РУБРИКИ

Проект бурения и крепление эксплуатационной скважины на Песчаной площади Краснодарского края

   РЕКЛАМА

Главная

Зоология

Инвестиции

Информатика

Искусство и культура

Исторические личности

История

Кибернетика

Коммуникации и связь

Косметология

Криптология

Кулинария

Культурология

Логика

Логистика

Банковское дело

Безопасность жизнедеятельности

Бизнес-план

Биология

Бухучет управленчучет

Водоснабжение водоотведение

Военная кафедра

География экономическая география

Геодезия

Геология

Животные

Жилищное право

Законодательство и право

Здоровье

Земельное право

Иностранные языки лингвистика

ПОДПИСКА

Рассылка на E-mail

ПОИСК

Проект бурения и крепление эксплуатационной скважины на Песчаной площади Краснодарского края

Для колонны диаметром 146 мм:


L = 3100 м, q = 319 Н, lубт = 190 м, qубт = 1,56 кН.

Ртс = 3100*319 + 190*1560 + 117210 = 1402510 Н = 1402,51 кН,


Статистическая нагрузка на 1 струну: Р = 1402,51 / 8 = 175,31 кН.

Учитывая вычисленные статистические нагрузки, выбираем стальной талевый канат правой крестовой свивки типа ЛК-РО конструкции 6х31+1 м. с диаметром 32 мм (по ГОСТ 16853-88)[4].


2.4 Технология бурения

2.4.1 Выбор породоразрушающего инструмента

При бурении нефтяных и газовых скважин основным инструментом, при помощи которого происходит разрушение горной породы на забое и образуется собственно скважина, является долото.

В России, а также в США и других зарубежных странах для бурения нефтяных и газовых скважин в основном используют шарошечные долота с коническими шарошками.

Учитывая физико-механические свойства горных пород проектного разреза и установившуюся практику буровых работ в данном районе, выбираем следующие типы долот по интервалам бурения:


Таблица 2.1 Применяемый породоразрушающий инструмент

Категории пород по буримости

Интервал бурения, м

Тип долота

I

0 – 35

СЦВ

I – II

35 – 500

СЗ-ГВ (R-175)

III – IV

500 – 1050

СЗ-ГВ (R-162)

V – XII

1050 – 3290

ТЗ-ГАУ (R-437)


2.4.2 Расчет технологического режима бурения (Р, N. Q)

Под режимом бурения понимается определенное сочетание регулируемых параметров, влияющих на показатели бурения. К числу таких параметров относятся: осевая нагрузка (давление) на долото (Р), частота вращения долота (N), количество прокачиваемой промывочной жидкости (Q).


2.4.3 Расчет осевой нагрузки на долото (Р)

Величина осевой нагрузки на долото Рдол, которая должна обеспечивать объемное разрушение поды на забое, с учетом показателей механических свойств горных пород и конструктивных данных о площади контакта зубьев долота с забоем определяется по формуле:


Рдол. = α*Рш*Fk, (1)


где α – эмпирический коэффициент, учитывающий изменение забойных условий на изменение твердости (α = 0,3 – 1,59);

Рш – твердость горных пород по методике Л.А.Шрейнера (по штампу); кг/мм2.

Fk – площадь контакта зубьев долота с забоем мм2, определяется по формуле В.С.Федорова:


Fk = (Ддол.*η*δ)/2, мм.


где η – коэффициент перекрытия зубьев;

δ – коэффициент притупления зубьев.

Таким образом,


Рдол. = α*Рш* Ддол.*η*δ/2.


Для колонны диаметром 324 мм:


Рдол. = 1*250* 293,7*1,21*1/2 = 59547,5 Н = 5,95 т.


Для колонны диаметром 245 мм:


Рдол. = 1,2*300* 295,3*1,14*2/2 = 121190,4 Н = 12,12 т.


Для колонны диаметром 146 мм:

Рдол. = 1,59*350* 215,9*1,4*2/2 = 168207,69 Н = 16,82 т.


Сравним полученные значения с фактическими значениями нагрузки на долото, которые вычисляются по формуле:


Рдол.ф. = Р1 + Р2 + Р3 + Р4 + Р5 + Р6,


где Р1 – вес долота, Р2 – вес переходника, Р3 – вес УБТ, Р4 – вес бурильных труб, Р5 – вес ведущей трубы, Р6 – вес вертлюга.

Для колонны диаметром 324 мм:


Рдол.ф. = 150 + 15 + 4368 + 1864,5 + 2300 = 8697,5 кг = 8,7 т.


Для колонны диаметром 245 мм:


Рдол.ф. = 150 + 15 + 2180 + 11484 + 1864,5 + 2300 = 37650 кг = 37,65 т.


