РУБРИКИ

Разработка блока управления тюнером спутникового телевидения

   РЕКЛАМА

Главная

Зоология

Инвестиции

Информатика

Искусство и культура

Исторические личности

История

Кибернетика

Коммуникации и связь

Косметология

Криптология

Кулинария

Культурология

Логика

Логистика

Банковское дело

Безопасность жизнедеятельности

Бизнес-план

Биология

Бухучет управленчучет

Водоснабжение водоотведение

Военная кафедра

География экономическая география

Геодезия

Геология

Животные

Жилищное право

Законодательство и право

Здоровье

Земельное право

Иностранные языки лингвистика

ПОДПИСКА

Рассылка на E-mail

ПОИСК

Разработка блока управления тюнером спутникового телевидения

В этот же момент анализируется логический уровень сигнала на входе DS

и в зависимости от него устанавливается дальнейший режим работы входов DS и

R/[pic]. В нашем случае на вход AS подаем сигнал ALE, который генерируется

процессором для фиксации адреса.

Если при AS – «1»-[pic] «0» DS – «0», то

запись производится при DS – «1», R/[pic]-«0»,

а чтение производится при DS – «1», R/[pic]-«1».

Если во время среза импульса AS (AS – «1» [pic] «0») DS – «1», то для

считывания необходимо DS-«0» R/[pic]-«1»,

а для записи DS-«1» R/[pic]-«0».

Такая сложная логика используется для подключения к микропроцессорам

различных типов. На вход R/[pic] будем подавать сигнал WR, а на вход DS-RD,

которые генерируются процессором.

Выход [pic] (запрос прерывания) предназначен для сигнализации

процессору о том, что внутри микросхемы произошло событие, требующее

программной обработки. Прерывания бывают 3-х типов:

1) после окончания обновления информации

2) по будильнику

3) периодические (с периодом SQW)

Вход [pic]предназначен для установки в исходное состояние узлов

микросхемы, ответственных за связь с микропроцессорной системой. [pic] -

«0» – никакое вмешательство со стороны процессора невозможно. На ход часов,

календарь и содержание ячеек ОЗУ этот вход не влияет.

Вход PS (датчик питания) – контроль непрерывности подачи питающего

напряжения. Он подключается таким образом, чтобы напряжение на нем падало

до 0 при любом, даже кратковременном отключения питания микросхемы.

Для управления работой микросхемы и анализа её состояния предназначены

регистры А…D.

Формат управляющих регистров:

|Адрес |D7 |D6 |D5 |D4 |D3 |D2 |D1 |D0 |

|OAH |UIP* |DV2 |DV1 |DV0 |RS3 |RS2 |RS1 |RS0 |

|OBH |SET |PIE |AIE |VIE |SQWE |DM |24/12 |DSE |

|OCH |IRQF* |PF* |AF* |VF* |O* |O* |O* |O* |

|ODH |VRT* |O* |O* |O* |O* |O* |O* |O* |

* - можно только считывать информацию.

Регистр А.

UIP – единица в этом разряде означает, что происходит или начнется

менее чем через 244 мкс обновление информации о времени. На UIP не

действует сигнал [pic]. Записав единицу в разряд SET регистра В, можно

запретить обновление и тем самым сбросить UIP.

DVO…DV2 – устанавливает режим работы внутреннего делителя частоты в

соответствии с используемой опорной частотой.

Установка опорной частоты:

|DV2 |DV1 |DV0 |Частота |

|0 |0 |0 |4194304 Гц |

|0 |0 |1 |1048576 Гц |

|0 |1 |0 |32768 Гц |

|1 |1 |0 |сброс делителя |

RS0…RS3 – устанавливает частоту сигнала на входе SQW и период

повторения периодических колебаний.

|RS3 |RS2 |RS1 |RS0 |f, Гц |Т (4194304 |f |T |

| | | | | |1048576) | |(32768) |

|0 |0 |0 |0 |- |- |- |- |

|0 |0 |0 |1 |32768 |30,517 мкс |256 |3,90625 мс |

|0 |0 |1 |0 |16384 |61,035 мкс |128 |7,8125 мс |

|0 |0 |1 |1 |8192 |122,07 мкс |8192 |122,07 мкс |

|0 |1 |0 |0 |4096 |244,14 мкс |4096 |244,14 мкс |

|0 |1 |0 |1 |2048 |488,28 мкс |2048 |488,28 мкс |

|0 |1 |1 |0 |1024 |976,56 мкс |1024 |976,56 мкс |

|0 |1 |1 |1 |512 |1,95312 мс |512 |1,95312 мс |

|1 |0 |0 |0 |256 |3,90625 мс |256 |3,90625 мс |

|1 |0 |0 |1 |128 |7,8125 мс |128 |7,8125 мс |

|1 |0 |1 |0 |64 |15,625 мс |64 |15,625 мс |

|1 |0 |1 |1 |32 |31,25 мс |32 |31,25 мс |

|1 |1 |0 |0 |16 |62,5 мс |16 |62,5 мс |

|1 |1 |0 |1 |8 |125 мс |8 |125 мс |

|1 |1 |1 |0 |4 |250 мс |4 |250 мс |

|1 |1 |1 |1 |2 |500 мс |2 |500 мс |

Регистр В.

SET – если в этом разряде записан “0”, то каждую секунду выполняется

цикл обновления информации о текущем времени и сравнение текущего времени с

заданным. Единица в этом разряде запрещает обновление, позволяя записать в

регистры начального значения времени, календаря, будильника.

PIE – разрешение прерываний с периодом, задаваемым PS0[pic]PS3.

ALE – разрешение прерываний от будильника.

VIE – разрешение прерываний по окончанию цикла обновления.

SQWE – разрешает выдачу сигнала на вход SQW.

PIE, AIE, VIE, SQWE могут быть сброшены сигналом [pic].

DM – «1» данные в двоичном коде

- «0» данные в двоично-десятичном коде.

Значения разряда нельзя изменить без повторной записи начальных

значений в ячейки времени и календаря.

24/12 – устанавливает 24 часовой («1») и 12 часовой («0») режим счета

времени. В 12 часовом режиме времени после полудня отмечается единицей в

старшем разряде часов (адрес О4Н).

DSE – разрешение автономного перехода на летнее время («1»).

Регистр С.

IRQF – флаг запроса прерываний. Устанавливается в единицу при

выполнении условия:

PF x PIE + AF x AIE + VF x VIE=1

Одновременно с установкой IRQF=1 на контакте [pic] устанавливается

низкий уровень. PF – устанавливается в «1» фронтом сигнала на выходе

внутреннего делителя частоты, выбранного в соответствии с разрядами

RS0[pic]RS3.

AF – устанавливается в «1» при совпадении текущего времени м времени

«будильника».

VF – устанавливается в единицу после окончания каждого цикла

обновления.

Флаги сбрасываются после чтения регистра С или сигналом [pic].

Регистр D.

VRT – в этом разряде устанавливается «0» при низком уровне на входе

PS. Единица устанавливается только считыванием регистра D.

Подключение микросхемы 512ВИ1 к микропроцессору серии 1821ВМ85,

имеющему мультиплексированную шину адреса/данных не вызывает затруднений.

На вход PS; Uп; RES подаем высокий уровень (подключим к аккумулятору через

RS-цепь). Так как нет необходимости в использовании частоты кварцевого

резонатора в блоке управления, то вывод №20 (CKFS) подсоединим к корпусу.

Сигнал с выхода [pic] через инвертор (PD9) подадим в микропроцессор

на вход RST 6,5 (№8).

Выводы AD0[pic]AD7 (№№4[pic]11) таймера непосредственно подключаются

к выводам AD0[pic]AD7 (№№12[pic]19) микропроцессора.

Подача сигнала CS2 на вход «выбор микросхемы» (№13) будет рассмотрена

ниже.

1.2.10. Устройство ввода-вывода.

Процессор 1821ВМ85 является улучшенной модификацией процессора

580ВМ80, а для данного МП специально разработана БИС для ввода-вывода

параллельной информации КР580ВВ55А. Вот почему свой выбор и остановил

именно на этой микросхеме.

КР580ВВ55 0 программное устройство ввода-вывода параллельной

информации, применяется в качестве элемента ввода-вывода общего назначения,

сопрягающего различные типы периферийных устройств с магистралью данных

систем обработки информации.

D0[pic]D7 BA0[pic]

BA7

BC4[pic]

[pic] [pic] [pic]

BC7

A0 BC[pic]

A1

BC3

SR BBO[pic]

BB7

Обмен информацией между магистралью данных систем и микросхемой

580ВВ85 осуществляется через 8 разрядный двунаправленный трехстабильный

канал данных. Для связи с периферийными устройствами используется 24 линии

В/В, сгруппированные в три 8 разрядных канала ВА, ВВ, ВС, направление

передачи информации и режимы работы которых определяются программным

способом.

