РУБРИКИ

Проект инженерно-геологических изысканий для застройки второй очереди МКР "Каштак"

   РЕКЛАМА

Главная

Зоология

Инвестиции

Информатика

Искусство и культура

Исторические личности

История

Кибернетика

Коммуникации и связь

Косметология

Криптология

Кулинария

Культурология

Логика

Логистика

Банковское дело

Безопасность жизнедеятельности

Бизнес-план

Биология

Бухучет управленчучет

Водоснабжение водоотведение

Военная кафедра

География экономическая география

Геодезия

Геология

Животные

Жилищное право

Законодательство и право

Здоровье

Земельное право

Иностранные языки лингвистика

ПОДПИСКА

Рассылка на E-mail

ПОИСК

Проект инженерно-геологических изысканий для застройки второй очереди МКР "Каштак"

Физико-механические показатели талого элювиального суглинка приведены по результатам лабораторных исследований:

-влажность природная – 0,160 д. ед.;

-влажность на границе текучести – 0,381 д. ед.;

-влажность на границе раскатывания – 0,237 д. ед.;

-число пластичности – 0,143;

-плотность грунта – 2,00 г/см3;

-плотность сухого грунта – 1,73 г/см3;

-плотность частиц грунта – 2,61 г/см3;

-коэффициент пористости – 0,510;

-коэффициент водонасыщения – 0,819 д. ед.;

-удельный вес грунта – 20,00 кН/м3;

-удельный вес сухого грунта – 17,30 кН/м3;

-удельный вес частиц грунта – 26,10 кН/м3;

-модуль деформации – 21 Мпа;

-удельное сцепление – 58 кПа;

-угол внутреннего трения – 37°.

Инженерно-геологический элемент 5м (ИГЭ – 5м) – представлен суглинком (элювий алевролитов) мерзлым, массивной и слоистой криогенной текстуры, с отдельными горизонтальными и вертикальными линзами льда мощностью от 1 мм до 5 см, при оттаивании твердой консистенции. Грунт данного элемента вскрыт тремя скважинами (№1747, №1748 и №1749) в интервалах глубин 14,2-29,2 м Средняя вскрытая мощность элемента составляет 4,4 м.

Физико-механические показатели мерзлого суглинка приведены по результатам лабораторных исследований:

-суммарная влажность – 0,189 д. ед.;

-плотность мерзлого грунта – 2,01 г/см3;

-плотность сухого грунта – 1,69 г/см3;

-плотность частиц грунта – 2,64 г/см3;

-коэффициент пористости – 0,564;

-степень заполнения пор льдом и незамерзшей водой – 0,886 д. ед.;

-удельный вес грунта – 20,10 кН/м3;

-удельный вес сухого грунта – 16,90 кН/м3;

-удельный вес частиц грунта – 26,40 кН/м3;

-коэффициент оттаивания – 0,035;

-коэффициент сжимаемости – 0,057 Мпа;

-модуль деформации в оттаявшем состоянии – 22Мпа.

Для расчетов рекомендуется принять показатели сжимаемости мерзлого суглинка, полученные по результатам полевых опытных работ, методом «горячего» штампа площадью 5000 см2 на аналогичных грунтах с идентичными физическими показателями:

-коэффициент оттаивания – 0,0085;

-коэффициент сжимаемости – 0,057 1/Мпа.

Инженерно-геологический элемент 6т (ИГЭ-6т) – представлен элювиальным песком средней крупности, талым, насыщенным водой, плотного сложения. Грунт данного элемента вскрыт скважинами №1771 в инт. 3,8-17,9 м и №1772 в инт. 10,4-17,3 м вскрытая мощность элемента составляет 10,5 м.

Физико-механические показатели талого элювиального суглинка приведены по результатам лабораторных исследований:

-влажность природная – 0,185 д. ед.;

-плотность грунта – 2,03 г/см3;

-плотность сухого грунта – 1,71 г/см3;

-плотность частиц грунта – 2,61 г/см3;

-коэффициент пористости – 0,532;

-коэффициент водонасыщения – 0,935 д. ед.;

-удельный вес грунта – 20,30 кН/м3;

-удельный вес сухого грунта – 17,10 кН/м3;

-удельный вес частиц грунта – 26,10 кН/м3;

Для расчетов рекомендуется следующие механические показатели:

-модуль деформации – 27 Мпа;

-удельное сцепление – 1,0 кПа;

-угол внутреннего трения – 33°.

