РУБРИКИ

Проектирование строительства эксплуатационной скважины №11 на Северо-Прибрежной площадке Краснодарского края

   РЕКЛАМА

Главная

Зоология

Инвестиции

Информатика

Искусство и культура

Исторические личности

История

Кибернетика

Коммуникации и связь

Косметология

Криптология

Кулинария

Культурология

Логика

Логистика

Банковское дело

Безопасность жизнедеятельности

Бизнес-план

Биология

Бухучет управленчучет

Водоснабжение водоотведение

Военная кафедра

География экономическая география

Геодезия

Геология

Животные

Жилищное право

Законодательство и право

Здоровье

Земельное право

Иностранные языки лингвистика

ПОДПИСКА

Рассылка на E-mail

ПОИСК

Проектирование строительства эксплуатационной скважины №11 на Северо-Прибрежной площадке Краснодарского края

Диаметр бурильных труб должен составлять 60-65%, а диаметр УБТ -75-85% от диаметра долота. Поэтому при бурении проектируемой скважины будут использоваться бурильные трубы диаметром 127мм (вес1м-31,9 кг), а УБТ -диаметром 178 мм. (вес1м- 156 кг)

Определим вес снаряда по формуле:

Qкр = k*α*q*L*(1-γж/γст), ( 2.3.1.)


где k - коэффициент, учитывающий силы трения колонны бурильных труб о стенки скважины, а также возможные прихваты ее породой (при подъеме снаряда k = 1,25-1,5; при подъеме обсадных труб k = 1,5-2,0);

α - коэффициент, учитывающий увеличение веса труб за счет соединяющих их элементов ( для муфтово-замкового α =1,1);

q - вес 1 м труб, кг;

L - длина колонны труб, м;

γж - удельный вес промывочной жидкости, г/см3;

γст - удельный вес материала бурильных труб (для стали 7,85 г/см3).

Вес инструмента под колонну диаметром 324 мм:


Qкр = 1,25*1,1*31,9*1020*(1-1,18/7,85) = 38028 кг = 38 т.


Вес инструмента под колонну диаметром 245 мм:


Qкр =1,25*1,1*31,9*2450*(1-1,7/7,85)=83821 кг = 83.8 т.


Вес инструмента под колонну диаметром 146 мм:


Qкр = 1,25*1,1*31,9*3025*(1-2,13/7,85)= 96859кг = 96.8т.


Вес инструмента можно также рассчитать по следующей формуле:

Qкр = ( Pпри + Р перев + Рубт + Рбур.тр + Рвед.тр + Рвертл ) *(1-γж/γст), (2.3.2.)


Для этого необходимо знать длину утяжеленных бурильных труб. Вычислим ее по формуле:

Lубт = k*Р / (q *(1-γж/γст)),


где Р - осевая нагрузка на породоразрушающий инструмент, Н;

q - вес 1 м УБТ, кг;

k - коэффициент завышения веса УБТ (k = 1,25-1,5).

При бурении под колонну диаметром 324 мм:


Lубт = 1,25*104054/(1560*(1-1,18/7,85)) = 98 м.


Применяем 4 свечей УБТ диаметром 178 мм по 25 м.

При бурении под колонну диаметром 245 мм:


Lубт = 1,25*83271/(1560*(1-1,7/7,85)) = 85.5 м.


Применяем 4 свечей УБТ диаметром 178 мм по 25 м.

При бурении под колонну диаметром 140 мм:


Lубт = 1,25*81207/(1560*(1-2,13/7,85)) = 89 м.


Применяем 4 свечей УБТ диаметром 178 мм по 25 м.

Для создания необходимой нагрузки на долото можно использовать УБТ разного диаметра.

Вычислим вес бурового снаряда при бурении под колонну диаметром 324 мм:

Qкр = ( Pпри + Рперев+Lубт*qубт +Lбур.тр* qбур.тр + L вед.тр *qвед.тр + Рвертл )*(1-γж/γст), (2.3.3.)

Qкр = (37,8+15+98*156+922*31,9+16*124,3+6700)*(1-1,18/7,85) = 45426 кг = 45.4т.


Вычислим вес бурового снаряда при бурении под колонну диаметром 245 мм:

Qкр = ( Pпри + Рперев+Lубт*qубт +Lбур.тр* qбур.тр + L вед.тр *qвед.тр + Рвертл )*(1-γж/γст), (2.3.4.)

Qкр = (37,8+15+85.5*156+2364.5*31,9+16*124,3+6700)*(1-1,7/7,85) = 76056 кг =76т.


Вычислим вес бурового снаряда при бурении под колонну диаметром 140 мм:

Qкр = ( Pпри + Рперев+Lубт*qубт +Lбур.тр* qбур.тр + L вед.тр *qвед.тр + Рвертл )*(1-γж/γст), (2.3.5.)

Qкр = (37,8+15+89*156+2936*31,9+16*124,3+6700)*(1-2,13/7,85) = 84887кг = 84.9т.