1-4; 37-40 – ВА3 – ВА0; ВА7[pic]ВА4 – входы/выходы – информационный

канал А.

10[pic]17 – ВС7[pic]ВС0 – входы/выходы – информационный канал

С.

18[pic]25 – ВВ0[pic]ВВ7 – входы/выходы – информационный канал В.

5 - [pic] - вход – чтение.

6 - [pic] - вход – выбор кристалла.

7 – GND - - - общий.

8,9 – А0, А1 – вход – младший разряд адреса

26 – Uсс – питание.

35 – SR – вход – установка исходного состояния.

36 - [pic] - вход – запись.

Микросхема может функционировать в 3-х основных режимах.

В режиме 0 обеспечивается возможность синхронной программно

управляемой передачи данных через 2 независимых 8 разрядных канала ВА, ВВ и

два 4 разрядных канала ВС.

В режиме 1 обеспечивается возможность ввода или вывода информации

в/или из периферийного устройства через 2 независимых 8 разрядных канала

ВА, ВВ по сигналам квитирования.

При этом линии канала С используются для приема и выдачи сигналов

управления обменом.

В режиме 2 обеспечивается возможность обмена информацией с

периферийными устройствами через двунаправленную 8 разрядную шину ВА по

сигналам квитирования. Для передачи и приема сигналов управления обменом

используются 5 линий канала ВС.

Выбор соответствующего канала и направление передачи информации через

канал определяется сигналами А0, А1 и сигналами [pic], [pic], [pic]. Режим

работы каждого из каналов ВА, ВВ, ВС определяется содержимым регистра

управляющего слова (РУС). Производя запись управляющего слова в РУС можно

перевести микросхему в один из 3-х режимов работы: режим 0-простой

ввод/вывод; режим 1-стробируемый ввод/вывод; режим 2-двунапрвленный канал.

При подаче сигнала SR РУС устанавливается в состояние, при котором все

каналы настраиваются на работу в режиме 0 для ввода информации. Режим

работы каналов можно изменить как в начале, так и в процессе выполнения

работающей программы, что позволяет обслуживать различные периферийные

устройства в определенном порядке одной микросхемой. При изменении режима

работы любого канала все входные и выходные регистры каналов и триггеры

состояния сбрасываются. Графическое представление режимов работы каналов

показано на рисунке 5, а формат управляющего слова, определяющего режимы

работы каналов, приведены на рисунке 6.

|А0 |А1 |[pic]|[pic]|[pic]|Направление передачи информации |

|чтение | |

| |ВА[pic]канал данных |

| |ВВ[pic]канал данных |

| |ВС[pic]канал данных |

|0 |0 |0 |1 |0 | |

|0 |1 |0 |1 |0 | |

|1 |0 |0 |1 |0 | |

|запись | |

| |Канал данных[pic]ВА |

| |Канал данных[pic]ВВ |

| |Канал данных[pic]ВС |

| |Канал данных[pic]РУС |

|0 |0 |1 |0 |0 | |

|0 |1 |1 |0 |0 | |

|1 |0 |1 |0 |0 | |

|1 |1 |1 |0 |0 | |

|блокировка | |

| |Канал данных[pic]третья состояние|

| | |

| |Запрещенная комбинация |

|Х |Х |Х |Х |1 | |

|1 |1 |0 |1 |0 | |

Рисунок 5.

Разряды 0[pic]3

канала ВС

1 - ввод

1 0 - вывод

режим канал ВВ

работы ВА и 4-7 ВС 1-ввод

00-режим 0 0-вывод

01-режим 1

1х-режим 2 режим работы

ВВ и разрядов

канал ВА 0[pic]3 ВС

0-режим 0

1-ввод 1-режим 1

0-вывод Разряды 4[pic]7

канала ВС

1-ввод; 0-вывод

Рисунок 6.

В дополнение к основным режимам работы микросхема обеспечивает

возможность программно независимой установки в «1» и сброса в «0» любого из

разрядов регистра канала ВС.

Формат управляющего слова уст./сброса разрядов регистра канала ВС

показан на рисунке 7.

1 – установить в «1»

«0» 0 – установить в «0»

неопределенность

код разряд

000 0

001 1

010 2

011 3

100 4

101 5

110 6

110 7

Рисунок 7.

Если микросхема запрограммирована для работы в режиме 1 или 2, то через

выводы ВС0[pic]ВС3 канала ВС выдаются сигналы, которые могут использоваться

как сигналы запросов прерываний для МП. Эта особенность микросхемы

позволяет программно реализовать разрешения или запрет в обслуживании

любого внешнего устройства ввода/вывода без анализа запроса прерывания в

схеме прерывания системы.

В нашем случае необходимо запрограммировать микросхему 580ВВ55 на

вывод информации в режиме 0. Вот почему далее будет рассмотрен только этот

режим.

При работе микросхемы в режиме 0 обеспечивается простой ввод/вывод

информации через любой из 3-х каналов и сигналов управления обменом

информацией с периферийными устройствами не требуется. В этом режиме

микросхема представляет собой совокупность 2-х 8 разрядных и 2-х 4

разрядных каналов ввода или вывода. В режиме 0 возможны 16 различных

комбинаций схем ввода/вывода каналов ВА, ВВ, ВС. Это определяется

комбинациями в разрядах D4; D3; D1; D0 регистра управляющего слова.

Для нашего случая код должен иметь следующее указание:

|D4 |D3 |D1 |D0 |ВА;ВВ;ВС |

|0 |0 |0 |0 |вывод |

В режиме 0 входная информация не запоминается, а выходная хранится в

выходных регистрах до записи новой информации в канал или до записи нового

режима.

Графическое представление режима 0 показано на рисунке 8.

Канал адреса

Канал управления

Канал данных

D7[pic]D0

I/0 I/0 BC7[pic]BC0 BA7[pic]BA0

BB7[pic]BB0

Рисунок 8.

Для электрического соединения микросхемы 580ВВ55 и схемы управления

необходимо:

1) шину данных D0[pic]D7 схемы управления соединить с выводами

D0[pic]D7 микросхемы 580ВВ55.

2) Два младших разряда адресной шины соединить с выводами A0[pic]A1

микросхемы 580ВВ55.

3) Выводы [pic], [pic] микропроцессора 1821ВМ85 соединить с выводами

[pic], [pic] микросхемы 580ВВ55 соответственно.

4) На вход SR «Установка в исходное состояние» микросхемы 580ВВ55

подать низкий уровень (подключить к корпусу).

1.2.11. Фиксирующая схема.

Как уже отмечалось выше необходимо подавать сигналы в блок индикации

№ канала (2 индикатора) в строго определенные моменты времени. Для этого

необходимо предусмотреть устройство, которое по сигналам от процессора,

будет пропускать информацию на один из индикаторов блока индикации. В

качестве элементов фиксирующей схемы будем использовать 2 регистра типа

1533UP23.

Регистр, аналогичный UP22, нос 8 тактируемыми триггерами. Регистр

принимает и отображает информацию синхронно с положительным перепадом на

тактовом входе.

| |EO |C |Dn |Выход |

|Загрузка и считывание |Н | |«Н», «В» |«Н», «В» |

| | | | |соответственно |

|Загрузка регистра и |В | |«Н», «В» | |

|разрыв выходов | | | | |

Таким образом, подавая тактирующие сигналы на вход С (№11) регистра

1533UP23, мы разрешаем прохождение сигналов на соответствующий индикатор в

строго определенные моменты времени.

Un - № 20

Земля - № 10

1.2.12. Согласующая схема.

Для организации вывода информации в остальные блоки тюнера будем

использовать регистр 1533UP23, тактируемый сигналами от микропроцессора.

Принцип включения и управления регистра 1533UP23 рассмотрен в

предыдущей главе.

Для приема информации в устройство управления будем использовать

шинный формирователь 1533АП6. Как известно шинный формирователь

обеспечивает передачу информации в обоих направлениях. Для обеспечения

только ввода данных вывод №1 соединим с корпусом. Если появится

необходимость в выводе большего количества информации из устройства

управления, то с помощью микросхемы 1533АП6 можно будет решить данную

проблему.

Более подробная информация о микросхеме 1533АП6 приведена в главе

«Шина данных микропроцессора 1821ВМ85».

1.2.13. Схема дешифрации.

В предыдущих главах были рассмотрены основные блоки схемы управления

и было отмечено, что МП в строго определенные моменты времени должен

взаимодействовать с определенными микросхемами. Поэтому в данной схеме

необходимо предусмотреть устройство, которое по сигналам от процессора,

будет подключать к его шинам адреса или данных ту или иную микросхему или

группу микросхем. Из этого можно заключить, что в схеме системы должен

протекать некоторый процесс однозначного выбора и он организуется подачей

на линии адреса А11[pic]А15 определенного кода выбора или сигнала

разрешения доступа к отдельному блоку или блокам. К счастью, эта проблема

является классической и она имеет простое решение. В частности можно

использовать дешифратор, выполненный в виде ТТЛ устройства среднего уровня

интеграции, предназначенного для преобразования двоичного кода в напряжение

логического уровня, которое появляется в том выходном проводе, десятичный

номер которого соответствует двоичному коду. В последствии выходной провод

дешифратора подключают к входу «Выбор микросхемы» нужной микросхемы

(например вывод №18 (CS) микросхемы 537РУ10).