Инженерно-геологический элемент 6м (ИГЭ – 6м) – представлен элювиальным песком средней крупности или песком крупным (элювий песчаника), мерзлым, массивной криогенной текстуры. При оттаивании насыщенный водой, плотного сложения. Грунт данного элемента вскрыт скважиной №1747 в интервалах глубин 11,6-15,0 м, №1748 в интервалах 11,0-22,9 м и №1749 в интервалах 10,2-18,0 м, вскрытая мощность элемента составляет 2,7 м.

Физические показатели мерзлого песка средней крупности приведены по результатам лабораторных исследований:

-суммарная влажность – 0,179 д. ед.;

-плотность мерзлого грунта – 2,04 г/см3;

-плотность сухого грунта – 1,73 г/см3;

-плотность частиц грунта – 2,62 г/см3;

-коэффициент пористости – 0,519;

-степень заполнения пор льдом – 0,907;

-коэффициент сжимаемости – 0,030 1/Мпа;

-модуль деформации в оттаявшем состоянии – 30Мпа;

-удельный вес грунта – 20,40 кН/м3;

-удельный вес сухого грунта – 17,30 кН/м3;

-удельный вес частиц грунта – 26,20 кН/м3.

Для расчетов рекомендуется принять показатели сжимаемости мерзлого песка, полученные по результатам полевых опытных работ, методом «горячего» штампа площадью 5000 см2 на аналогичных грунтах с идентичными физическими показателями:

-коэффициент оттаивания – 0,0027;

-коэффициент сжимаемости – 0,019 1/Мпа. [20]


2.6 Инженерно-геологические процессы


Строительная площадка представляет собой высокую пойму р. Читинка, которая частично заболочена (Фото 2.2). На территории строительной площадки развита овражная эрозия. Развитие овражной эрозии обусловлено наклоном поверхности террасы и слагающими породами.

Вторым инженерно-геологическим процессом является наледь, площадь наледи приблизительно составляет 9000 м2 на 9 апреля 2009 года (Фото 2.3 а, б). По генетической классификации наледей предложенной В.Г. Кондратьевым, данную наледь можно отнести к природно-техногенной (образование наледей природных вод происходит при воздействии человека на окружающую среду). По морфометрическим параметрам – по мощности наледь маломощная 0,5-1 м, по площади – малоплощадная, очень маломощная 1∙103 м2. [16]

Наледи по особенностям воздействия затрудняют, а иногда делают невозможным строительство и дальнейшую эксплуатацию зданий и сооружений. В связи с этим возникает необходимость управления наледным процессом, включая и разработку мероприятий по защите от вредного воздействия наледи и связанных с ней процессов.

В настоящее время известно свыше множество различных противоналедных мероприятий, которые по своей направленности делятся на две основные группы: пассивные и активные. Пассивные методы борьбы с вредным воздействием наледей не направлены на устранение причин наледеобразования. Активные методы, в свою очередь, обеспечивают ликвидацию вредного воздействия наледи путем направленного регулирования наледного процесса.

К первой группе методов относятся способы, направленные на недопущение образования наледи путем принятия следующих решений:

1. профилактические мероприятия (перенос инженерных сооружений в безопасное место в обход наледных участков);

2. устройство заграждений из земляных валов, дамб, заборов из досок и железобетонных конструкций и др.;

3. скалывание наледного льда вручную и механизированными способами.

Ко второй группе можно отнести следующие виды управляющих решений:

1. изменение места образования наледи путем промораживания водоносных грунтов с помощью устройства мерзлотных поясов, навесов, самоохлаждающих устройств (сваи Лонга, С. И. Гапеева и др.);

2. изменение места образования наледи путем устройства в водоносных грунтах водонепроницаемых глинистых (пленочных) экранов, а с поверхности установка в зимний период металлических, деревянных щитов или металлических сеток;

3. отвод подземных и наземных наледеобразующих вод с помощью дренажей и водопонижающих скважин;

4. изоляция хозяйственных объектов и территории от подземных вод путем устройства глинистых, пленочных экранов;

5. регулирование ледотермического режима наледного водотока с помощью тепловой мелиорации наледного участка (устройство утепленных лотков, трубчатых дренажей с подогревом, обеспечивающих отвод части или всего объема наледеобразующих вод);

6. комплексные противоналедные мероприятия. [16]


2.7 Обоснование сложности инженерно-геологических условий


По результатам выполненных инженерно-геологических изысканий исследуемая площадка под застройку микрорайона «Каштак» в г. Чита по сложности инженерно - геологических условий относится к III (сложной) категории. [14, приложение Б.]

Третья категория сложности обусловлена неоднородным геолого-литологическим строением (выделено 6 ИГЭ). Грунт ИГЭ-1, представленный песком пылеватым, по степени морозоопасности относится к группе слабопучинистых.