Переводники предназначены для соединения элементов БК с резьбами различных типов и размеров. Переводники согласно ГОСТ 7360 разделяются на три типа:

1)  Переводники переходные, предназначенные для перехода от резьбы одного размера к резьбе другого. ПП имеющие замковую резьбу одного размера называются предохранительными.

2)  Переводники муфтовые для соединения элементов БК, расположенных друг к другу ниппелями.

3)  Переводники ниппельные для соединения элементов БК, расположенных друг к другу муфтами.

Переводники каждого типа изготовляют с замковой резьбой как правого, так и левого направления нарезки. Резьба должна соответствовать ГОСТ 5286-75 для бурильных замков.

ГОСТ 7360 предусматривает изготовление 90 типоразмеров переводников, которые охватывают практически все необходимые случаи их применения.

 Пример условного обозначения переводника типа ПП с резьбами муфтовой З-147, ниппельной З-171: П - 147/171 ГОСТ 7360

То же, но с левой резьбой: П - 147/171 –Л ГОСТ 7360

Переводники изготовляются из стали марки 40ХН (предел текучести 735 МПа).

Калибраторы служат для выравнивания стенок скважины и устанавливаются непосредственно над долотом. Используются как лопастные калибраторы с прямыми (К), спиральными (КС) и наклонными лопастями (СТ), так и шарошечные. Диаметры калибратора и долота должны быть равны. Материал вооружения – твердый сплав (К, КС), алмазы (СТ), "Славутич" (КС). При бурении проектной скважины предусматривается использование калибратора лопастного спиралевидного (КЛС).

Центраторы предназначены для обеспечения совмещения оси БК с осью скважины в местах их установки.

Стабилизаторы, имеющие длину в несколько раз большую по сравнению с длиной центраторов, созданы для стабилизации зенитного угла скважины.


2.3.1.2 Расчет обсадных колонн

Обсадные трубы служат для крепления ствола скважины. По ГОСТ 632-80 отечественные обсадные трубы выпускаются следующих диаметров и толщины:


Таблица 2.5 Диаметры и толщина обсадных труб

Æ, мм

114.3

127.0

139.7

146.1

168.3

177.8

s, мм

5.2 - 10.2

5.6 - 10.2

6.2 - 10.5

6.5 - 9.5

7.3 - 12.2

5.9 - 15.0

193.7

219.1

244.5

273.1

298.5

323.9

339.7

5.2 - 10.2

7.6 - 15.1

7.9 - 15.9

7.1 - 16.5

8.5 - 14.8

8.5 - 14.0

8.4 - 15.4







351.0

377.0

406.4

426.0

473.3

508.0


9.0 - 12.0

9.0 - 12.0

9.5 - 16.7

10.0 - 12.0

11.1

11.1 - 16.1



Группа прочности стали "Д", "К", "Е", "Л", "М", "Т". Трубы маркируются клеймением и краской. При спуске в скважину обсадные трубы шаблонируют.

Определим вес обсадной колонны диаметром 324мм по формуле:

Робс = Lобс*qобс, где (2.3.6.)


Робс. - длина обсадной колонны, м; qобс. - вес 1 м обсадных труб, кг.


Робс. = 1020*74.7 = 76194 кг = 76,2 т. Робс в р-ре = Робс*(1-1,18/7,85) = 64.8т


Определим вес обсадной колонны диаметром 245мм:


Робс. = 2450*70.8 = 173460 кг = 173,5 т. Робс в р-ре = Робс*(1-1,7/7,85) =135.3т


Определим вес обсадной колонны диаметром 140 мм:

Робс. = 3025*30.7 = 92867 кг = 92,9 т. Робс в р-ре = Робс*(1-2,13/7,85) = 67.8т


Сравнив вес обсадных колонн и вес бурового снаряда при бурении под каждую из колонн можно сделать вывод что самой тяжелой является обсадная колонна диаметром 245мм.

Эксплуатационные и промежуточные колонны обсадных труб работают в наиболее тяжелых условиях. Например, в процессе спуска колонн обсадных труб по мере их наращивания увеличивается нагрузка, обусловленная силами собственного веса. После того как колонна доведена до забоя и установлена на забой, трубы частично разгружаются от растягивающих усилий. Силы внешнего давления, действующие на трубы в процессе спуска колонны и определяемые разностью давления столбов жидкости за трубами и внутри их, по своей величине незначительны.

 Промежуточная колонна труб работает в несколько иных условиях, нежели эксплуатационная. Промежуточная колонна в основном работает на растяжение от собственного веса, а также от сил, создаваемых внутренним давлением. Наибольшего значения внутреннее давление достигает в момент окончания продавки цемента за колонну, а также при увеличении удельного веса глинистого раствора внутри обсадных труб по отношению к удельному весу раствора, оставшегося в затрубном пространстве.

В эксплуатационной колонне величины осевых усилий и внешнего давления неодинаковы по длине колонны. Осевые усилия достигают наибольшего значения у самой верхней трубы в момент спуска. Наибольшие внешние силы, приводящие к смятию, проявляются у самых нижних труб колонны при снижении уровня жидкости в колонне в процессе эксплуатации скважины. Кроме того, на нижние трубы в фильтровой зоне скважины могут действовать и пластовые давления, которые достигают значительных величин в процессе эксплуатации скважины.