В качестве дешифратора будем использовать микросхему 1533ИД7. Выбор

данного дешифратора обусловлен количеством выходных линий и нагрузочной

способностью.

Микросхема 1533ИД7 – высокоскоростной дешифратор, преобразующий

трехразрядный код А0[pic]А2 (№1[pic]3) в напряжение низкого логического

уровня, появляющегося на одном из восьми выходов 0[pic]7. Дешифратор имеет

трехвходовый логический элемент разрешения.

В таблице показано, что дешифрация происходит, когда на входах

[pic](№4) и [pic](№5), напряжение низкого уровня, а на входе Е3(№6)

высокого. При других логических уровнях на входах разрешения, на всех

выходах имеются напряжения высокого уровня.

|[pic] |[pic] |В |Q |[pic] |

|Н |Х |Х |Н |В |

|Х |В |Х |Н |В |

|Х |Х |Н |Н |В |

|В |Н |[pic] | | |

|В |[pic] |В | | |

|[pic] |Н |В | | |

Если согласно этим условиям мультивибратор запущен, выходной импульс

можно продолжить, подав на вход [pic] напряжение низкого уровня (или на

вход В-высокого). С момента этой дополнительной операции до окончания

импульса пройдет время [pic]вых.

Схема включения:

5

9

12

10

16 5B

6 R[pic]

C[pic]

11 7

8

1.3. Расчеты параметров и элементов принципиальной схемы.

1.3.1. Расчет адресной шины и шины данных

микропроцессора 1821ВМ85.

При проектировании адресной шины и шины данных необходимо оценить

величину токовой нагрузки, т.к. они связаны со множеством устройств,

подключенных параллельно. Если для адресной шины и шины данных характерен

ток, по величине превосходящий допустимое значение на выходе МП, то такую

линию необходимо буферировать.

a) Расчет адресной шины:

Для микропроцессора максимально допустимая нагрузка на адресной линии

составляет:

Uвых L=0,45 В Iвых L=2 мА

Uвых H=2,4 В Iвых H=400 мкА

для регистра 1533 UP22:

Iвх Н=20 мкА Iвх H[pic]=8[pic]20=160 мкА[pic]400 мкА

Iвх L=0,1 мА IвхL[pic]=8[pic]0,1=0,8 мА[pic]2 мА

Таким образом входной ток микросхемы 1533ИР22 не является большим для

МП 1821ВМ85.

Теперь проверим, обеспечивается ли нагрузочная способность для

элементов схемы, которые являются адресной информации.

А11[pic]А15

+5В А0[pic]А15

А0[pic]А7

А8[pic]А10 А8[pic]А12,А15

1533ИР22 А0[pic]А1

Iвх L=Iвх Н=20 мкА – для ОЗУ

Iвх L=Iвх Н=10 мкА – для ПЗУ

Iвх L=Iвх Н=14 мкА – для устройства в/в.

Iвх L[pic]=Iвх Н[pic]=8[pic]20+8[pic]10+2[pic]14=268 мкА[pic]2,6 мА

Iвх L=24 мА для 1533ИР22

Iвх Н=2,6 мА

Адресные линии А8[pic]А15 буферировать не надо, т.к.

Iвх Н[pic] =3[pic]20+6[pic]10+5[pic]20=220 мкА[pic]400 мкА

Iвх L[pic]=3[pic]20+6[pic]10+5[pic]0,1 мА=620 мкА[pic]2 мА

b) Расчет шины данных.

Для микропроцессора максимально допустимая нагрузка на шине данных

составляет:

IвыхL=2 мА Uвых L=0,45 В

Iвых H=400 мкА UвыхH=2,4 В

для DНШУ 1533 АП6:

Iвх L=0,1 мА Iвх L[pic]=8[pic]0,1=0,8 мА

Iвх Н=20 мкА Iвх Н[pic]=8[pic]20=160 мкА

Выходной ток МП является большим, чем входной ток микросхемы 1533АП6,

а значит обеспечивается нагрузочная способность по току

Проверим, обеспечивается ли микросхемой 1533АП6 нагрузочная информация

для элементов схемы, которые являются «потребителями» информации о данных.

При записи информации в качестве нагрузки выступают следующие элементы

схемы: РЗУ, 3 регистра 1533ИР23, Устройство В/В КР580ВВ55.

Iвх L[pic]=20 мкА[pic]8+0,2 мА[pic]24+14мкА[pic]8=5,072 мА

Iвх Н[pic]=20 мкА[pic]8+20мкА[pic]24+14 мкА[pic]=752 мкА

Для микросхемы 1533 АП6

IвыхL=24 мА[pic]5,072 мА

Iвых H=3 мА[pic]752 мкА

Общий нагрузочный ток не является большим для ДНШУ 1533АП6.

При считывании информации из ОЗУ, ПЗУ или поступления информации от

микросхемы 1533 АП6 (DD16) возникать проблем с перегрузкой не должно, т.к.:

IвыхL=2,1 мА для ПЗУ 573РФ4

Iвых H=0,1 мА

IвыхL=4 мА для ОЗУ 537РУ10

Iвых H=2 мА

IвыхL=24 мА для 1533 АП6

Iвых H=3 мА

Информация поступает в МП через ДНШУ 1533АП6 (DD5), для которого:

Iвх L=0,1 мА Iвх L[pic]=0,8 мА

Iвх Н=20 мкА Iвх Н[pic]=160 мкА

c) Расчет шины AD0[pic]AD7 таймера 512ВИ1

Iвх L= Iвх Н=1 мкА Iвх [pic]=8[pic]1 мкА=8 мкА

Очевидно, что информация в таймер (как адресная, так и информация о

данных ) может поступать непосредственно с выходов AD0[pic]AD7

микропроцессора, т.к. для него:

IвыхL=2 мА Uвых L=0,45 В

Iвых H=400 мкА UвыхH=2,4 В

1.3.2. Расчет ЦАП.

На выходе ОУ Uвых ~коду на входе 572ПА1. Т.к. разрядность ЦАП N=10,

значит возможно 2N=1024 различных значений Uвых.

Шкала изменений выходного напряжения [pic]0[pic]Uon[pic]

Uon=-9 В для каналов видео и звука.

Uon=-6 В для канала поляризации.

Следовательно дискрет напряжения на входе составляет:

a) Для видео:

[pic]U=[pic]=8,8 мВ

Пример: код Uвых,В

0000000000 0

0000000010 17,6 мВ

1111111111 9

b) Для звука:

[pic]U=[pic]=70,86 мВ

Пример: код Uвых,В

0000000000 0

0000001000 70,86 мВ

0000010000 141,72 мВ

1111111000 9

c) Для поляризации:

[pic]U=[pic]=23,53 мВ

Пример: код Uвых,В

0000000000 0

0000000100 23,53 мВ

1011111100 4,41

Вывод:

1. Для канала видео напряжение на выходе меняется от 0 до 9 В с шагом 8,8

мВ.

2. Для канала звука напряжение на выходе меняется от 0 до 9 В с шагом 70,86

мВ.

3. Для канала поляризации напряжение на выходе меняется от 0 до 4,41 В с

шагом 23,53 мВ.

1.3.3. Расчет параметров КТ 3102 Б.

Необходимо обеспечить подачу U[pic]3 В на вход разрешения 561 КТ3.

В качестве стабилитрона будем использовать КС139А на Uст=3,9 В

при Iст=1,8 мА

R1=[pic]=[pic]=620 Ом

Е2=IэRн+UКЭ

Iэ=0 Е2=Uкэ

Uкэ=0 Iэ=[pic] пусть RH=1 кОм

5 Iб=0,1 мА

4

3

2

1

5 10 15 20 Uкэ, В

Из графика следует, что Iэ[pic]3,1 мА

Iб=0,1 мА

Iб,мА

0,3 Uкэ=5 В

0,2 Uбэ=0,6 В

0,1

0,1 0,2 0,3 0,4 0,5 0,6 0,7 Uбэ, В

Uбэ=0,6 В Uбэ+URN=3,1+0,6=3,7 В

Т.к. Uст=3,9 В, значит необходимо в базу транзистора включить R2

Uст=UR2+Uбэ+URN

UR2=0,2 В

R2=[pic]=[pic]=2 кОм.

1.3.4. Цепь резонатора микросхемы 512 ВИ1.

Данные на резонансную цепь приводятся как справочный материал

(радиоежегодник 1989 г.).

Если используется резонатор на 32768 Гц, то

R16=470 кОм

R7=22 мОм

С24=10 пФ

С25=20 пФ

С26=100 пФ.

