

Задаемся бытовой глубиной hб= m3(К/I (3.1) где, m- русловой коэффициент. Он определяется по таблице 1, страница 7 m= 0,45
К- модуль расхода. Определяется по формуле

К= Qр/(iл= 2,5/(0,004= 39,7 м3/с (3.2)
I- сумма котангенсов

I= m+n= 1/0,0178+1/0,0083= 56+112= 168 (3.3)
Далее рассчитываем по формуле 3.1 бытовую глубину hб= 0,463(39,7/168= 0,29 м
Определяем пропускную способность живого сечения

Q= (*V (3.4) где, (- площадь живого сечения

(= (hб2/2)I=(0,292/2)168= 7,06 м2 (3.5)
V- скорость потока

V= С(R*i (3.6) где, С- коэффициент Шези. Определяется по рисунку 5, страница 7, для чего находим гидравлический радиус R

R= hб/2= 0,29/2= 0,15 (3.7)
Определяем коэффициент Шези

С= 15
По формуле 3.6 определяем скорость потока

V= 15(0,15*0,004= 0,37 м/с
Далее по формуле 3.4 определяем пропускную способность

Q= 7,06*0,37= 2,6 м3/с
Расхождение между Q и Qр составляет меньше 5%, следовательно принимаем

Qр= 2,5 м3/с
Строим таблицу (= ((hб)
|hб |( |С |R |Q |
|0,24 |4,84 |13 |0,12 |1,4 |
|0,29 |7,06 |15 |0,15 |2,6 |
|0,34 |9,71 |17 |0,17 |4,3 |

9
Строим график по данным таблицы (рисунок 2, страница 7)

По исходному расходу Q= 2,5 м3/с определяем бытовую глубину hб= 0,28 м
Делаем проверку расхождения не более 5%

Для hб= 0,28 м ( Q= 2,17 м3/с
Расхождение 5% 2,5*0,05= 0,125; 2,5-2,17= 0,33 – условие выполнено.
Определяем критическую глубину hк= (V2/g (3.8) где, V- скорость течения воды в потоке

V= Vдоп5(hб (3.9) где, Vдоп- допускаемая скорость течения воды в зависимости от глубины потока. Находим по таблице 2, страница 7.

Vдоп= 3 м/с
По формуле 3.9 определяем V

V= 35(0,28= 2,33 м/с
По формуле 3.8 определяем hк hк= 1*2,332/2*9,81= 0,26 м
Определяем форму водослива hк( hб следовательно форма водослива – затопленная.

Определяем ширину моста В

В= Qр/( hбV (3.10) где, (- коэффициент сжатия потока

(=0,8 %
По формуле 3.10

В= 2,5/0,8*0,28*2,33= 4,8 м

10
Вычисляем величину подпора воды перед сооружением

Н= hб+V2/2g(2= 0,28+2,332/2*9,81*0,952= 0,59 м (3.11) где, (- скоростной коэффициент

( = 0,95 %

Рисунок 3.3 Расчетные схемы железобетонного моста с вертикальными стенками устоев

Определяем высоту моста

Нм= Н+Г+С (3.12) где, Г- подмостовый габарит, для несудоходной реки Г= 0,25 м
С- высота строительной конструкции, определяется по приложению 3, страница
7

С= 0,46 м
По формуле 3.12

Нм= 0,59+0,25+0,46= 1,3 м
Определяем длину моста

L= В+2mH+2а+2Р (3.13) где, а- расстояние от вершины конуса до вершины моста, а= 0,15-0,5 м
Р- величина зазора, не менее 10 см
Тогда по формуле 3.13

L= 4,8+2*1,5*1,3+2*0,1+2*0,5= 9,2 м
Вывод: Величина типового пролета больше, чем величина пролетного, следовательно скорость не уточняем.