Кроме основных усилий смятия и растяжения, действующих на колонну, в обсадных трубах возникают также дополнительные напряжения. Они возникают тогда, когда приходится расхаживать колонну при ее прихватах, резком торможении во время спуска, изгибе колонны и т.д. Эти напряжения, возникающие в результате указанных явлений, в некоторой степени компенсируются запасом прочности обсадных труб.

При подборе отдельных секций обсадных колонн нужно принимать следующие запасы прочности:

1.в расчетах технических колонн на страгивающую нагрузку – 1,3;

2.при расчете эксплуатационных колонн на страгивающую нагрузку – 1,15-1,20;

3.при расчете эксплуатационных колонн на смятие:

а).запас прочности для интервала высоты подъема цементного раствора – 1,3;

б).запас прочности выше интервала подъема цементного раствора – 1,15.

Запас прочности на страгивающую нагрузку устья скважины составляет[4]:


где, pстр – страгивающая нагрузка, кН;

Qmax – вес колонны обсадных труб, кН.

Затрубное сминающее давление, создаваемое столбом глинистого раствора на нижнюю трубу[4]:



где, Н – глубина, на которую опускается обсадная труба, м;

γ – удельный вес бурового раствора, кг/м³

Кондуктор Ø 324мм рфакт1 = 1020·1150/10 = 11,73МПа

Пром. колонна Ø 245мм рфакт2 = 2450·1460/10 = 35,77МПа

Экс. колонна Ø 140мм рфакт3 = 3025·2130/10 = 64,43МПа

При запасе прочности на сжатие равным m, нужно устанавливать трубы, которые могут выдержать внешнее сминающее давление, равное[4]:


pсм = pфакт m (2.3.9)


Кондуктор Ø 324мм рсм1 = 11,73·1,3 = 15,2МПа

Пром. колонна Ø 245мм рсм2 = 35,77·1,3 = 46,5МПа

Экс. колонна Ø 140мм рсм3 = 64,43·1,15 = 74,1МПа

Результаты вычислений занесем в таблицу 2.6.


Таблица 2.6 Данные диаметров колонн и типы резьб различных марок стали

диаметр

колонны

мм

тип резь-

бового

соедин.

 марка

стали

толщина

стенки,

мм

 Вес, кН

 длина

колонны

 Давление, МПа

1 пог. м

трубы

 общий

pфакт

pсм

 324

245

140

ОТТМ

ОТТГ

VAМ

 Д

М

N-80

 9,5

12,0

10,54

 0,747

0,708

0,307

 762

1735

929

 1020

2450

3025

11,73

35,77

64,43

15,2

46,5

74,1


Фирмой "Валурек" (Франция) разработана высокогерметичное соединение VАМ. Соединение обеспечивает газогерметичность при больших растягивающих и изгибающих усилиях.

2.3.2 Буровое оборудование

2.3.2.1 Выбор бурового станка

Буровые установки – это комплексные системы, включающие все основные и вспомогательные агрегаты и механизмы, которые необходимы для строительства скважин.

 Буровую установку выбирают по ее допустимой максимальной грузоподъемности, обуславливающей с некоторым запасом веса в воздухе наиболее тяжелых бурильной и обсадной колонн.

Для принятой по грузоподъемности и условной глубине бурения буровой установки в зависимости от региональных условий, связанных со степенью обустройства (дороги, линии электропередач, водоснабжение и др.) и климатической зоной, выбирают тип привода, схему монтажа и транспортирования, а также учитывают необходимость комплектования отопительными установками, дополнительными агрегатами и оборудованием.

Буровые установки делятся на две категории:

·                         для бурения глубоких эксплуатационных и разведочных скважин;

·                         для бурения неглубоких структурных и поисковых скважин.

Каждая категория буровой установки имеет несколько классов, которые обеспечивают наибольшую эффективность бурения скважин определенной глубины и конструкции. Каждой буровой установкой, при определенной мощности ее двигателей, максимально допустимой нагрузке на крюке можно пробурить скважины различной глубины и конструкции. Для сравнительной оценки мощности и класса буровой установки, для глубокого бурения принимают допустимую нагрузку на крюке и номинальную глубину скважины конечного диаметра 190,5мм, которые могут быть достигнуты при использовании бурильной колонны с бурильными трубами диаметром 127мм и массой 1м труб 31,9кг. При работе с бурильными трубами других диаметров и массы глубина бурения этой же буровой установкой может значительно отличаться от ее условной глубины.

 Буровые установки для эксплуатационного и глубокого разведочного бурения стандартизованы. ГОСТ 16293—82 (СТ СЭВ 2446—80) предусматривает 11 классов буровых установок для бурения скважин глубиной 1250—12500 м и более.

Вид буровой установки для одного и того же класса определяется рядом факторов:

· условиями бурения (равнина, горы, леса, болота, море, температура окружающего воздуха и ее колебания, сила ветра и др.);

· целью бурения (разведочное или эксплуатационное);

· типом скважины (вертикальная или наклонная);

· способом бурения (роторным или забойным двигателями);

· технологией бурения (гидравлическая мощность на забое, типы и свойства бурового раствора, метод спуска и подъема колонн);

· геологическими условиями бурения (характер буримых пород, возможные осложнения, аномальное пластовое давление, температура на глубине, степень агрессивности подземных вод).