1.3.5. Расчет RC-цепи микросхемы 1533АГ3.

Из справочного материала известно, что для микросхемы 1533АГ3

[pic]вых=0,45 R[pic]C[pic]

Нам необходимо обеспечить [pic]вых порядка 45 мкс

Пусть R[pic]=10 кОм, тогда С[pic]=10 нФ.

1.3.6. Расчет элементов цепи опорного напряжения.

а)

VD5 – КС191Ж

Uст=9,1 В

Iст min=0,5 мА

Icn max=14 мА

U1=-12 В

Пусть R4=390 Ом;

I=[pic]=7,4 мА

Вывод: при данном сопротивлении полученное расчетное значение тока

стабилизации равное 7,4 мА попадает в диапазон допустимых значений тока

стабилизации для данного стабилитрона.

В) VD3 – КС162

Uст=6,2 В, U2=-12 В

Iст min=3 мА

Iст max=22 мА

Пусть R5=1,2 кОм;

I=[pic]=4,8 мА

Вывод: при данном сопротивлении полученное расчетное значение тока

стабилизации равное 4,8 мА попадает в диапазон допустимых значений тока

стабилизации для данного стабилитрона.

1.4. Справочные данные.

1821ВМ85

Допустимые предельные значения:

1. Температура окружающей среды - -10[pic][pic]С.

2. Направление на всех выводах по отношению к корпусу –

-0,5[pic]7 В.

3. Мощность рассеивания – 1,5 Вт.

Статические параметры в диапазоне температур -10[pic][pic]С.

|Параметр |Значение |Условия |

| |min |max | |

|Uвх L, В | | | |

|Uвх H, В | | | |

|Uвых L, В | | |Iвых L=2 мА |

|Uвых Н, В | | |Iвых H=- 400 мкА |

|Iпит, мА | | | |

|Iутеч вх, мкА | | |Uвх=Un |

|Iутеч вых, мкА | | |0,45Un[pic]Uвых[pic]U|

|UL на вх RESET,В | | |n |

|UH на вх RESET, В | | | |

| |- 0,5 |0,8 | |

| |2,0 |Un+0,5 | |

| |- |0,45 | |

| |2,4 | | |

| | |170 | |

| | |[pic]10 | |

| | |[pic]10 | |

| |- 0,5 |0,8 | |

| |2,4 |Un+0,5 | |

576 РФ4

Статические параметры в диапазоне температур - 10[pic][pic]С.

|Параметр |Норма |

| |min |Max |

|Uвх L, В | | |

|Uвх H, В | | |

|Uвых L, В | | |

|Uвых Н, В | | |

|Iвых L, мА | | |

|Iвых Н, мА | | |

|Iпотр, мА | | |

|Iпотр по вх. UPR,, мА | | |

| |0 |0,4 |

| |2,4 |5,25 |

| |- |0,45 |

| |2,4 |- |

| |- |2,1 |

| |- |0,1 |

| |- |70 |

| |- |10 |

Эксплуатационные параметры:

1. Время хранения информации: при наличии питания – не менее 25000 ч; при

отсутствии – не менее 105 часов.

2. Un – 5 В

UPR – 5 В (считывание)

21,5 В (программирование)

3. Pпотр – не более 420 мВт.

4. tвыб.адр. – не более 300[pic]450 мс.

tвыб.разр. – не более 120[pic]150 мс.

5. Число циклов перепрограммирования – не менее 25.

6. Выход – 3 состояния.

7. Совместимость по вх. и вых. С ТТЛ схемами.

8. Ёмкость – 65536.

9. Организация – 8к х 8.

537 РУ10.

Статистические параметры в диапазоне температур -10[pic][pic]С.

|Параметр |Норма |

| |min |max |

|Uвх L, В | | |

|Uвх H, В | | |

|Uвых L, В | | |

|Uвых Н, В | | |

|Iвых L, мА | | |

|Iвых Н, мА | | |

|Iпотр, Un=5 В | | |

|Обращение, мА | | |

|Хранение, мА | | |

|Un=2 В | | |

|Хранение, мА | | |

| |- |0,4 |

| |2,4 |- |

| |- |0,4 |

| |2,4 |- |

| |- |4 |

| |- |2 |

| | | |

| |- |70 |

| |- |0,3 |

| | | |

| |- |0,1 |

Эксплуатационные параметры:

1. tвыб – не более 220 мс.

2. Рпотр: хранение Un=5B – 5,25 мВт

Un=2B – 0,6 мВт

обращение - 370 мВт

3. Выход – 3 состояния.

4. Совместимость по входу и выходу – с ТТЛ схемами.

5. Ёмкость – 16384.

6. Организация – 2к х 8.

1533 АГ3.

Предельные значения параметров

Un=7 В

Uвх=7 В

Диапазон температур -10[pic]С.

Рекомендуемое значение Un=4,5 [pic] 5,5 В.

Статистические параметры в диапазоне температур -10[pic]С.

|Параметр |Норма |Условие |

| |Не менее |Не более | |

|Uвх Н, В | | |Порог. напр. Н уровня |

|Uвх L, В | | |Порог. напр. L уровня |

|Uвых H, В | | |Un=4,5; Uвх Н=2,0 |

| | | |Uвх L=0,8; IвыхH=-0,4 |

|Uвых L, В | | |Un=4,5; Uвх H=2,0 |

| | | |Uвх L=0,8; |

|Iвх H, мА | | |IвыхL=4[pic]8 |

|Iвх L, мА | | |Un=5,5; Uвх Н=2,7 |

|Iвых, мА | | |Un=5,5; Uвх L=0,4 |

|Iвх пр, мА | | |Un=5,5; Uвых =2,25 |

|Iпотр, мА | | |Un=5,5; Uвх =7 |

| | | |Un=5,5; Uвх Н=4,5 |

| | | |Uвх L=0 |

| |2,0 | | |

| | |0,8 | |

| |2,5 | | |

| | | | |

| | |0,4[pic]0,5 | |

| | | | |

| | |20[pic]40 | |

| | |(-0,1([pic](-| |

| |(-30( |0,2( | |

| | |(-112( | |

| | |0,1 | |

| | |18 | |

Динамические параметры:

Время задержки распространения

[pic][pic] не более 39 мс

[pic][pic] не более 48 мс

[pic][pic] не более 23 мс

512 ВИ1

1. Un=5 В[pic]10%.

2. Iпотр, мА.

статический режим 0,1

динамический режим при

fmax тактовых импульсов 4

fmin 0,1

3. Выходной ток высокого (низкого) уровня при Uвых Н=4,1 В, (UвыхL=0,4 В),

мА – 1,0[pic]1,6.

4. Входной ток, мкА 1.

1533ИР23.

Предельные значения параметров

Un=7 В

Uвх=7 В

Диапазон температур - [pic]

Рекомендуемое значение Un=4,5[pic]5,5 В

Статистические параметры в диапазоне температур - [pic].

|Параметр |Норма |Условия |

| |не менее|не более| |

|Uвх Н, В | | |Порог. напр. Н-уровня |

|Uвх L, В | | |Порог напр. L-уровня |

|Uвых Н, В | | |Un=5,5[pic]4,5 |

| | | |Iвых Н=-0,5[pic]-3 |

|Uвых L, В | | |Un=4,5[pic]5,5 |

| | | |Iвых L=12[pic]24 |

|Iвх Н, мкА | | |Un=5,5 |

|Iвх L, мА | | |Uвх Н =2,7[pic]4,5 |

| | | |Uвх L=0,4 |

|Iвх пр, мА | | |Un=5,5 Uвх Н =4,5 |

|Iвых, мА | | |Un=5,5 Uвых =2,25 |

|Iвых Н, мкА выкл| | |Un=4,5[pic]5,5 Uвх |

| | | |Н=2[pic]4,5 |

|Iвых L, мкА | | |Un=4,5[pic]5,5 Uвх |

|выкл. | | |L=0,8 |

| | | |Uвых L=0,4 |

| |2,0 | | |

| | |0,8 | |

| |2[pic]2,| | |

| |4 | | |

| | |0,4[pic]| |

| | |0,5 | |

| | | | |

| | |20 | |

| | |(-0,2( | |

| | | | |

| | |0,1 | |

| |(-30( |(-112( | |

| | |20 | |

| | |(-20( | |

1533 ИР22

Предельные значения параметров

Un=7 В Uвх=7 В

Диапазон температур - [pic]

Рекомендуемое значение Un=4,5[pic]5,5 В

Динамические параметры:

Время задержки распространения

1. при вкл.

По D не более 16 мс

По С не более 23 мс

2. при выкл.

По D не более 23 мс

По C не более 22 мс.