В геологическом строении площадки принимают участия четвертичные отложения аллювиального и элювиального генезиса. Аллювиальные отложения представлены суглинком, песками пылеватыми и гравелистыми. Элювиальные отложения представлены продуктами глубокого выветривания алевролитов и песчаников, выветрелых до состояния суглинка комковато-плитчатой структуры и песка средней крупности.

Площадка сложена в основном мерзлыми грунтами. Нормативная глубина сезонного промерзания по данным многолетних наблюдений составляет 4,5м. Мерзлые грунты, в основном, массивной криогенной текстуры. Свободный лед встречен в элювиальном суглинке в виде отдельных горизонтов линз.

Подземные воды представлены двумя горизонтами. Первый горизонт – воды порово-пластового типа имеет повсеместное распространение и вскрыт всеми скважинами на глубинах 8,1-9,5м и приурочен к песку гравелистому. Второй горизонт – подмерзлотные воды трещинно-пластового типа вскрыты скважиной №1748 на глубине 29,2м в элювиальном суглинке.

Расчетные характеристики грунтов выделенных инженерно-геологических элементов приведены в табл. 2.1.

Многолетнемерзлые грунты рекомендуется использовать по принципу II СниП [14] с предусмотрением конструктивных мероприятий, исключающих неравномерные осадки.

Сейсмичность площадки, расположенной в г. Чите, при 10% вероятности составляет 6 баллов, что соответствует карте А.


Таблица 2.1

Вид грунта, его состояние и номер элемента

Плотность грунта, г/см3

Модуль деформации, Мпа

Параметры среза

Удельное сцепление, кПа

Угол внутреннего трения, °

Песок пылеватый сезонномерзлый и талый, малой степени водонасыщения, средней плотности сложения, ИГЭ-1т или ИГЭ-1

1,78

20

2,5

29

Песок средней крупности, сезонномерзлый и талый, малой степени водонасыщения, средней плотности сложения, ИГЭ-2

1,78

23

1,0

33

Песок средней крупности, мерзлый, массивной криогенной текстуры, при оттаивании насыщенный водой, рыхлый, ИГЭ-2м

2,63

Коэффициент оттаивания – 0,038

Коэффициент сжимаемости – 0,097 1/Мпа

Супесь серого и желтого цвета, талой, твердой консистенции, ИГЭ-3

1,92

23

21

24

Ил суглинистый, талый, текучей консистенции с растительными остатками, ИГЭ-3а

1,76

1,6

5

5

Суглинок талый, полутвердой консистенции, ИГЭ-3т

2,04

23

35

24

Песок гравелистый талый, малой степени водонасыщения и насыщенный водой, ИГЭ-4т

2,00

27

0,00

36

Песок гравелистый, мерзлый, массивной криогенной текстуры, при оттаивании насыщенный водой, плотного сложения, ИГЭ-4м

2,03


Коэффициент оттаивания – 0,0057

Коэффициент сжимаемости – 0,037 1/Мпа

Суглинок (элювий алевролитов), талый, твердой, ИГЭ-5т

2,00

21

58

37

Суглинок мерзлый, массивной криогенной текстуры, при оттаивании твердый, ИГЭ-5м

2,01

Коэффициент оттаивания – 0,0085

Коэффициент сжимаемости – 0,057 1/Мпа

Продолжение таблицы 2.1

Элювиальный песок средней крупности талый, насыщенный водой, плотного сложения, ИГЭ-6т

2,03

27

1,0

33

Песок средней крупности мерзлый, массивной криогенной текстуры, при оттаивании насыщенный водой, плотного сложения, ИГЭ-6м

2,04

Коэффициент оттаивания – 0,0027

Коэффициент сжимаемости – 0,019 1/Мпа


2.8 Расчет глубины оттаивания основания

2.8.1 Расчет конечной осадки фундамента

В связи со сложными инженерно-геологическими условиями, а именно наличие в разрезе илов, предполагается в качестве альтернативного варианта фундамента – перекрестные монолитные плиты, шириной 3м. Для обоснования предлагаемого варианта мною будет выполнен расчеты осадки монолитных фундаментов в разных сечениях с целью выявления неравномерных осадок. Запас прочности фундаментов принимается если расчетные фундаменты не связаны между собой.

Расчет осадки под жилой 9-ти этажный дом №8

 (сечение 1-1 выбрано по скв. С-1755)

Рассчитаем осадку фундамента методом послойного суммирования. Величину давления под подошвой фундамента от вышележащей толщи грунта (бытового давления) определяем по формуле:

, (1)

где  – плотность грунта, т/м3;

 – глубина заложения фундамента, м.