Таблица 2.7 Вес обсадных колонн различного назначения

 Наименование

колонны

Вес колонны в воздухе, в кН

 кондуктор

 промеж. колонна

 экспл. колонна

 Ø 324 мм

 Ø 245 мм

 Ø 140 мм

 Обсадная колонна

Бурильная колонна (при бурении под данную обсадную)

 762,0

534

 1735,0

974

 929,0

1163


В соответствии с п.2.5.6.ПБ НГП (РД-08-624-03) максимальный вес буровой колонны не должен превышать 0,6 и обсадной колонны - 0,9 от грузоподъемности буровой установки.

Максимальный вес обсадной колонны, кН: Gок макс = 1735.0

Максимальный вес бурильной колонны, кН: Gбк макс = 1163.0

С учетом расчетных значений веса колонн, максимальная нагрузка на крюке должна быть:

– для обсадной колонны, кН Qмин = Gок макс/0,9 = 1927,8

– для буровой колонны, кН Qмин = Gбк макс/0,6 = 1938.3

Таким образом, грузоподъемность буровой установки должна быть не менее 1938.3 кН.

В соответствии с ожидаемой максимальной нагрузкой на крюке, экономически выгодным для данного района видом привода и наличием парка буровых установок в филиале "Кубаньбургаз", для строительства скважины принимается буровая установка "БУ3200/200ЭУК-2М" с допускаемой нагрузкой на крюке 2000 кН при оснастке 5x6, с техническими характеристиками:


Таблица 2.8 Характеристика буровой установки "БУ3200/200ЭУК-2М"

Допустимая нагрузка на крюке, кН

 2000

Условная глубина бурения, м

 3200

Скорость подъема крюка при расхаживании колонны, м/с

 0,2±0,05

Скорость подъема элеватора (без нагрузки), м/с, не менее

 1,5

Расч. мощность на входном валу подъемного агрегата, кВт

 670

Диаметр отверстия в столе ротора, мм

 700

Расчетная мощность привода ротора, кВт

 370

Мощность бурового насоса, кВт

 950

Вид привода

 Э

Высота основания (отметка пола буровой), м

 7,2

Просвет для установки стволовой части превенторов, м

 5,7


2.3.2.2 Выбор насосной установки

В установках глубокого бурения применяются поршневые насосы марок У8-4, У8-5М, Б14-200, БРН-1, УНБ-600А (У8-6МА2) и другие, имеющие подачу 15-50 л/с при давлении нагнетания 10-60 МПа. Подача насоса определяется по формуле[4]:



где η0 = 0,85 – 0,95 – объемный к.п.д. насоса, учитывающий утечки жидкости, наличие в ней газа и инерцию срабатывания клапанов,

F – площадь, определяемая по внутреннему диаметру цилиндровой втулки,

S = 2R – ход поршня или плунжера,

R – радиус вращения кривошипа,

n – частота вращения кривошипа,

z – число цилиндров,

f – площадь поперечного сечения штока.

Для регулирования расхода жидкости, нагнетаемой в бурильную колонну, широко применяется метод изменения частоты вращения кривошипа (коренной вал насоса) при помощи коробки передач или путем замены цилиндровых втулок, имеющих разные внутреннии диаметры. Исход жидкости часто регулируется путем сброса части ее на слив в приемный умпф.

 Для буровой установки БУ 3200/200 ЭУК-2М в комплект входят два поршневых насоса УНБ-600А (У8-6МА2) (установка насосная блочная), с основными параметрами см. таблцу 2.9 :


Таблица 2.9

Тип

насоса

Даметр

втулки

мм

Предельное

давление

кгс/см2

Идеальная подача (л/с) при частоте двойных ходов, мин-1

Допустимое рабочее давление, кг/см2

 

 

 

65

60

50

40

30

20

10

 

 

УНБ-600А

200

100

51,9

47,9

39,9

31,9

23,9

16,0

8,0

 

80

(У8-6МА2)

190

115

45,7

42,2

35,2

27,7

21,1

14,1

7,0

 

92

 

180

125

42,0

38,8

32,3

25,8

19,4

12,9

6,5

 

100

 

170

145

36,0

33,2

27,7

22,2

16,6

11,0

5,5

 

116

 

160

165

31,5

29,1

24,2

19,4

14,5

9,7

4,8

 

132

 

150

190

27,5

25,4

21,2

16,9

12,7

8,6

4,3

 

152

 

140

225

23,3

21,5

17,9

14,3

10,7

7,2

3,6

 

180

 

130

250

19,7

18,9

15,2

12,1

9,1

6,1

3,0

 

200

 

 

 

 

 

 

 

 

 

 

 

 


Буровой насос для промывки скважины в конкретных геологических

условиях выбирается по технологически необходимому количеству промывочной жидкости и развиваемому при этом давлению для преодоления потерь напора в элементах циркуляционной системы буровой.