Статистические параметры в диапазоне температур - [pic].

|Параметр |Норма |Условия |

| |не менее|не более| |

|Uвх Н, В | | |Пороговый Н-уровень |

|Uвх L, В | | |Пороговый. L-уровень |

|Uвых Н, В | | |Un=4,5 В; Iвых |

|Uвых L, В | | |Н=-0,4[pic]2,6 |

|Iвх Н, мкА | | |Un=4,5 В; Iвых |

|Iвх L, мА | | |L=12[pic]24 |

|Iвх пр, мА | | |Un=5,5 Uвх |

|Iвых, мА | | |Н=2,7[pic]4,5 |

|Iпотр, мА Uвых Н| | |Un=5,5; Uвх L=0[pic]0,4|

| | | | |

|Uвых L | | |Un=5,5; Uвх Н=4,5[pic]7|

|выкл | | | |

|Iвых Н, мкА выкл| | |Un=5,5 Uвых =2,5 |

| | | |Un=5,5 |

| | | |Uвх L=0 |

|Iвых L, мкА | | |Uвх Н =4,5 |

|выкл. | | |Un=5,5 UвхН =2,0 |

| | | |Uвых Н=2,7 |

| | | |Un=5,5 Uвх L=0,8 |

| | | |Uвых L=0,4 |

| |2,0 | | |

| | |0,8 | |

| |2,4[pic]| | |

| |2,5 |0,4[pic]| |

| | |0,5 | |

| | |20 | |

| | |(-0,1( | |

| | |0,1 | |

| |(-30( |(-112( | |

| | |16 | |

| | |25 | |

| | |27 | |

| | |20 | |

| | | | |

| | |(-20( | |

1533 АП6

Предельные значения параметров

Un=7 В Uвх=7 В

Диапазон температур - [pic]

Рекомендуемое значение Un=4,5[pic]5,5 В

Статистические параметры в диапазоне температур - [pic].

|Параметр |Норма |Условия |

| |не менее|не более| |

|Uвх Н, В | | |Порог. напр. Н-уровня |

|Uвх L, В | | |Порог. напр. L-уровня |

|Uвых Н, В | | |Un=4,5[pic]5,5; Iвых |

|Uвых L, В | | |Н=-3[pic]-15 |

|Iвх Н, мкА | | |Un=4,5[pic]5,5; Iвых |

|Iвх L, мА | | |L=12[pic]24 |

|Iвх пр, мА | | |Un=5,5 Uвх |

|Iвых, мА | | |Н=2,7[pic]4,5 |

|Iпотр, мА Uвых Н| | |Un=5,5; Uвх L=0[pic]0,4|

| | | | |

|Uвых L | | |Un=5,5; Uвх Н=5,5[pic]7|

|выкл | | | |

|Iвых Н, мкА выкл| | |Un=5,5 Uвых =2,5 |

| | | |Un=5,5 |

|Iвых L, мкА | | |Uвх L=0 |

|выкл. | | |Uвх Н =4,5 |

| | | |Un=5,5 UвхН =2[pic]4,5|

| | | | |

| | | |Un=5,5 Uвх L=0 |

| | | |Uвых L=0,4 |

| |2,0 | | |

| | |0,8 | |

| |2,4[pic]| | |

| |2 |0,4[pic]| |

| | |0,5 | |

| | |20 | |

| | |(-0,1( | |

| | |0,1 | |

| |(-30( |(-112( | |

| | |45 | |

| | |55 | |

| | |58 | |

| | |20 | |

| | |(0,2( | |

Динамические параметры:

Время задержки распространения сигнала не более 10 мс.

1533 ИД7

Предельные значения параметров

Un=7 В Uвх=7 В

Диапазон температур - [pic]

Рекомендуемое значение Un=4,5[pic]5,5 В

Статистические параметры в диапазоне температур - [pic].

|Параметр |Норма |Условия |

| |не менее|не более| |

|Uвх Н, В | | |Порог. напр. Н-уровня |

|Uвх L, В | | |Порог. напр. L-уровня |

|Uвых Н, В | | |Un=4,5;IвхН=7,5 Iвых |

|Uвых L, В | | |L=0,4 |

| | | |Un=4,5; Uвх L=0,8 |

|Iвх Н, мкА | | |Uвх Н=2 Iвых L=4[pic]8 |

|Iвх L, мА | | |Un=5,5; Uвх Н=2,7 |

|Iвх пр, мА | | |Un=5,5; Uвх L=0,4 |

|Iвых, мА | | |Un=5,5 UвхН =7 |

|Iпотр, мА | | |Un=5,5 Uвых=2,25 |

|Uвых Н | | | |

|Uвых L | | |Un=5,5 UвхН =4,5 |

| | | |Un=5,5 Uвх L=0 |

| |2,0 | | |

| | |0,8 | |

| |2,5 | | |

| | |0,4[pic]| |

| | |0,5 | |

| | | | |

| | |20 | |

| | |(-0,1( | |

| |(-10( |0,1 | |

| | |(-112( | |

| | | | |

| | |10 | |

| | |10 | |

Динамические параметры:

Время задержки распространения сигнала 17[pic]22 мс.

1533ЛН1; 6 инверторов

Предельные значения параметров

Un=7 В Uвх=7 В

Диапазон температур - [pic]

Рекомендуемое значение Un=4,5[pic]5,5 В

Динамические параметры:

Время задержки распространения сигнала 8[pic]11 мс.

Статистические параметры в диапазоне температур - [pic].

|Параметр |Норма |Условия |

| |не менее|не более| |

|Uвх Н, В | | |Порог. напр. Н-уровня |

|Uвх L, В | | |Порог. напр. L-уровня |

|Uвых Н, В | | |Un=4,5; Iвых Н=(-0,4( |

|Uвых L, В | | |Uвх Н=4,5 Iвых |

|Iвх Н, мкА | | |L=4[pic]8 |

|Iвх L, мА | | |Un=5,5; Uвх Н=2,7 |

|Iвх пр, мА | | |Un=5,5; Uвх L=0,4 |

|Iвых, мА | | |Un=5,5 UвхН =7 |

|Iпотр, мА | | |Uвых=2,25 |

|Uвых Н | | | |

|Uвых L | | |Un=5,5 UвхL =0 |

| | | |Un=5,5 Uвх H=4,5 |

| |2,0 | | |

| | |0,8 | |

| |2,5 | | |

| | |0,4[pic]| |

| | |0,5 | |

| | |20 | |

| | |(-0,1( | |

| |(-15( |0,1 | |

| | |(-70( | |

| | | | |

| | |1,1 | |

| | |4,2 | |

1533ЛЛ1; элемент 4 или (два входа)

Предельные значения параметров

Un=7 В Uвх=7 В

Диапазон температур - [pic]

Рекомендуемое значение Un=4,5[pic]5,5 В

Статистические параметры в диапазоне температур - [pic].

|Параметр |Норма |Условия |

| |не менее|не более| |

|Uвх Н, В | | |Порог. напр. Н-уровня |

|Uвх L, В | | |Порог. напр. L-уровня |

|Uвых Н, В | | |Un=4,5; Uвх L=0,8 |

| | | |Uвх Н=2,0 Iвых L=(-0,4(|

|Uвых L, В | | | |

| | | |Un=4,5; Uвх L=0,8 |

|Iвх Н, мкА | | |UвхН=2,0; Iвых |

|Iвх L, мА | | |L=4[pic]8 |

|Iвх пр, мА | | |Un=5,5 UвхН =2,7 |

|Iвых, мА | | |Un=5,5 UвхL =0,4 |

|Iпотр, мА | | |Un=5,5 UвхН =7 |

|Uвых Н | | |Un=5,5 Uвых =2,25 |

|Uвых L | | | |

| | | |Un=5,5 UвхН =4,5 |

| | | |Un=5,5 Uвх L=0 |

| |2,0 | | |

| | |0,8 | |

| |2,5 | | |

| | | | |

| | |0,4[pic]| |

| | |0,5 | |

| | | | |

| | |20 | |

| | |(-0,1( | |

| |(-10( |0,1 | |

| | |(-112( | |

| | | | |

| | |4 | |

| | |4,9 | |

Динамические параметры:

Время задержки распространения сигнала 12[pic]14 мс.

1533ТЛ2; 6 триггеров Шмидта -инверторов

Предельные значения параметров

Un=7 В Uвх=7 В

Диапазон температур - [pic]

Рекомендуемое значение Un=4,5[pic]5,5 В

Статистические параметры в диапазоне температур - [pic].

|Параметр |Норма |Условия |

| |не менее|не более| |

|Uвх Н, В | | |Порог. напр. Н-уровня |

|Uвх L, В | | |Порог. напр. L-уровня |

|Uвых Н, В | | |Un=4,5; Uвх L=0,5 |

| | | |Uвх Н=2,0 Iвых L=(-0,4(|

|Uвых L, В | | | |

| | | |Un=4,5; Uвх Н=2 |

|Iвх Н, мкА | | |UвхL=0,5; Iвых |

|Iвх L, мА | | |L=4[pic]8 |

|Iвх пр, мА | | |Un=5,5 UвхН =2,7 |

|Iвых, мА | | |Un=5,5 UвхL =0,4 |

|Iпотр, мА | | |Un=5,5 UвхН =7 |

|Uвых Н | | |Uвых =2,25 |

|Uвых L | | | |

| | | |Un=5,5 UвхН =4,5 |

| | | |Un=5,5 Uвх L=0 |

| |2,0 | | |

| | |0,8 | |

| |2,5 | | |

| | | | |

| | |0,4[pic]| |

| | |0,5 | |

| | | | |

| | |20 | |

| | |(-0,2( | |

| |(-30( |0,1 | |

| | |(-112( | |

| | | | |

| | |13 | |

| | |17 | |

Динамические параметры:

Время задержки распространения сигнала не более 22 мс.