Расчётные слои выделяем из условия:


, (2)


где  – толщина -го слоя, считая от подошвы фундамента;

 – ширина подошвы фундамента, м.

Величину бытового давления под подошвой -го слоя определяем по формуле:


, (3)


Дополнительное давление от сооружения определяют по формуле:


, (4)


Результаты расчёта осадки фундамента приведены в таблице 2.2. Схемы к расчёту осадки показаны на рисунке 1.

Разобьем толщу на расчетные слои:

hi ≤ 0.4 b hi = 0.5 м


Таблица 2.2

Z, см

m=2*Z/b,

м

Pбz

кг/см2

0.2Рбz

кг/см2

Poz

кг/см2

Pi

кг/см2

Ei

кг/см2

hi ,

см

Si,

см

0

0

0

1

0,546

0,109

2,458





1

50

0,80

0,876

0,601

0,120

2,153

2,306

20

50

4,612

2

100

2,50

0,349

0,656

0,131

0,889

1,521

20

50

3,042

3

150

3,75

0,214

0,710

0,142

0,526

0,708

20

50

1,416

4

220

5,00

0,141

0,765

0,153

0,346

0,436

270

70

0,09

5

270

6,25

0,099

0,82

0,164

0,243

0,295

270

50

0,04

6

320

7,5

0,072

0,874

0,175

0,177

0,21

270

50

0,03

7

350

8,75

0,055

0,927

0,185

0,135

0,156

1,6

50

∑Si=9,23


На глубине 3,2 м выполняется условие 0.2Рбz= Poz. Глубина сжимаемой толщи составляет 3,2 м и конечная осадка фундамента равна 9.23 см.

В соответствии со СниП 2.02.01-83 предельно допустимое значение осадки Sдоп для многоэтажного здания с полным каркасом из железобетона составляет 10 см.


Sрасч. ≤ Sдоп.


9,23см ≤ 10 см

что в совокупности с выполнением условия является доказательством верного определения размеров подошвы фундамента, выбора грунтов в качестве естественного основания и гарантией сохранения целостности здания во время строительства и эксплуатации.

Расчет осадки по сечению 2-2, дом №8

Результаты расчёта осадки фундамента приведены в таблице 2.3. Схемы к расчёту осадки показаны на рисунке 2.

Разобьем толщу на расчетные слои:


hi ≤ 0.4 b hi ≤ 0.4∙0.8 hi = 0.3 м


Таблица 2.3

Z, см

m=2*Z/b,

м

Pбz

кг/см2

0.2Рбz

кг/см2

Poz

кг/см2

Pi

кг/см2

Ei

кг/см2

hi ,

см

Si,

см

0

0

0

1

0,88

0,176

2,12





1

50

1,25

0,739

0,968

0,194

1,57

1,85

20

50

3,7

2

100

2,50

0,349

1,056

0,211

0,74

1,16

20

50

2,3

3

120

3,00

0,294

1,094

0,219

0,62

0,68

20

50

1,4

4

170

4,25

0,185

1,193

0,239

0,39

0,51

230

20

0,04

5

220

5,5

0,124

1,292

0,26

0,262

0,326

270

50

0,05

6

270

6,75

0,088

1,391

0,278

0,187

0,225

270

50

0,03

7

300

7,5

0,072

1,49

0,298

0,15

0,17

270

50

∑Si=7,52


Глубина сжимаемой толщи составляет 2,2 м и конечная осадка фундамента равна 7,5 см.

В соответствии со СниП 2.02.01-83 предельно допустимое значение осадки Sдоп для многоэтажного здания с полным каркасом из железобетона составляет 10 см.


Sрасч. ≤ Sдоп.


7,5 см ≤ 10 см

что в совокупности с выполнением условия является доказательством верного определения размеров подошвы фундамента, выбора грунтов в качестве естественного основания и гарантией сохранения целостности здания во время строительства и эксплуатации.

В соответствии с СНиН 2.02.01-83 (2000), приложения 4, для многоэтажных зданий и сооружений с полным каркасом из железобетона относительная разность осадок равна 0,002.

Произведем расчет неравномерности осадки .

Расчет неравномерности осадки показал, что расчетное значение осадки не превышает допустимого значения. Что говорит о правильном выборе типа фундамента.


2.8.2 Расчет глубины оттаивания основания отапливаемого здания

Чаша оттаивания может определяться аналитическими методами по формулам и номограммам Г. В. Порхаева, которые позволяют определить формирование чаши оттаивания во времени, а также ее предельное очертание.