Для колонны диаметром 146 мм:


Рдол.ф. = 150 + 15 + 29640 + 98890 + 1864,5 + 2300 = 132859,5 кг = 132,86т.


Так как фактические нагрузки на долото превышают расчетные значения, то бурение будет производиться на расчетном значении с компенсацией нагрузки через лебедку бурового станка.


2.4.4 Расчет частоты вращения долота (N)

Она определяется по следующей формуле:


N = 60*v/π*Ддол., (об/мин),


где v – средняя окружная скорость вращения долота (V = 0,8 – 2,0).

Для колонны диаметром 324 мм:


N = 60*2/3,14*0,3937 = 97,07 об/мин,


т.е. бурение будет осуществляться на 1 скорости ротора.

Для колонны диаметром 245 мм:


N = 60*2/3,14*0,2953 = 129,42 об/мин,


т.е. бурение будет осуществляться на 2 скорости ротора.

Для колонны диаметром 146 мм:


N = 60*1,5/3,14*0,2159 = 120 об/мин,


т.е. бурение будет осуществляться на 3 скорости ротора.


2.4.5 Расчет количества промывочной жидкости (Q)

Технологически необходимое количество промывочной жидкости для обеспечения своевременного и бесперебойного выноса шлама из забоя по затрубному пространству и очистки ствола скважины находится из соотношения:


Q = 0,785*(д2дол. – d2нар.б.тр.)*vвосх.,


где Vвосх – минимально допустимая скорость восходящего потока из условия качественной очистки и ствола скважины (чем меньше диаметр, тем она выше).

Для колонны диаметром 324 мм:


Q = 0,785*(3,9372 – 1,42.)*4 = 42,52 л/с.


Работа насоса УНБ-600 будет осуществляться на 170 мм втулках с производительностью 41,0 л/с.

Для колонны диаметром 245 мм:


Q = 0,785*(2,9532 – 1,42.)*6 = 31,84 л/с.


Работа насоса УНБ-600 будет осуществляться на 150 мм втулках с производительностью 31,9 л/с.

Для колонны диаметром 146 мм:


Q = 0,785*(2,1592 – 1,272.)*13 = 31,11 л/с.


Работа насоса УНБ-600 будет осуществляться на 150 мм втулках с производительностью 31,9 л/с.


2.5 Цементирование скважины

Исходные данные

При расчете цементирования скважин определяют: 1) количество сухого цемента; 2) количество воды для затворения цементного раствора; 3) количество продавочной жидкости; 4) возможное максимальное давление к концу цементирования; 5) допустимое время цементирования; 6) число цементировочных агрегатов и цементосмесительных машин.

Произведем расчет одноступенчатого цементирования каждой из обсадных колонн.

Таблица 2.2 Исходные данные для цементирования


Направ-ление

Кондуктор

Эксплуатационная колонна (инт. 3000 – 3160)

Глубина спуска (Н, м)

30

850

3160

Диаметр долота (D, мм)

393,7

295,3

215,9

Наружный диаметр обсадных труб (d1, мм)

324

245

146

Внутренний диаметр обсадных труб (d2, мм)

305,9

230,5

133

Высота подъема цементного раствора (Нц, м)

350

850

3160

Плотность глинистого раствора (ρр, кг/м3)

1100

1100

1200

Плотность цементного раствора (ρц, кг/м3)

1860

1860

1860

Высота установки кольца "стоп" от забоя (h, м)

5

20

20


2.5.1 Расчет объема цементного раствора

Объем цементного раствора, подлежащего закачке в скважину, определяют по формуле:


Vц = (π/4)*[К1*(D2 – d12)*Нц + d22*h], м3


где К1 – коэффициент, учитывающий увеличение объема цементного раствора, расходуемого на заполнение каверн, трещин, и увеличение диаметра скважины против расчетного (номинального).

Значение коэффициента К1 определяется по квернограмме для каждой конкретной скважины. Обычно К1 изменяется от 1,1 до 2,5. В нашем случае принимаем К1 = 1,15.

Цементирование направления и кондуктора будет осуществляться с использованием чистого портландцемента.

Для лучшей прокачивамости тампонажной смеси и для того, чтобы поднять цементный раствор на проектную высоту (до устья), а также с целью экономии портландцемента, эксплуатационная колонна в интервале 0 – 1500 м будет цементироваться цель-цементным раствором плотностью 1,42 г/см3 с использованием глины, как пластификатора. Отношение глины к цементу 2:3; водогельцементное отношение m = 1,1. Интервал 1500 – 3160 м будет цементировать раствором чистого портландцемента плотностью 1,85 г/см3; водоцементное отношение m = 0,5.