572ПА1.

|Разрядность |tустан., мкс |[pic]л % |Рпотр, Вт |

|10 |5 |0,1[pic]0.8 |0,1 |

К140УД8

|Кц |Uст, мВ |[pic]Uст, |Iвх, мА |[pic]Iвх, мА|

| | |мкВ/С | | |

|50 103 |20 |50 |0,2 |0,15 |

|Uвх, В |Iвых, мА |Iпотр, мА |Un, В |fmax, мГц |

|10 |20 |5 |[pic]12 |1 |

580 ВВ55.

Статистические параметры в диапазоне температур - [pic].

|Параметр |Значение |

| |min |max |

|Uвх Н, В | | |

|Uвх L, В | | |

|Uвых Н, В | | |

|Uвых L, В | | |

|Iвых Н, мкА | | |

|Iвых L, мА | | |

|Iвых, мА | | |

|Iпотр, мА | | |

| |2,0 |- |

| |- |0,8 |

| |2,4 |- |

| |- |0,45 |

| |- |0,1 |

| |- |1,6 |

| |- |14 |

| |- |120 |

КОНСТРУКТОРСКО-

ТЕХНОЛОГИЧЕСКИЙ

РАЗДЕЛ

2.1. Патентный поиск.

В настоящее время широкое применение получили микропроцессорные средства,

применяемые в устройствах управления бытовой аппаратурой. Патентов на

данный вид схем мной обнаружено не было. Поэтому в качестве базовой модели

возьмем устройство управления, применяемое в тюнере спутникового ТВ «Садко»

3В.025.006 ТУ, выпущенного ПО «Квант».

Характеристика тюнера в ТВ «Садко».

Технические параметры:

1. Uпит=220 В (187[pic]242 В) 50 Гц.

2. Диапазон рабочих частот: 0,95[pic]1,75 ГГц.

3. Рпот=50 Вт.

4. Избирательность по соседнему каналу при расстройке (25 МГц(20 db.

Избирательность по зеркальному каналу при расстройке +960 МГц

относительно нижней частоты 950 МГц( 20 db.

5. Отношение сигнал / шум в канале изображения при Uном на входе (-70 db

Вт) при Uвых видео (1(0,1) (56 db.

6. f зв=950[pic]1750 МГц.

7. Uвых зв(5 мВ.

8. f перестройки частоты звукового сопровождения 5[pic]8,5 МГц.

9. Непрерывная работа при сокращении параметров ТУ – не менее 8 часов.

10. Предельные климатические условия:

- влажность 93 % при Т=25(С.

- Т=-40(С.

11. Параметры при воздействии однократных ударов

а=15 д при tU=2 мс[pic]15 ис.

12. Наработка на отказ: не менее 5(103 часов.

13. Масса – 6,5 кг.

В данном тюнере спутникового телевидения применяется сенсорное управление

с ручной настройкой на соответствующем канале. Перестройка производится с

помощью подстроечных резисторов. Все это приводит к ограничению количества

запоминаемых программ до восьми. Подача сигналов управления в остальные

блоки тюнера осуществляется нажатием соответствующих кнопок на передней

панели тюнера. Устройство управления выполнено по аналоговой элементной

базе.

Все это приводит к ряду неудобств при технической эксплуатации тюнера

данной модели. Большинства недостатков можно избежать при использовании в

качестве основного элемента устройства управления процессора, который будет

управлять деятельностью всей схемы управления.

Применение процессора в качестве основного элемента управляющей схемы

приведет:

1. К увлечению количества принимаемых каналов с 8 до 99 и их запоминанию.

2. К увеличению быстродействия перестройки частоты от fmin до fmax.

Скорость перестройки зависит от fтакт процессора.

3. К увеличению точности настройки со строго определенным шагом.

4. К увеличению количества принимаемых сигналов звукового сопровождения.

5. К дополнительным удобствам при эксплуатации тюнера – наличие

дистанционного управления, вывод сведений на экран о реальном времени,

программирование времени включения тюнера.

6. К уменьшению масса - габаритных размеров.

2.2 Разработка конструкции блока.

Блок является основным элементом при проектировании РЭА. Он объединяет

печатные узлы и другие элементы. Разработку конструкции блока можно

производить исходя из базовых несущих конструкций. Но в некоторых случаях,

например при проектировании бытовой аппаратуры, целесообразно разрабатывать

оригинальную несущую конструкцию. Это позволяет повысить коэффициент

заполнения объема, уменьшить массу и габаритные размеры изделия.

Каркас блока выполнен из алюминия АД-1 толщиной 1 мм. Кожух блока, из-

за требований, предъявляемых к прочностным характеристикам конструкции,

выполнен из стального листа марки СТ10 толщиной 1 мм. Передняя панель

выполнена также из стального листа марки СТ10 толщиной 1 мм.

Так как стальной кожух не стоек к коррозии, применено покрытие из

анилинового красителя черного цвета, что обеспечивает необходимую

антикоррозийную стойкость при эксплуатации и хранении.

Для пайки применяют припой ПОС – 61.

Габаритные размеры блока в длину и ширину соответственно: 505 мм и 300

мм.

Данные размеры определяются суммарными габаритными размерами плат и

зазорами между ними. Высота определяется высотой трансформатора и шириной

платы индикации и составляет 55 мм.

2.3. Выбор и определение типа платы, ее технологии изготовления, класса

точности, габаритных размеров, материала, толщины, шага координатной сетки.

1. По конструкции печатные платы с жестким и гибким основанием делятся на

типы:

- односторонние

- двусторонние

- многослойные

Для данного изделия необходимо использовать двустороннюю печатную плату с

металлизированными монтажными и переходными отверстиями. Несмотря на

высокую стоимость, ДПП с металлизированными отверстиями характеризуются

высокими коммутационными свойствами, повышенной прочностью соединения

вывода навесного элемента с проводящим рисунком платы и позволяет уменьшить

габаритные размеры платы за счет плотного монтажа навесных элементов.

Для изготовления печатной платы в соответствии с ОСТ 4.010.022 и исходя

из особенностей производства выбираем комбинированный позитивный метод.

2. В соответствии с ГОСТ 2.3751-86 для данного изделия необходимо выбрать

четвертый класс точности печатной платы.

3. Габаритные размеры печатных плат должны соответствовать ГОСТ 10317-79.

Для ДПП максимальные размеры могут быть 400 х 400 мм. Габаритные

размеры данной печатной платы удовлетворяют требованиям данного ГОСТа.

4. В соответствии с требованиями ОСТ 4.077.000 выбираем материал для платы

на основании стеклоткани – стеклотекстолит СФ-2-50-1,5 ГОСТ 10316-78.

Толщина 1,5 мм.

5. В соответствии с ГОСТ 2.414078 и исходя из особенностей схемы, выбираем

шаг координатной сетки 1,25 мм.

6. Способ получения рисунка – фотохимический.

2.4. Конструкторский расчет элементов печатной платы.

1. Шаг координатной сетки – 1,25 мм.

2. Определяем минимальную ширину печатного проводника по постоянному току:

вmin1=[pic], где

Imax=30 мА t=0,02 мм jдоп=75 А/мм2

3. Определяем минимальную ширину проводника исходя из допустимого падения

напряжения на нем:

вmin2=[pic], где

Uдоп[pic]12 В(0,05=0,6 В l=0,5 м (=0,0175 ([pic](

вmin2=[pic]=0,022 мм.

4. Номинальное значение диаметров монтажных отверстий:

d=dэ+(bdно(+Г, (dно=0,1 мм, Г=0,3 мм.

а) для микросхем

dэ=0,5 мм d=0,9 мм

б) для резисторов

dэ=0,5 мм d=0,9 мм

в) для диодов и стабилитронов

dэ=0,5 мм d=0,9 мм

г) для транзисторов

dэ=0,5 мм d=0,9 мм

д) для конденсаторов

dэ=0,5 мм d=0,9 мм

е) для разъема

dэ=1 мм d=1,4 мм

5. Рассчитанные значения сводятся к предпочтительному ряду размеров

монтажных отверстий:

0,7; 0,9; 1,1; 1,3; 1,5 мм.