Таблица 2.4

Положение расчетной точки

Расчетный режим

неустановившийся

установившийся

 Под серединой здания

Под краем здания


Необходимые для расчетов параметры:


 ( 5)


где λТ, λМ – коэффициенты теплопроводности соответственно талого и мерзлого грунта, ккал/м∙ч∙град; R0 – термическое сопротивление пола здания, м2∙ч∙град/ккал; B – ширина здания, м; t0 , – температуры соответственно грунта на глубине 10 м и воздуха внутри помещения, ºС; τ – время от начала эксплуатации здания или сооружения, ч; q – теплота таяния мерзлого грунта, ккал/м3;


 (6)


где ρ - удельная теплота плавления льда, равная 80 000 ккал/т; WC, WH –соответственно суммарная влажность и весовое содержание незамершей воды, доли единицы; γМ – объемный вес скелета мерзлого грунта , т/м3.

Расчет чаши оттаивания под серединой здания

для τ=10 лет = 87600 ч.

При L/B=58,5/25>2, kI=1,

По номограмме определяем коэффициенты ξс=0,87, kc=0,13

тогда

Для τ=60 лет = 525600 ч.

При L/B=58,5/25>2, kI=1,

По номограмме определяем коэффициенты ξс=1,4, kc=0,15

тогда

Расчет чаши оттаивания под краем здания

для τ=10 лет = 87600 ч.

При L/B=58,5/25>2, kI=1,

По номограмме определяем коэффициенты ξк=0,31, =0,17

тогда

Для τ=60 лет = 525600 ч.

При L/B=58,5/25>2, kI=1,

По номограмме определяем коэффициенты ξк=0,76, =0,2

тогда


2.8.3 Расчет нормативной глубины сезонного промерзания

Нормативная глубина сезонного промерзания рассчитывается по формуле:


 (7)


где  (8)

t2 и τ2 – средняя температура воздуха за период отрицательных температур, ºС, берется со знаком «плюс» и продолжительность этого периода, ч; ρ – удельная теплота плавления льда, принимаемая равной 80000 ккал/т; tн.з. – температура начала замерзания грунта, ºС со знаком «плюс», определяемая по данным изысканий; Wc – суммарная влажность грунта, д.ед.; – весовое содержание незамерзшей воды в д.ед. определяется при температуре 0,5(t2 - tн.з); λМ – коэффициенты теплопроводности мерзлого грунта, ккал/м∙ч∙град; СМ - объемная теплоемкость мерзлого грунта, ккал/м3∙град; γм – объемный вес скелета мерзлого грунта, т/м3.



При использовании грунтов основания по принципу II расчетная глубина промерзания грунта Нм у наружных стен здания


 , (9)


где тtм – коэффициент теплового влияния зданий или сооружений, для массивных фундаментов мелкого заложения – 1,3; ткм- коэффициент теплового влияния здания или сооружения на глубину протаивания у фундаментов, принимаемый равным для зданий у наружных стен без черного покрытия – 1,0.



2.8.4 Предпостроечное протаивание грунтов

Площадь участка предпостроечного протаивания принимается по контуру здания или сооружения, расширенному в каждом направлении на половину толщины слоя предварительно оттаиваемого грунта. Между зданиями предпостроечное протаивание производится на глубину сезонного протаивания с учетом ее увеличения в результате застройки территории.

Для многолетнемерзлых грунтов рекомендуются:

1. Оттаивание паровыми иглами применяется при условиях: грунты с коэффициентом фильтрации к>0,01 м/сутки; расход пара 30-50 кг/м3 грунта.

2. Электролитическими нагревателями при условиях: грунты песчаные и глинистые.

3. Омическими нагревателями.

Количество точек установки игл на участке с площадью S, м2


, (10)


где L – шаг, принимаемый по таблице 2.5


Таблица 2.5

Глубина

погружения игл Н, м

Шаг L, м

Минимальный

Оптимальный

Максимальный

4

2,0

3,0

4,0

7

2,5

4,0

5,0

11

3,5

4,5

6,4

17

5,3

6,4

9,0

30

6,4

9,0

13,0


В нашем случае глубина погружения игл 11 м, шаг выбираем оптимальный, тогда L=4,5



Средняя производительность иглы по оттаиванию грунта, м3/сутки:

 (11)


где k – коэффициент теплоотдачи воды, принимаемый для галечных и гравийных грунтов с песчаным заполнителем и для песка равным 0,48, а для тех же грунтов с супесчаным и суглинистым заполнителем равным 0,2; t – температура нагнетаемой воды, ºC; – начальная температура мерзлого грунта (со знаком плюс), ºC; – заданная температура оттаявшего грунта, ºC; СМ, СВ, СТ – объемные теплоемкости соответственно воды, мерзлого грунта и талого грунта, ккал/м3∙град; ρ – удельная теплота плавления льда, равная 80 000 ккал/т; Wc – суммарная влажность грунта, д.ед.; γм – объемный вес скелета мерзлого грунта, т/м3.