Количество необходимой промывочной жидкости при бурении под эксплуатационную колонну составляет 12 л/с. Определим теперь потери давления в циркуляционной системе, зная которые можно выбрать наиболее рациональную компоновку бурильного инструмента, обоснованно подобрать буровые насосы и полнее использовать их потенциальные возможности.

Потери напора, кГс/см2, в циркуляционной системе буровой при роторном бурении определяются по формуле:

Р∑ = Рм+Рб.т+Ркп+Рд ( 2.3.11.)


где Рм - потери напора при движении бурового раствора в наземных трубопроводах от насосной части до колонны бурильных труб, включая стояк в буровой, буровой шланг, а также вертлюг и ведущую трубу (потери шпора в наружной обвязке буровой - манифольде);

 Рб.т — потери напора при движении бурового раствора в бурильных трубах и замковых соединениях (потери давления зависят от глубины скважины);

Ркп. - потери напора при движении бурового раствора в затрубном кольцевом пространстве скважины (потери давления зависят от глубины скважины);

Рд - потери напора при движении бурового раствора через промывочные отверстия бурового долота;

Рм, Рд - не зависят от глубины скважины, а Рбт.. и Ркп. увеличиваются с глубиной скважины.

При циркуляции очистного агента потери напора, кГс/см2, различны при прокачке воды и глинистого раствора и зависят от их свойств и расхода.

Рм = 82,6*λ*Lэ*γ*Q2/d5, (2.3.12.)


где λ - безразмерный коэффициент гидравлических сопротивлений при движении в трубах;

Q - расход бурового раствора, л/с;

γ - удельный вес раствора, г/см3;

d - внутренний диаметр бурильных труб, см;

Lэ - эквивалентная длина наземных трубопроводов, которая определяется по формуле:

Lэ = Lн *(d/dн)5 +Lс*(d/dс)5 +Lш *(d/dш)5 +Lв*(d/dв)5+

+Lв.тр*(d/dв.тр) 5+ Lэ.ф*(d/dэ.ф) 5 (2.3.13.)


где dн, Lн - внутренний диаметр и длина нагнетательной линии, идущей от буровых насосов к стояку;

dс, Lс - внутренний диаметр и длина стояка в буровой;

dш, Lш - внутренний диаметр и длина бурового шланга;

 dв, Lв - внутренний диаметр ствола вертлюга и его длина;

dэ.ф, Lэ.ф - диаметр и эквивалентная длина фильтра, устанавливаемого под ведущей трубой;

dв.тр , Lв.тр - внутренний диаметр и длина ведущей трубы.


Lэ=30*(0,107/0,114)5+15*(0,107/0,114)5+15*(0,107/0,09)5+2,5*(0,107/0,09)5+ +16*(0,107/0,1)5+2*(0,107/0,114)5 = 96,85 м.

Рм = 82,6*0,026*96,85*2,13*(12)2/(10,7)5 = 0.5 кГс/см2.

Рбт. = 82,6*λ*γ*Q2*(1+lэ/l)*Lб/d5,


где Lб - длина бурильной колонны, м;

lЭ - эквивалентная длина замковых соединений, м;

l - расстояние между замковыми соединениями, м.


Рбт. = 82,6*0,026* 2,13*(12)2*(1+3,5/11)*3025/(10,7)5 = 18.5 кГс/см2.

Ркп = 82,6* λ1*γ*Q2*L/[(ДС – dн)3*(Дс + dн)2],


где λ1, - коэффициент гидравлических сопротивлений при движении бурового раствора в кольцевом (затрубном) пространстве;

Дс - диаметр скважины (долота), см;

dн - наружный диаметр бурильных труб, см.

Потери давления от замковых соединений в кольцевом пространстве составляют небольшую величину, поэтому ею обычно пренебрегают.


Ркп= 82,6*0,027* 2,13*122*3025/[(19.05-12,7)3*(19.05+12,7)2]= 8 кГс/см2.


Потери напора, кГс/см2, в долоте зависят от конфигурации промывочных отверстий, от количества и площади их сечения, расхода очистного агента (бурового раствора).

Рд = С*γ*Q2, ( 2.3.14.)


где С — коэффициент, характеризующий потери напора в промывочных отверстиях долота, который можно вычислить по формуле:

С = 0,51/(μ2 *f02) (2.3.15.)


где μ - коэффициент расхода,

f0 - суммарная площадь сечений промывочных отверстий, см2.


С = 0,51/(0,652*13,052) = 7*10-3

Рд = 7*10-3*2,13*122 = 2,15 кГс/см2.


Вычислим суммарные потери напора при бурении

Р∑ = Рм+Рб.т+Ркп+Рд


под эксплуатационную колонну:


Р∑ = 0.5+18.5+8+2,15 = 29.15 кГс/см2.


под техническую колонну:


Р∑ = 127.7 кГс/см2.


под кондуктор:


Р∑ = 120.4 кГс/см2.