Номинальное значение диаметров монтажных отверстий для разъема: d=1,5 мм.

6. Минимальное значение диаметра металлизированного отверстия:

dmin[pic]Hпл(, где Нпл=1,5 мм – толщина платы; (=0,25

dmin[pic]1,5(0,25=0,5 мм

7. Диаметр контактной площадки:

D=d+(dво+2вm+(вво+((2d+(2p+(в2но)1/2

(dво=0,5 мм; вm=0,025 мм (вво=(вно=0,05 мм

(р=0,05 мм; (d=0,05 мм

(dво+2 вm+(вво+((2d+(2p+(в2но)1/2=0,05+0,05+0,05+(3(25(10-4)1/2=0,24

d=0,7 мм D=0,95 мм

d=0,9 мм D=1,15 мм

d=1,5 мм D=1,75 мм

8. Определение номинальной ширины проводника:

в=вMD+((вНО(, где

вMD=0,15 мм; (вНО=0,05 мм

в=0,15+0,05=0,2 мм

9. Расчет зазора между проводниками:

S=SMD+(вВО, где

(вВО=0,05 мм; SMD=0,15 мм

S=0,15+0,05=0,2 мм

10. Расчет минимального расстояния для прокладки 2-х проводников между

отверстиями с контактными площадками диаметрами D1 и D2.

l=[pic]+вn+S(n+1)+(l , где

n=2; (l=0,03 мм

l=1,05+0,4+0,6+0,03=2,1 мм.

2.5. Расчет параметров проводящего рисунка с учетом технологических

погрешностей получения защитного рисунка.

1. Минимальный диаметр контактной площадки:

Dmin=D1min+1,5hф+0,03

D1min=2(вм+[pic]+(d+(p)

dmax1=0,9 мм

D1min=2(0,025+0,45+0,05+0,05)=1,15 мм

Dmin1=1,15+0,6=1,21

dmax2=1,5 мм

Dmin2=1,81 мм

2. Максимальный диаметр контактной площадки:

Dmax=Dmin+(0,02…0,06)

Dmax1=1,21+0,02=1,23 мм

Dmax2=1,81+0,02=1,83 мм

3. Минимальная ширина проводника:

вmin=в1min+1,5hф+0,03, где

в1min=0,15 мм

вmin=0,15+0,6=0,21

4. Максимальная ширина проводника:

вmax= вmin+(0,02…0,06)

вmax=0,23 мм

5. Минимальная ширина линии на фотошаблоне:

вмmin= вmin-(0,02…0,06)

вмmin=0,21-0,02=0,19 мм

6. Максимальная ширина линии на фотошаблоне:

вмmax= вmin+(0,02…0,06)

вмmax=0,21+0,06=0,27 мм

7. Минимальное расстояние между проводником и контактной площадкой:

S1min=L0-[Dmax/2+(p+ вmax/2+(l]

L0=1,25 мм

S1min=1,25-0,615-0,05-0.115-0,03=0,44 мм

8. Минимальное расстояние между двумя контактными площадками:

S2min=L0-(Dmax+2(p)

L0=1,25 мм+0,3 мм=1,55 мм

S2min=1,25-1,23-2(0,05+0,03=0,20 мм

9. Минимальное расстояние между проводником и контактной площадкой на

фотоблоке:

S3min=L0-(Bmax+2(l)

L0=1,25 мм

S3min=1,25-0,575-0,05-0,135-0,03=0,46 мм

10. Минимальное расстояние между проводником и контактной площадкой на

фотоблоке:

S4min=L0-(Dмmax/2+(p+вмmax/2+(l)

L0=1,25 мм

S4min=1,25-0,575-0,05-0,135-0,03=0,46 мм

11. Минимальное расстояние между двумя контактными площадками на фотоблоке:

S5min=L0-(Dмmax+2(p)

L0=1,55 мм

S5min=1,55-1,25-0,1=0,2 мм

12. Минимальное расстояние между двумя проводниками на фотоблоке:

S6min=L0-(вмmax+2(l)

L0=1,25 мм

S6min=1,25-0,27-0,06=0,92 мм

2.6. Расчет проводников по постоянному току.

Наиболее важными электрическими свойствами печатных плат по

постоянному току является нагрузочная способность проводников по току и

сопротивление изоляции.

Практически сечение проводника рассчитывается по допустимому падению

напряжения Uп на проводнике:

1. Uп=[pic] вп=0,23 мм hф=0,02 мм

l=0,5 м (=0,0175 [pic] I=30 мА

Uп=[pic]=57 мВ

Uп103Rвх, где Rвх=[pic]=10 кОм.

2.7. Расчет проводников по переменному току.

1. Падение импульсного напряжения на длине проводника в l cм.

UL=Lпо[pic] Lпо=1,8 [pic]; (I=6 мА; tU=5 нс

UL=1,8 [pic]=2,16[pic]

2. Максимальная длина проводника:

lmaxa(x,y)=11,13g

0,003в=0,54 мм>(B=0,47 мм

Расчет ударопрочности.

1. Частота ударного импульса:

(=[pic] (=10-3 c (=3140

2. Коэффициент передачи при ударе:

Ку=2sin[pic]=2sin[pic]=0,45

[pic]=6,95 – коэффициент расстройки

3. Ударное ускорение:

ау=Ну(Ку=15g(0,45=6,72g

4. Ударное перемещение:

[pic]мм

Вывод: адоп=35g>ay=6,72g

0,003в=0,54 мм>Zmax=0,15 мм

5. Частным случаем ударного воздействия является удар при падении прибора.

Относительная скорость соударения:

V0=Vy+V0T

Vy=[pic] H=0,1 м

V0T=Vy(KCB=1,41(0,68=20,97 м/с

V0=1,41+0,97=2.38 м/с

Действующее на прибор ускорение:

ап=2(V0f0=6,28(2,38(71,9=109g

aдоп=150g>aп=109g

2.9. Расчет теплового режима.

Размеры нагретой зоны:

l31=180 мм; l32=215 мм; l33=15 мм

Размеры блока:

l(1=220 мм; l(2=255 мм; l(3=55 мм

1. Площадь блока.

S(=2(l(1 l(2+( l(1+ l(2) l(3)=2(0,22(0,255+(0,22+0,255)0,055)=0,16 м2

2. Поверхность нагретой зоны:

SH3=2(l31 l32+( l31+ l32) l33)=2(0,18(0,215+(0,18+0,215)0,015)=0,09 м2

3. Удельная мощность, рассеиваемая блоком:

q(=[pic]=93,75 Вт/м2

4. Удельная мощность, рассеиваемая зоной:

qH3=[pic] Вт/м2

5. Перегрев блока и нагретой зоны относительно окружающей среды:

(Т,(С

(Т1=10(С - q(

(T2=15(C - qНЗ

50 100 150 200 250 q(,qНЗ Вт/м2

6. Площадь вентиляции:

SBO=S((0,2=0,16(0,2=0,032 м2

7. Коэффициент перфорации:

КПФ=[pic]

8. Коэффициент, учитывающий перегрев при наличии вентиляционных отверстий:

Кm=У(КПФ)

Km

Km=0,5

0,1 0,2 0,3 0,4 0,5 КПФ

9. Перегрев поверхности блока с учетом перфорации:

(Т(=0,93(Кm(Т1=0,93(0,5(10=4,65(С

10. Перегрев нагретой зоны с учетом перфорации:

(ТНЗ=Кm(Т2=0,5(15=7,5(С

11. Перегрев воздуха в блоке:

(ТСП=0,6(ТНЗ=0,6(7,5=4,5(С

12. Удельная мощность, рассеиваемая компонентом:

qK=[pic]=[pic]=2555,4 Вт/м2

13. Перегрев поверхности компонента:

(ТК=(ТНЗ(0,75+0,25[pic])=7,5(0,75+0,25[pic])=34,4(С

14. Перегрев воздуха над компонентом:

(ТСК=(ТСП(0,75+0,25[pic])=20,61(С

15. Температура блока:

Т(=ТОС+(Т(=25+4,65=29,65(С

16. Температура нагретой зоны:

ТНЗ= ТОС+(ТНЗ=25+7,5=32,5(С

17. Температура воздуха в нагретой зоне:

ТСП= ТОС+(ТСП=25+4,5=29,5(С

18. Температура компонента:

ТК= ТОС+(ТК=25+34,4=59,4(С

19. Температура окружающей компонент среды:

ТСК= ТОС+(ТСК=25+20,61=45,61(С

Тдоп=70(С>ТК=59,4(С

В данном блоке не нужна принудительная вентиляция, т.к. естественные

условия допускают температурный режим.

2.10. Расчет качества.

Расчет качества будем производить по следующим показателям:

1. Назначения.

2. Надежности.

3. Технологичности.

4. Эргономико-эстетическим.