11

4 ГИДРАВЛИЧЕСКИЙ РАСЧЕТ ТРУБ


4.1 Безнапорный режим
Коэффициент накопления трубы S=H/d ( 1,2
Тип оголовка – I n= 0,013

Рисунок 4.1 Безнапорный режим протекания воды в трубе

Подбираем параметры трубы
Если d= 1 м, то по таблице 2,страница 8, при Qр= 2,5 м3/с, Н= 2,47 м

S= 2,47/1,0= 2,47 ( 1,2
Следовательно d= 1 не принимаем.
Если d= 1,5 м, то Н= 1,30 м, тогда

S= 1,30/1,5= 0,87 ( 1,2
Следовательно условие выполнено. Назначаем диаметр d= 1,5 м.
По таблице 3, страница 8 находим скорость течения потока в трубе

V= 2,9 м/с
Определяем высоту сжатия потока воды в трубе при входе hсж= 0,78hк (4.1) где, hк- критическая глубина потока воды в трубе, определяется в таблице 1, страница 8 по соотношению hк/d. Для этого надо найти соотношение Q2/gd5

Q2/gd5= 2,52/9,81*1,55= 0,28 (4.2)
Отсюда hк/d= 0,40 , следовательно hк= 0,40*1,5= 0,6 м (4.3)
По формуле 4.1 определяем hсж= 0,78*0,6= 0,47 м
Находим соотношение hсж/d= 0,47/1,5= 0,31 (4.4)
Отсюда, по таблице 1, страница 8 определяем площадь сжатия потока воды в трубе

(сж= 0,196d2= 0,196*1,52= 0,44 м2 (4.5)
Определяем величину подпора воды перед сооружением

Н= hсж+ Q2/2g(2(сж2= 0,47+2,52/2*9,81*0,572*0,442= 5,7 м (4.6)
Находим скорость потока воды на выходе

Vвых= Qр/(вых (4.7)
Где, (вых- площадь потока воды на выходе, определяется как (вых= ((hвых)
Находим критический уклон iк= Q2/(к2Ск2Rк (4.8)
Проверяем условие iл= i0 ( iк
Для чего определяем соотношение hк/d= 0,6/1,5= 0,4 (4.9) по таблице 1, страница 8 находим:

(к= 0,293d2= 0,293*1,52= 0,66 м2 (4.10)

Rк= 0,214d= 0,214*1,5= 0,32 м (4.11)
Определяем коэффициент Шези

Ск= 66
Тогда по формуле 4.8 iк= 2,52/0,662*662*0,32= 0,010= 10%0

0,010(0,004 следовательно условие выполняется. Тогда hвых= (0,8+0,85) hк= (0,8+0,85)0,6= 0,99 м (4.12) определяем соотношение hвых/d= 0,99/1,5= 0,66 по таблице 1, страница 8 определяем

(вых= 0,540d2= 0,540*1,52= 1,22 м2
Далее по формуле 4.7 определяем скорость на выходе

Vвых= 2,5/1,22= 2,05 м/с
Вывод: Vвых= 2,05 м/с , то по приложению 1, таблице 1, страница 9, укрепление производим одиночным мощением на мху (слой мха не менее 5 см) из булыжника размером 15 см.

4.2Полунапорный режим протекания воды в дорожных трубах

Рисунок 4.2 Полунапорный режим протекания воды в дорожных трубах

По таблице 2, страница 8 находим Н

Н= 2,47
Отсюда

S= Н/d= 2,47/1= 2,47(1,2 (4.13)
Следовательно условие выполнено.
Находим скорость течения (смотри предыдущие расчеты)

V= 5,1 м/с
Рассматриваем условие i0 ( i( i(= Q2/(т2Ст2Rт (4.14) где, Rт- гидравлический радиус, находится по формуле

Rт= Rт/2= ј= 0,25 м (4.15)
По таблице 1, страница 8 находим

(т= 0,332

Ст= 62
Отсюда по формуле 4.14 находим i(= 2,52/0,3322*622*0,25= 0,059 i0 ( i(
Вывод: Условие не выполняется, следовательно последующий расчет в данном режиме бесполезен.

13
4.3 Напорный режим
Коэффициент наполнения трубы- отношение S= Н/d ( 1,4 , условие i0 ( i(.
Задаемся ориентировочной длиной трубы 24 м, диаметр 1 м, тип оголовка I (по таблице 2).

Рисунок 4.3 Напорный режим протекания воды в дорожных трубах

По таблице 2, страница 8 выводим соотношение S= Н/d= 2,47/1= 2,47(1,4- условие выполнено.
Находим скорость течения воды

V= 2,7 м/с
Определяем по формуле 4.14 i(= Q2/(т2Ст2Rт= 2,52/0,3322*622*0,25= 0,059(0,004 i0 ( i(- следовательно условие соблюдается.
Определяем величину подпора воды

Н= Нзад+L(i(- i0 )= 2,47+24(0,059-0,004)= 3,79 м (4.16)
Определяем скорость на выходе при Е= 0,6…0,9

Vвых= Q/Е(т= 2,5/0,9*0,332= 8,3 м/с (4.17)

Вывод: По показателям скорости на выходе и укрепления русла трубы выбираем безнапорный режим, как более экономичный.