Таким образом, технологически необходимое количество (расход) промывочной жидкости для обеспечения своевременного и бесперебойного выноса шлама из забоя по затрубному пространству и очистки ствола скважины с учетом потерь давления, обеспечит нам насос УНБ-600А.


2.3.2.3 Выбор силовой установки

Под силовым приводом понимается комплексное устройство, осуществляющее преобразование электрической энергии или энергии топлива в механическую и обеспечивающее управление преобразованной механической энергии:

Основными элементами силового привода являются двигатель, передаточные устройства (механизмы) от него к исполнительному механизму и устройства системы управления.

Привод основных исполнительных механизмов буровой установки (лебедки, буровых насосов, ротора) называется главным приводом. В зависимости от вида двигателя и типа передачи он может быть электрическим, дизельным, дизель-гидравлическим, дизель-электрическим и газотурбинным. Наиболее широко применяют в современных буровых установках электрический, дизельный, дизель-гидравлический, дизель-электрический приводы.

 Основными преимуществами электрического привода переменного тока являются его относительная простота в монтаже и эксплуатации, высокая надежность, экономичность. В то же время буровые установки с этим типом привода можно использовать лишь в электрифицированных районах.

Дизельный привод применяют в районах, не обеспеченных электроэнергией необходимой мощности. Важными преимуществами двигателей внутреннего сгорания (ДВС) при использовании их в качестве привода являются: высокий к. п. д., небольшой расход топлива и воды и небольшая масса на 1 кВт мощности. Основной недостаток ДВС - отсутствие реверса, поэтому необходимо специальное устройство для получения обратного хода. ДВС типа дизель допускают перегрузку не выше 20%. Для их обслуживания требуется квалифицированный обслуживающий персонал.

Дизель-гидравлический привод состоит из ДВС и турбопередачи. Турбопередача – это промежуточный механизм, встроенный обычно между дизелем и трансмиссией. Применение турбопередачи обеспечивает: плавный подъем груза на крюке; работу двигателя, если нагрузка на крюке больше той, которую сможет преодолеть ДВС, в этом случае двигатель будет работать при пониженных, но вполне устойчивых оборотах; большую долговечность передачи.

Наибольшим преимуществом обладает привод от электродвигателей постоянного тока, в конструкции которого отсутствуют громоздкие коробки перемены передач, сложные соединительные части и т. п. Электрический привод постоянного тока имеет удобное управление, может плавно изменять режим работы лебедки или ротора в широком диапазоне.

 Дизель-электрический привод состоит из приводного электродвигателя, связанного с исполнительным механизмом; генератора, питающего этот электродвигатель; дизеля, приводящего во вращение генератор.

Силовые приводы подразделяют на индивидуальный и групповой. Индивидуальным называется такой привод, который приводит в действие один исполнительный механизм или отдельные его части. Групповым называется такой привод, который приводит в действие два и более исполнительных механизма.

Технология бурения нефтяных и газовых скважин имеет свои особенности и предъявляет определенные требования к силовому приводу.

В процессе бурения основная часть мощности потребляется буровыми насосами и ротором, а в процессе спуско-подъемных операций - лебедкой и компрессором. Работа насосов в процессе бурения характеризуется постоянством нагрузки на силовой привод. Во время спуско-подъемных операций привод имеет резко переменную нагрузку - от нулевой (холостого хода двигателей) до максимальной. При подъеме инструмента из скважины необходимо обеспечить в начале подъема каждой свечи плавное включение лебедки и постепенное увеличение скорости подъема, так как резкое включение и мгновенное увеличение скорости могут привести к разрыву талевого каната или поломке оборудования. При ликвидации аварий в скважине привод часто работает с резко переменными нагрузками, превышающими расчетные.

К силовому приводу буровых установок предъявляются следующие требования: соответствие мощности условиям работы и сполнительных механизмов, гибкость характеристики, достаточная надежность и экономичность.

 Гибкость характеристики определяется способностью привода автоматически или при участии оператора быстро приспосабливаться в процессе работы к изменениям нагрузок и скоростей работы исполнительных механизмов при условии рационального использования мощности.

Нагрузки и скорости буровой лебедки и ротора в процессе работы могут изменяться в больших пределах (1:4 – 1:10). Двигатели не обладают такой гибкой характеристикой, поэтому в приводах современных буровых установок применяют устройства искусственной приспосабливаемости, т. е. между двигателем и исполнительным механизмом устанавливают промежуточные передачи.

2.3.2.4 Выбор буровой вышки и талевой системы

Буровая вышка предназначена для подъема и спуска бурильной колонны и обсадных труб в скважину, удержания бурильной колонны на весу во время бурения, а также для размещения в ней талевой системы, бурильных труб и части оборудования, необходимого для осуществления процесса бурения.

В настоящее время при бурении на нефть и газ используют металлические вышки башенного и мачтового типов. Из вышек мачтового типа применяются А-образные.

Ее выбор осуществляется по высоте Н, м, и по грузоподъемности Q.

Определим высоту вышки (Н, м) по формуле:

Н = k*Lсв, (2.3.16.)


где k- коэффициент, предупреждающий затягивание бурового снаряда в кронблок при его переподъеме (обычно k = 1,2-1,5);

Lсв - длина свечи, зависящая от глубины скважины, м.