1)

|Назначение |Б |Д |gi |mi |gi mi|

|Масса, кг |6,5 |5,4 |1,2 |0,3 |0,36 |

|Объем, дм3 |15,7 |8,3 |1,9 |0,3 |0,57 |

|Мощность, Вт |50 |40 |1,25 |0,2 |0,25 |

|Уровень миниатюризации |2 |1 |2 |0,2 |0,4 |

Q=[pic]=1,58, Q2=qimi

2) Основным показателем надежности является среднее время наработки на

отказ:

ТсрБ=20(103ч ТсрД=29(103 ч

qi=[pic]1,8 m2=1

3)

|Технологичность |Б |Д |gi |mi |gi mi|

|Коэффициент автоматизации и | | | | | |

|механизации монтажа |0,81 |0,92 |1,13 |0,3 |0,34 |

|Коэффициент подготовки ЭРЭ к| | | | | |

|монтажу |0,35 |0,55 |1,57 |0,3 |0,47 |

|Коэффициент повторяемости | | | | | |

|ЭРЭ |0,49 |0,56 |1,14 |0,2 |0,23 |

|Коэффициент применяемости | | | | | |

| |0,9 |0,86 |1,04 |0,2 |0,21 |

Q=1,25

4) Эргономико-эстетические.

Оценку будем вести по пятибальной шкале.

|Б |Д |g |m |Gm |

|3 |5 |1,67 |1 |1,67 |

В данном случае учитывается более оригинальный вид, удобства в

эксплуатации, увеличение количества принимаемых каналов.

Оценим комплексный показатель качества:

Qкомпл=1,58(0,3+1,8(0,2+1,25(0,2+1,67(0,3=0,474+0,36+0,25+0,501=

=1,587

2.11 Расчет надежности.

1. Интенсивность отказов элементов в зависимости от условий эксплуатации

изделия

(2=(02K1K2K3 К4Q2(T,KH)

(02 – номинальная интенсивность отказов

K1 и K2 – поправочные коэффициенты в зависимости от воздействия

механических факторов. Для стационарной аппаратуры K1 =1,04; K2=1,03.

К3 – поправочный коэффициент в зависимости от воздействия влажности и

температуры. Для влажности 60(70 % т Т=20(40(С К3=1.

К4 – поправочный коэффициент в зависимости от давления воздуха К4=1,14.

K1K2K3 К4=1,22

Q2(КН,Т) – поправочный коэффициент в зависимости от температуры поверхности

элемента и коэффициента нагрузки. Определяется по графикам: Парфенов

“Проектирование конструкций РЭА” стр. 176.

Микросхемы: К(Q2=1,22(0,5=0,61

Резисторы: К(Q2=1,22(0,53=0,65

Конденсаторы: К(Q2=1,22(0,2=0.24

Диоды: К(Q2=1,22(0,5=0,61

Транзисторы: К(Q2=1,22(0.48=0,59

Резонаторы: К(Q2=1,22(0.1=0,122

(МС=0,013(10-6(0,61=7,9(10-9 1/ч

(R=0,043(10-6(0,65=2,78(10-8 1/ч

(C=0,075(10-6(0,24=1,83(10-8 1/ч

(CЭ=0,035(10-6(0,24=8,5(10-9 1/ч

(КВ=0,1(10-3(0,122=12(10-6 1/ч

(VD=0,2(10-6(0,61=12,2(10-8 1/ч

(VT=0,84(10-6(0,59=4,9(10-7 1/ч

(пайки=0,01(10-6(1,22=12(10-9 1/ч

(платы=0,7(10-6(1,22=0,85(10-6 1/ч

(МС=7,9(10-9(23=1.8(10-7 1/ч

(R=2,87(10-836=10-6 1/ч

(C=1,83(10-8(23=4,2(10-7 1/ч

(CЭ=8,5(10-9(4=34(10-9 1/ч

(VD=1,22(10-7(6=7,3(10-7 1/ч

(VT=4,9(10-7 1/ч

(КВ=12(10-6(2=24(10-6 1/ч

(ПЛ=0,85(10-6 1/ч

(пайки=60(10-7 1/ч

2. Интенсивность отказов узла:

(1=[pic]=1,8(10-7+10-6+4,2(10-7+3,4(10-8+24(10-6+0,85(10-6+ +6(10-

6+7,3(10-7+4,9(10-7=33,704(10-6 1/ч

3. Вероятность безотказной работы для системы без резервирования равна:

Р(tp)=exp(-(1tp)=exp(-33,7(3(10-3)=0,91

Зададим tp=3000ч

4. Среднее время наработки до отказа:

Т=[pic]=29670,1ч

ТЕХНИКО-

ЭКОНОМИЧЕСКИЙ

РАЗДЕЛ

Р А З Д Е Л

О Х Р А Н Ы

Т Р У Д А

По возникшим вопросам и за чертежами обращаться по адресу: wspider@mail.ru

Чертежи:

1) электрическая принципиальная схема (в AutoCad )

2) сборочный чертеж

3) разводка платы с двух сторон

Также есть разделы экономики и охраны труда.

Список литературы.

1. Коффрон Дж. Технические средства микропроцессорных систем. – М.: Мир,

1983

2. Хвощ С.Т., Варлинский Н.Н., Попов Е.А. Микропроцессоры и микроЭВМ в

системах автоматического управления. – Л.: Машиностроение, 1987.

3. Хоровиц П., Хеши У. Искусство схемотехники. –М.: Мир, 1986.

4. Микропроцессоры и микропроцессорные комплекты интегральных

микросхем/справочник – М.: Радио и связь, 1986.

5. Шило В.Л. Популярные цифровые микросхемы: справочник. – Челябинск:

Металлургия, 1986.

6. Якубовский С.В. Цифровые и аналоговые интегральные микросхемы:

Справочник. – М.: Радио и связь, 1989.

7. Александров К.К., Кузьмина Е.Г. Электротехнические чертежи и схемы. –

М.: Энергоатомиздат, 1990.

8. Павловский В.В., Васильев В.И., Гутман Т.Н. Проектирование

технологических процессов изготовления РЭА / Пособие по курсовому

проектированию для ВУЗов. – М.: Радио и связь, 1982.

9. Парфенов К.М. Проектирование конструкций РЭА. – М.: Радио и связь, 1989.

10. Егоров В.А., Лебедев К.М. и др. Конструкторско-технологическое

проектирование печатных узлов / Учебное пособие. – СПб, 1995.

11. Корчагина Р.Л. Технико-экономические обоснования при разработке

радиоэлектронных приборов и устройств. / Учебное пособие по дипломному

проектированию. – Л.: Механический институт, 1988.

12. Безопасность жизнедеятельности: Справочное пособие по дипломному

проектированию / Под редакцией Иванова Н.И. и Фадина И.М. – СПб.: БГТУ,

1995.

-----------------------

ДУ

Процессор

ОЗУ

ПЗУ

Таймер

Фиксиру-ющая схема

БИ

А

Схема согласования

ЦАП 1

ЦАП 2

В

ЦАП 3

С

Блок экранной графики

Управление последовательным В/В

Управление прерываниями

В(8) С(8)

D(8) Е(8)

Н(8) L(8)

Указатель стека(16)

Програм.счетчик (16)

Устройство приращения/уменьшения

Адресный ключ

Времен-ной регистр(8)

Регистр кода операции

Регистр флажков

(5)

Накопи-тель

(8)

Дешифратор кода операции и формирователь машинных циклов

АЛУ (8)

Адресный буфер

Буфер

адресов/ данных

Устройство управления и синхронизации

Тактовый Прямой

генератор доступ

Управление Состояние к Сброс

памяти

40

1

1821ВМ85

2

1821ВМ85

36

DCX

НК

УЗ

УС

DCY

УУ

RESET U00

PS U55

AD0

AD1

AD2

AD3

IRQ

AD4

AD5

AD6

AD7

AS

SQW

DS

R/W

CKOUT

CE

CKFS

OSCI OSC2

4

5

6

7

8

9

10

11

14

17

15

13

20

2

Внутренняя магистраль

Канал А

Канал данных

Канал С

Устройство управления

Канал С

Канал В

[pic]

D7 D6 D5 D4 D3 D2 D1 D0

D7 D6 D5 D4 D3 D2 D1 D0

[pic]RD WR SR CS A1 A0

BC

BB BA

1

11

3

4

7

8

13

14

17

18

2

5

6

9

12

15

16

19

ЕО RG

С Q1

D1 Q2

D2 Q3

D3 Q4

D4 Q5

D5 Q6

D6 Q7

D7 Q8

D8

В

В

572ПА1

К1409D8

S

G1 Q

[pic] [pic]

В

R

DC

МП

Устройство В/В

ПЗУ

ОЗУ

+5B

[pic]

VT

I(0<

Iэ, мА

[pic]

R5

[pic]

U2

VD3

20

15

10

5

0,9

0,8

0,7

0,6

0,5

Страницы: 1, 2


© 2000
При полном или частичном использовании материалов
гиперссылка обязательна.