14

5 ГИДРАВЛИЧЕСКИЙ РАСЧЕТ ФИЛЬТРУЮЩЕЙ НАСЫПИ

(насыпь напорная)
Дано: i0= 0,004; Qр= 2,5 м3/с; грунт- глины; В= 8; m= 1,5; дорожный строительный материал- камень круглый ( 40 см

Рисунок 5.1 Напорная фильтрующая насыпь

Принимаем высоту насыпи Нн= 4,0 м;
Находим скорость течения по формуле Дарси

V= Кф(I (5.1)
Где, Кф- коэффициент фильтрации, определяем по таблице 1, страница 9 в зависимости от среднего диаметра камней и их характеристики.

Кф= 0,50 м/с
Где, Вниз- ширина насыпи по низу; hб- бытовая глубина воды на выходе; Н- глубина подпора воды перед входом; i0- естественный уклон в месте перехода
(i0(0).
Определяем ширину насыпи по низу

Вниз= В+2m Нн+2а= 8+2*3*4+2*0,5= 33 м (5.2)
Проверяем условие устойчивости основания на неразмываемость

Н ( Вниз/С1= 33/3,5= 9,43 м
Где, С1- опытный коэффициент, зависящий от вида грунта. Определяется по таблице 2, страница 9.
Находим бытовую глубину. Для этого определяем пьезометрический уклон
(формула 3.3)

I= 70/7,5+140/7,5= 28
Находим модуль расхода (формула 3.2)

К= Q/(i= 2,5/(0,004= 39,7
По таблице 1, страница 7 находим русловой коэффициент m= 0,55
Далее по формуле 3.1 определяем бытовую глубину hб= 0,553(39,7/28= 0,62 м
Находим площадь поперечного сечения

(= Q/Кф(((Нкн- hб)/Вниз(+ik= 2,5/0,5(((3,5-0,62)/33(+0.004= 16,7 м2 (5.3)
Находим высоту каменной наброски

(= mср*Нкн2 (5.4)
Отсюда

Нкн=((/mср (5.5)
Где, mср= I/2= 28/2= 14 (5.6)
Тогда по формуле 5.5

Нкн= (15,3/6,65= 1,09 м
Находим ширину фильтрации потока

Вф= 2 mср Нкн= 2*14*1,09= 30,5 м (5.7)
Находим значение удельного расхода g=Q/ Вф= 2,5/30,5= 0,08 (5.8) при gн= (0,25…1,0), получаем, что gн(g, следовательно принимаем g= 0,25.
Вычисляем ширину фильтрационного потока

Вф= Q/g= 2,5/0,25= 10 м (5.9)
Снова находим высоту каменной наброски

Нкн= 2(/ Вф= 2*16,7/10= 3,34 м (5.10)
Уточняем коэффициент крутизны откоса каменной наброски mср=(/ Нкн2= 16,7/3,342= 1,5 (5.11)
Назначаем крутизну откоса каменной наброски 1:3.
Определяем расчетную глубину воды при выходе из сооружения hр= (Нкн+ hб)/2= (3,34+0,62)/2= 1,98 м (5.12)
Определяем площадь фильтрационного потока на выходе из сооружения

(ф= mср hр2= 3*1,982= 11,76 м2 (5.13)
Находим среднюю скорость потока на выходе из сооружения

Vср.р=Q/(фрЕ= 2,5/11,76*0,46*0,9= 0,59 м/с (5.14)
Находим расчетную скорость

Vр= 1,7 Vср.р= 1,7*0,59= 1 м/с (5.15)
Вывод: По таблице 1, приложения 1, страница 9 назначаем тип укрепления приданной части грунтового основания, как одерновка плашмя (на плотном основании).