Принимаем k = 1,5; Lсв = 24 м.


 Н= 1,5*24 = 40 м.


Таким образом, вышка ВМУ-45*200У, входящая в комплект выбранной буровой установки, вполне подходит для выполнения проектируемых работ.

Талевая (полиспастовая) система буровых установок предназначена для преобразования вращательного движения барабана лебедки в поступательное (вертикальное) перемещение крюка и уменьшения нагрузки на ветви каната.

Через канатные шкивы кронблока и талевого блока в определенном порядке пропускается стальной талевый канат, один конец которого крепится неподвижно, другой конец, называемый ходовым (ведущим), крепится к барабану лебедки.

По грузоподъемности и числу ветвей каната в оснастке талевые системы разделяют на различные типоразмеры. В буровых установках грузоподъемностью 50 – 75т используют талевую систему с числом шкивов 2Х3 и 3Х4; в установках грузоподъемностью 100 - 300т применяют число шкивов 3Х4, 4Х5, 5Х6 и 6Х7. В обозначении системы оснастки первая цифра показывает число канатных шкивов талевого блока, а вторая цифра число канатных шкивов кронблока.

Произведем расчет оснастки и выбор талевого каната.

Вычислим количество рабочих ветвей по формуле:

m = Qкрлm, (2.3.17.)


где Qкр - вес бурового снаряда, Н;

Рл - грузоподъемность лебедки станка, Н;

ηm - КПД талевой системы, равный 0,8 - 0,9.

Так как наибольший вес (173,5 т) будет иметь тех. колонна диаметром 245мм , то производить расчет будем только для этой колонны:


m = 1735000/(200000*0,9) =10 ветвей.


Общее количество ветвей каната при симметричной системе равно:


m0 = m+2

m0 = 10+2=12.


Следовательно, будет применяться оснастка 5x6.

Длина талевого каната в оснастке Lоc. зависит от числа струн m в ней и полезной высоты вышки hn.

Lоc = (m +2)* hn+l3, (2.3.18.)


где 13 = 30 м - длина каната, наматываемого на барабан.


Lоc = (12+2)*40+30 = 590 м.


Тогда вес каната


Gк = Lоc*qк, (2.3.19.)


где qк - вес 1 м каната.


Gк = 590*33,8 = 19942 Н = 19,94 кН.


Определим наибольшую статическую нагрузку на подвижные струны каната талевой системы:

Рт с = L*q + lубт*qубт + Gтс (2.3.20.)


где L - длина бурильных труб, м;

q - вес 1 м бурильных труб, Н;

lубт - длина УБТ, м;

qубт - вес 1 м УБТ, Н;

Gтс - вес талевого блока, каната и крюка, Н. Рассчитаем Gтс :

Gтс = Gтб +Gканата +Gкрюка         (2.3.21.)

Gтс = 67000+19942+35000 = 121942 Н = 121,94 кН.


Для снаряда при бурении под колонну диаметром 324 мм:


L = 922 м, q = 319Н. lубт= 98м, qубт = 1.56 кН.

Ртс = 922*319+ 98*1560+121942 = 568940= 568.94 кН.


Статическая нагрузка на 1 струну:


Р = Ртс / m,


где m - число ветвей талевой системы.


Р =568.94/12 = 47.41 кН.


Для снаряда при бурении под колонну диаметром 245 мм:


L = 2364.5, q = 319Н, lубт= 85.5м, qубт = 1.56 кН;

Ртс = 2364.5*319+85.5*1560 + 121942 = 1009608Н = 1009.608 кН.


Статическая нагрузка на 1 струну:


Р = 1009.608 /12 = 84.13 кН.


Для снаряда при бурении под колонну диаметром 140 мм:


L = 2936 м, q = 319 Н, lубт= 89 м, qубт= 1,56 кН.

Ртс = 2936*319+89*1560+ 121942 = 1197366 Н= 1197.366 кН.


Статическая нагрузка на 1 струну:


Р = 1197.366/12 = 99.78 кН.


Для тех. колонны диаметром 245мм:


Lк = 2450 м, q = 708 Н,

Ртс = 2450*708+ 121942 = 1856542Н= 1856.542кН.


Статическая нагрузка на 1 струну:


Р = 1856.542/12 = 154.7 кН.


Учитывая вычисленные статические нагрузки, выбираем стальной талевый канат правой крестовой свивки типа ЛК-РО конструкции 6x31+1 м. с. диаметром 32 мм (по ГОСТ 16853-88).


Таблица 5

2.4 ТЕХНОЛОГИЯ БУРЕНИЯ

Основу технико-технологических решений при бурении нефтяных и газовых скважин составляет технический проект, содержание которого определяет все основные технические решения, номенклатуру и количество технических средств для реализации выбранной технологии на всех этапах строительства скважин. Эффективность технологических решений определяется степенью научной обоснованности принимаемых решений и достоверностью исходной информации. При этом большую роль играет накопленный в регионах опыт, так как проектирование многих технологических процессов требует постоянного уточнения математических моделей и логических принципов выбора технологических решений в зависимости от конкретизации геолого-геофизических условий бурения.