Количество дней для оттаивания грунта вокруг одной иглы


 (12)


где α – коэффициент использования тепла воды, принимаемый равным 0,8 при температуре воды t>10 ºC и начальной температуре вечномерзлого грунта >-2 ºC и равным 0,6 при t<10 ºC; <-2 ºC.


.


Количество одновременно действующих игл на больших участках необходимо ограничивать в соответствии с производительностью насосной установки, ресурсами источника водоснабжения и мощностью источника тепла при искусственном нагревании воды так, чтобы через иглу вода поступала с заданным расходом.

ПРОЕКТНАЯ ЧАСТЬ


3. Методика и объёмы проектируемых работ


Инженерно-геологические изыскания для жилой застройки второй очереди микрорайона «Каштак» будут выполняться на стадии проект с целью изучения геолого-литологического строения, геокриологических и гидрогеологических условий площадки, выявление неблагоприятных физико-геологических процессов и явлений.

Основными задачами инженерно-геологических изысканий являются:

- анализ ранее проведенных инженерно-геологических работ;

- планово-высотная привязка проектных выработок;

- проходка горных выработок;

- геофизические работы;

- полевые исследования;

- отбор проб и лабораторные работы;

- камеральные работы.


3.1 Техническое задание


Техническая характеристика проектируемых зданий:

1. Проектируемые здания - жилые дома, детский сад, школа, торгово-гостиничный комплекс.

2. Тип фундамента - плитный.

3. Глубина заложения фундамента - 3 м.

4. Высота зданий – 12, 10, 9, 7 и 5 этажей.

5. Максимальная нагрузка на фундамент - 850 Кн/м.

6. Материал – монолитный железобетон.

7. Уровень ответственности - II.

8. Степень сейсмичности - 6-7 баллов.

9. Стадия проектирования - проект.


3.2 Сбор и обработка материалов прошлых лет


Сбору и обработке подлежат материалы:

- инженерно-геологических изысканий прошлых лет, выполненных для обоснования проектирования и строительства объектов различного назначения - технические отчеты об инженерно-геологических изысканиях, сосредоточенные в государственных и ведомственных фондах и архивах;

- геолого-съемочных работ (в частности, геологические карты наиболее крупных масштабов, имеющиеся для данной территории), инженерно-геологического картирования, региональных исследований, режимных наблюдений и др.;

- научно-исследовательские работы и научно-техническая литература, в которой обобщаются данные о природных и техногенных условиях территории и их компонентах и (или) приводятся результаты новых разработок по методике и технологии выполнения инженерно-геологических изысканий.

При сборе и обработке материалов о криогенных процессах и образованиях следует особое внимание уделять установлению закономерностей их формирования в зависимости от процессоформирующих факторов (особенностей климатических, геокриологических условий, рельефа, состава, температуры грунтов и др.), активности процессов в естественных и нарушенных условиях, негативном воздействии процессов на здания и сооружения и экологию ландшафтов.

По результатам сбора, обработки и анализа материалов изысканий прошлых лет и других данных в программе изысканий и техническом отчете должна приводиться характеристика степени изученности инженерно-геологических условий исследуемой территории и оценка возможности использования этих материалов (с учетом срока их давности) для решения соответствующих задач.

Все имеющиеся материалы изысканий прошлых лет должны использоваться для отслеживания динамики изменения геокриологических условий под влиянием техногенных воздействий и динамики изменения климата.


3.3 Планово-высотная привязка проектируемых скважин


Для выполнения плановой и высотной привязки горных выработок планируется производить топографо-геодезические работы.

Для выполнения этих работ рекомендуется использовать замкнутый теодолитный ход, который представляет собой сомкнутый многоугольник (полигон). Высотная привязка скважин будет обеспечиваться нивелированием IV класса точности, которое планируется производить по тем же направлениям, что и теодолитные ходы. На данной территории планируется осуществить планово-высотную привязку 164 точки, из них: 48 скважин 116 геофизических точек.


3.4 Рекогносцировочное и маршрутное обследование территории


При полевых работах следует наметить маршруты, определить направления маршрутов в пределах границ инженерно-геокриологической съемки, целью которых будет являться рекогносцировочное обследование территории.

В процессе рекогносцировочного обследования территории следует осуществлять: 1. осмотр места изыскательских работ; 2. визуальную оценку рельефа; 3. описание геоботанических индикаторов геокриологических, гидрогеологических и экологических условий; 4. описание внешних проявлений геологических, инженерно-геологических и криогенных процессов с оценкой их интенсивности, площади развития; 5. описание всех видов техногенных нарушений естественных ландшафтов и их влияния на геокриологические условия (глубину сезонного оттаивания и промерзания, активизацию криогенных процессов, последствий их активизации и др.).