16

6 ГИДРАВЛИЧЕСКИЙ РАСЧЕТ КАНАВ
6.1 Правая канава
Данные: коэффициент откоса- 3; уклон местности-19%0; грунт- глины.
Определяем расход

Q= 87,5ачF= 87,5*0,70*0,04= 0,3 м3/с (6.1)
Где, ач- часовая интенсивность ливня (таблица 1, страница 4) ач= 0,70 мм
F- водосборная площадь канавы

F= 0,04 км2
По таблице 2, страница 7 определяем допустимую скорость

Vдоп= 1,2 м/с
Определяем площадь живого сечения

(= Q/ Vдоп= 0,3/1,2= 0,25 м2 (6.2)
Определяем глубину канавы hк=((/m= 0,25/3= 0,29 м (6.3)
Определяем ширину канавы в= 2mh= 2*3*0,29= 1,74 м (6.4)
Находим смоченный периметр х= 2h(1+m2= 2*0,29(1+32= 1,83 м (6.5)
Находим гидравлический радиус и коэффициент Шези

R= (/х= 0,25/1,83= 0,14 м (6.6)

С= R1/6/0,019= 38 (6.7)
Находим продольный уклон

Iпр= Vдоп2/ С2R= 1,22/382*0,14= 0,007 (6.8)
Определяем скорость течения потока

V= С(Ri= 38(0,14*0,007= 1,2 м/с (6.9)
Вывод: По приложению 1, страница 9, тип укрепления будет одерновка в стенку.

Рисунок 6.1 Канава

6.2 Левая канава
Данные: коэффициент откоса- 3; уклон местности- 30 %0; грунт- глины.
Находим часовую интенсивность ливня и водосборную площадь канавы ач= 0,70 мм

F= 0,05 км2
Находим расход (формула 6.1)

Q= 87,5*0,70*0,05= 3,1 м3/с
По таблице 2, страница 7

Vдоп= 0,85 м/с
Определяем площадь живого сечения (формула 6.2)

(= 3,1/0,85= 3,7 м2
Определяем глубину и ширину канавы (формулы 6.3 и 6.4) hк= (3,7/3= 1,11 м в= 2*3*1,11= 6,7 м
Находим смоченный периметр (формула 6.5)

17 х= 2*1,11(32+1= 7,02 м
Определяем коэффициент Шези и гидравлический радиус (формула 6.7 и 6.6)

R= 3,7/7,02= 0,53 м

С= 0,531/6/0,03= 28,9
Находим продольный уклон (формула 6.8)

Iпр= 0,852/28,92*0,53= 0,0016
Определяем скорость течения потока (формула 6.9)

V= 28,9(0,53*0,0016= 0,85 м/с
Вывод: По приложению 1, страница 9, тип укрепления будет одерновка плашмя
(на плотном основании.

18

7 СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1 Бабков В.Ф., Андреев О.В., «Проектирование автомобильных дорог в 2-х частях» Ч.I-II учебник для вузов- Издание 2-е, переработанное и дополненное-
М.: Транспорт, 1987-368 с.
2 Справочник инженера- дорожника, «Проектирование автомобильных дорог»
–М.:Транспорт, 1989-415 с.
3 СниП 2.05.02-93 «Автомобильные дороги», Госстрой СССР-М.: ЦИТП, 1987-50 с.

19

ВВЕДЕНИЕ

Искусственные сооружения служат для пропуска воды через дорогу. Их правильный расчет обеспечивает безопасность эксплуатации автодорог. В качестве малых искусственных сооружений служат малые мосты, трубы, фильтрующие насыпи, а также водоотводные канавы. Для их расчета используются гидрологические и гидравлические расчеты. Цель данных расчетов определение расходов (ливневый, от талых вод и др.), скорости потока воды через сооружения, определение размеров сооружений и выбор типа укреплений откосов и русел, а также строительных материалов.
-----------------------
А

В

С

168,75

168,75

165,5

3,25

1:56

1:112

Рисунок 2.1 Живое сечение

70

140

34

1:112

1:56

(=5 м3

0,2

Рисунок 2.2 Поперечное сечение пруда

140

70

В

А

С

168,75

168,75

165,5

3,25

1:56

1:112

Рисунок 3.1 Живое сечение русла

0,20

0,25

0,30

0,35

hб м

1

2

3

4

5

Q м3/с

Рисунок 3.1 График Q= ((hб)

Q= 2,5 м3/с

hб= 0,28 м

Г.П.В.

Нвод

Рисунок 3.2 Гидравлическая схема протекания воды через малое искусственное сооружение с затопленным водосливом

Н

hсж

hвых

L

Р

а

Г

С

В

1:m

1:m

Н

hсж

hвых

Н

Н

h

hвых

а= 0,5 м

3 м

3 м

в



© 2000
При полном или частичном использовании материалов
гиперссылка обязательна.