2.4.1 Выбор породоразрушающего инструмента

Выбор типа породоразрушающего инструмента базируется на информации о физико-механических свойствах пород и литологическом строении разреза пород и, во многом, зависит от конкретных региональных условий.

Долото является рабочим инструментом, разрушающим породу и осуществляющим углубление забоя в процессе бурения скважины.

Эффективность разрушения разнообразных по своим физико-механическим свойствам горных пород может быть достигнута при различном действии на них зубьев долота. Одни породы разрушаются от ударов или в результате дробления, другие – под действием сдвига или резания, третьи – вследствие комбинации этих действий.

Для однородных твердых пород необходимы долота с большим дробящим действием; для мягких однородных пород – долота с большим сдвигающе-скалывающим действием и высокими острыми зубьями, а для твердых пород, перемежающихся мягкими пропластками, следует применять долота не только с дробящим действием, но и сдвигающим.

По назначению буровые долота подразделяются на три вида:

·  долота сплошного бурения – для углубления забоя по всей площади;

·  колонковые долота – для углубления забоя по кольцу с оставлением в центре нервыбуренного столбика (керна) породы, который в последующем извлекается на поверхность;

·  долота специального назначения, используемые для различных вспомогательных работ: разбуривания цементного камня в колонне, забуривания (зарезки) второго наклонного ствола, исправления кривизны скважины, ловильных работ, расширения отдельных интервалов ствола скважины и т.д.

По характеру разрушения породы все буровые долота классифицируются следующим образом.

· долота режуще-скалывающего действия, разрушающие по роду лопастями, наклоненными в сторону вращения долота. Предназначены они для разбуривания мягких пород.

· долота дробяще-скалывающего действия, разрушающие по роду зубьями или штырями, расположенными на шарошках, которые вращаются вокруг своей оси и вокруг оси долота. При вращении долота наряду с дробящим действием зубья (штыри) шарошек, проскальзывая по забою скважины, скалывают (срезают) породу, за счет чего повышается эффективность разрушения пород. Следует отметить, что выпускаются буровые долота и бурильные головки только дробящего действия. При работе этими долотами породы разрушаются в результате динамического воздействия (ударов) зубьев шарошек по забою скважины. Перечисленные долота и бурильные головки предназначены для разбуривания неабразивных и абразивных средней твердости, твердых, крепких и очень крепких пород.

· долота истирающе-режущего действия, разрушающие породу алмазными зернами или твердосплавными штырями, располагающиеся в торцовой части долота или в кромках лопастей долота. Долота с алмазными зернами и твердосплавными штырями в торцевой части применяются для бурения неабразивных пород средней твердости и твердых; долота лопастные армированные алмазными зернами или твердосплавными штырями — для разбуривания перемежающихся по твердости абразивных и неабразивных пород.

 Долота для сплошного бурения и бурильные головки для колонкового бурения предназначены для углубления скважины. Выпускаются они различных типов, что позволяет подбирать нужное долото.

Наибольшее распространение в практике бурения нефтяных и газовых скважин получили шарошечные долота дробяще-скалывающего действия с твердосплавным или стальным вооружением.

Три лапы сваривают между собой. На верхнем конце конструкции нарезана замковая присоединительная резьба. Каждая лапа в нижней части завершается цапфой, на которой проточены беговые дорожки под шарики и ролики. На цапфе через систему подшипников устанавливается шарошка с беговыми дорожками. Тело шарошки оснащено фрезерованными стальными зубьями, размещенными по венцам. На торце со стороны присоединительной резьбы выбиваются шифр долота, его порядковый номер, год изготовления.

Шарошечные долота изготавливают как с центральной, так и с боковой системой промывки. На лапах долота с боковой гидромониторной системой промывки выполнены специальные утолщения – приливы с промывочными каналами и гнездами для установки гидромониторных насадок

При центральной промывке забоя лучше очищаются от шлама центр забоя и вершины шарошек, шлам беспрепятственно выносится в наддолотную зону. Однако при высокой скорости углубки забоя трудно подвести к долоту необходимую гидравлическую мощность, требуемую для качественной очистки забоя (перепад давления на долотах с центральной промывкой не превышает 0,5-1,5 МПа). Боковая гидромониторная промывка обеспечивает лучшую очистку наиболее зашламованной периферийной части забоя, позволяет подвести к долоту большую гидравлическую мощность (перепад давления на долотах с гидромониторной промывкой достигает 5-15 МПа). Однако мощные струи бурового раствора, выходящие из гидромониторных насадок экранируют транспортирование шлама через проемы между секциями долота, поэтому часть шлама циркулирует некоторое время в зоне действия шарошек и переизмельчается, а часть – транспортируется в зазорах между стенкой скважины и спинками лап. Поэтому зачастую переходят на ассиметричную систему промывки, заглушая одну или две гидромониторные насадки для повышения пропускной способности основных транспортных каналов долота.

Страницы: 1, 2, 3


© 2000
При полном или частичном использовании материалов
гиперссылка обязательна.