Количество маршрутов, состав и объемы сопутствующих работ следует устанавливать в зависимости от детальности изысканий, их назначения и сложности инженерно-геокриологических условий исследуемой территории.

На исследуемой территории следует наметить профиля, по которым будут проходить маршруты: вдоль автомобильной дороги через 100 м. Итого 3,5 км маршрутных и рекогносцировочных исследований. [14]

Маршрутные наблюдения следует осуществлять по направлениям, ориентированным перпендикулярно к границам основных геоморфологических элементов и ландшафтных комплексов с разнородными геокриологическими условиями, контурам геологических структур и тел, простиранию пород, тектоническим нарушениям, а также вдоль элементов эрозионной и гидрографической сети, по намечаемым проложениям трасс линейных сооружений, участкам с проявлениями геологических, инженерно-геологических и криогенных процессов и др.

По результатам маршрутных наблюдений следует наметить места размещения ключевых участков для проведения более детальных исследований, определения характеристик состава, состояния и свойств мерзлых, оттаивающих и промерзающих грунтов основных литогенетических типов, гидрогеологических параметров водоносных горизонтов и т.п. с выполнением комплекса горнопроходческих работ, геофизических, полевых и лабораторных исследований, а также стационарных наблюдений.

3.5 Буровые работы


Буровые работы необходимо производить в соответствии с требованиями норм СП 11-105-97 Часть 1:

Буровые работы под жилую застройку микрорайона «Каштак» проектируются с целью:

- установления или уточнения геологического разреза, выявления грунтовых и подземных вод и условия их залегания;

- изучения глубин сезонного оттаивания и промерзания, температурного режима, мощности мерзлых грунтов и характера их залегания, состава и криогенного строения, выявления и оконтуривания повторно-жильных и пластовых льдов, исследования геологических, инженерно-геологических, криогенных процессов и образований;

- определения глубины залегания уровня подземных вод;

- отбора образцов грунтов для определения их состава, состояния, криогенного строения и свойств, а также проб подземных вод для их химического анализа;

- проведения полевых исследований свойств мерзлых грунтов, определения гидрогеологических параметров водоносных горизонтов и зоны аэрации и производства геофизических исследований;

- выполнения стационарных наблюдений (локального мониторинга компонентов геологической среды).

Проходку скважин следует осуществлять либо переносными комплектами оборудования, либо буровыми установками на транспортных средствах, не нарушающими растительный покров. Выбор вида, глубины и назначения горных выработок, способов и разновидности бурения скважин при инженерно-геологических изысканиях следует производить исходя из целей и назначения выработок, с учетом особенностей геокриологических условий — состава, льдистости, температуры и мощности многолетнемерзлых грунтов, намечаемой глубины изучения геологического разреза.

Для изучения инженерно-геологических условий в сфере взаимодействия зданий и сооружений с геологической средой при наличии опасных геологических и инженерно-геологических процессов при необходимости следует располагать дополнительные выработки за пределами контура проектируемых зданий и сооружений, в том числе и на прилегающей территории.

Скважины проектируем располагать по осям проектируемых зданий и сооружений, в местах резкого изменения нагрузок на фундаменты, глубины их заложения, на границах различных геоморфологических элементов.

Бурение скважин будет производиться самоходными буровыми установками УРБ-2,5А, колонковым способом, «всухую» диаметром до 160 мм, укороченными до 0,3 м рейками. В процессе бурения скважин должно производиться порейсовое описание керна, фиксироваться границы распространения литологических разностей грунтов и производиться отбор образцов грунтов для лабораторных исследований. Особое внимание следует обратить на состояние грунта (талое или мерзлое), при вскрытии мерзлых грунтов описывать криогенную текстуру, количество, мощность и распространение ледяных включений. При вскрытии подземных вод фиксировать уровни их появления и установления, производить отбор проб для определения химического состава и агрессивных свойств к бетону и металлическим конструкциям.

Согласно таблице 8.1, 8.2 СП 11-105-97 Часть 1 [14] на площадке исследований должно быть всего пробурено 45 скважин, глубиной 15 м. Также планируется пробурить 3 термометрические скважины глубиной 10м. Из них:

II категории – 288 п. м.;

III категории – 235, 2 п. м.;

IV категории – 388, 8 п. м..

Скважины будут располагаться по оси зданий через 50 м.

В некоторых скважинах следует проводить замеры температуры многолетнемерзлых грунтов – термометрические скважины.

Все пробуренные скважины после окончания работ должны быть ликвидированы тампонажем глиной или цементно-песчаным раствором с целью исключения загрязнения природной среды и активизации геологических, инженерно-геологических и криогенных процессов.


3.6 Геофизические работы


Геофизические исследования на участках размещения зданий и сооружений следует предусматривать для установления характеристик инженерно-геокриологических условий в пределах сферы взаимодействия проектируемых сооружений с многолетнемерзлыми грунтами оснований: уточнения показателей льдистости грунтов по площади и разрезу, глубины залегания коренных пород, их трещиноватости, изучения криогенных процессов, а также решения других задач (п. 5.7) СП 11-105-97 Часть 1 [14] и обоснованием в программе изысканий.

Геофизические работы планируется проводить с целью выявления и прослеживания зон вечномерзлых грунтов.

В связи с этим необходимо выполнить электроразведку. Электроразведку планируется проводить в двух модификациях: 1) вертикальные электрические зондирования (ВЭЗ), необходимые для изучения мерзлых грунтов по глубине; 2) электропрофилирование (ЭП), необходимое, для оконтуривания зоны распространения многолетнемерзлых грунтов. [15]

Сущность вертикального электрического зондирования заключается в исследовании зависимости между кажущимся сопротивлением и расстоянием от точки наблюдения поля до источника. Для выполнения ВЭЗ можно применять любую из установок, однако технически наиболее просто выполнять зондирование симметричной установкой АМNB. При зондировании такой установкой изучается зависимость кажущегося сопротивления от расстояния между питающими заземлениями.

Немаловажным для проведения детальных геофизических исследований является использование метода электрического профилирования. Профилирование предполагается осуществлять симметричной установкой АМNB. Установка для электрического профилирования состоит из питающей АВ и измерительной MN линий, источника питания и измерительного прибора.

ВЭЗ планируется осуществлять по схеме АМNB с размером питающей линии АВ до 150 м. Всего планируется пройти 3 профиля с шагом 100 м, и расстоянием между ними 50 м. Итого 58 точек.

Электропрофилирование будет выполняться по схеме АМNB с АВ до 150 м, планируется пройти 3 профиля с шагом 100 м, расстоянием между ними 50 м. Итого 58 точек.

Работы необходимо выполнять согласно «Инструкции применения электроразведки на постоянном токе при инженерно – геологических изысканиях. РСН – 43 – 74».


3.7 Отбор проб


В зависимости от свойств грунтов, характера их пространственной изменчивости, а также целевого назначения инженерно-геологических работ в программе изысканий рекомендуется устанавливать систему опробования соответствующим расчетом.

Для исследования строительной площадки под застройку необходимо опробовать 48 скважин, пробы будут отбираться нарушенного и ненарушенного сложения.

Разрез предоставлен 6 инженерно-геологическими элементами.

Пробы нарушенного сложения отбираются из буровых скважин и шурфов из расчета 1 проба на 2 метра, если инженерно-геологический элемент мощностью более 2 м, если менее 2 м, то пробы отбираются из каждой разновидности грунта. В данном случае инженерно-геологические элементы мощностью более 2 м.[14]

Тогда проектируем отбор проб нарушенного сложения, одна проба через два метра. Пробы ненарушенного сложения отбираем в количестве не менее шести на каждый ИГЭ.

На площади проектируется отобрать пробы:

- нарушенного сложения- 210 проб;

- ненарушенного сложения- 60 проб. Всего 270 проб.


3.8 Стационарные наблюдения

3.8.1 Метод полевого определения температуры

Полевые измерения температуры выполняются в целях:

- получения конкретных данных о температуре мерзлых, промерзающих и протаивающих грунтов для использования их в теплотехнических расчетах при проектировании;

- оценки и прогноза устойчивости территории основания;

- назначения глубины заложения и выбора типа фундаментов зданий и сооружений и определения их несущей способности;

- контроля и оценки изменений, происходящих в тепловом режиме грунтов в результате возведения и эксплуатации зданий и сооружений или осуществления различных инженерных мероприятий.

Измерения температуры грунтов должны выполняться в заранее подготовленных и выстоянных скважинах переносимыми или стационарными термоизмерительными комплектами, представляющими собой гирлянды электрических датчиков с соответствующей измерительной аппаратурой. В качестве электрических датчиков температуры грунтов следует применять чувствительные элементы промышленных медных термометров сопротивления с номиналом 100 Ом (например, ЭСМ-03 по ТУ 25. 02. 738. 71).

Страницы: 1, 2, 3, 4


© 2000
При полном или частичном использовании материалов
гиперссылка обязательна.