Для колонны диаметром 324 мм:


Vц = 0,785*[1,15*(0,39372 – 0,3242)*30 + 0,30592*5] = 2,02 м3


Для колонны диаметром 245 мм:


Vц = 0,785*[1,15*(0,29532 – 0,2452)*850 + 0,23052*20] = 13,63 м3


Для колонны диаметром 146 мм:

Интервал 0 – 1500 м:


Vг.ц. = 0,785*[1,15*(0,21592 – 0,1462)*1500 + 0,1332*20] = 71,77 м3


Интервал 1500 – 3160:


Vц = 0,785*[1,15*(0,21592 – 0,1462)*1660 + 0,1332*20] = 7,19 м3


Общий объем цементного раствора для колонны: 71,77 + 7,19 = 78,96м3


2.5.2 Расчет количества сухого цемента

Количество сухого цемента для приготовления цементного раствора определяют из выражения:


Qц = ρц*Vц*1/(1+m),


где m – водоцементное отношение; ρц – плотность цементного раствора, кг/м3, ее можно рассчитать по формуле:

ρц = [(1+m)* ρс.ц.* ρв] / [ρв +m* ρс.ц.].


где ρс.ц. – плотность сухого цемента, г/см3; ρв – плотность воды, г/см3.


ρц = [(1+0,5)* 3,15.* 1] / [1 +0,5*3,15] = 1,85 г/см3.


Для колонны диаметром 324 мм:


Qц = 1420*2,02*1/(1+0,5) = 1912,27 кг = 1,91 т,


Для колонны диаметром 245 мм:


Qц = 1420*13,63*1/(1+0,5) = 12903,07 кг = 12,9 т,


Для колонны диаметром 146 мм:

Интервал 0 – 1500 м: Количество гель-цементного порошка составит:


Q г.ц = 1420*71,77*1/(1+1,1) = 67942,27 кг = 67,94 т.


(Цементного порошка: 40,76 т, глинопорошка: 27,17 т).

Интервал 1500 – 3160 м:


Qц = 1850*7,19*1/(1+0,5) = 8915,6 кг = 8,92 т,


Общий объем цемента для колонны: Qц = 67,94 + 8,92 = 76,86 т.

Количество сухого цемента, которое необходимо заготовить с учетом потерь при затворении цементного раствора, вычислим по формуле:


Qц1 = К2*Qц,

где К2 – коэффициент, учитывающий наземные потери при затворении цементного раствора. Если затворение производится без цементно-смесительных машин, К2 = 1,054-5-1,15, при использовании цементно-смесительных машин К2 = 1,01. В нашем случае К2 = 1,01.

Для колонны диаметром 324 мм:


Qц1 = 1,01*1,91 = 1,93 т,


Для колонны диаметром 245 мм:


Qц1 = 1,01*12,9 = 13,03 т,


Для колонны диаметром 146 мм:

Интервал 0 – 3000 м:


Qц1 = 1,01*67,94 = 68,62 т,


Интервал 3000 – 3290 м:


Qц1 = 1,01*8,92 = 9 т,


Общее количество сухого цемента с учетом потерь для колонны:


Qц1 = 68,62 + 9 = 77,62 т.


2.5.3 Расчет количества воды

Необходимое количество воды для приготовления цементного раствора 50%-ной консистенции находится из выражения:


Vв = 0,5*Qц,


Для колонны диаметром 324 мм:


Vв = 0,5*2,5 = 1,25 м3.


Для колонны диаметром 245 мм:


Vв = 0,5*16,9 = 8,45 м3.


Для колонны диаметром 146 мм:


Vв = 1,1*67,94 + 0,5*8,92 = 79,19 м3.


2.5.4 Расчет количества продавочной жидкости

Потребное количество продавочной жидкости (в качестве которой часто используют буровой глинистый раствор) определяется по формуле:


Vпр = Δ*π*d22*(Н – h)/4,


где Δ – коэффициент, учитывающий сжатие глинистого раствора (Δ = 1,03 – 1,05).

Подставив значения, получим:

Для колонны диаметром 324 мм:


Vпр = 1,03*3,14*0,30592*(35 – 5)/4 = 2,26 м3.


Для колонны диаметром 245 мм:


Vпр = 1,03*3,14*0,23052*(850 – 20)/4 = 35,65 м3.


Для колонны диаметром 146 мм:


Vпр = 1,03*3,14*0,1332*(3160 – 20)/4 = 44,90 м3.


Очень часто на практике для быстрого определения Vпр пользуются следующей эмпирической формулой:


Vпр = Dн2*Н1/2,


где Dн – номинальный наружный диаметр колонны труб, спущенных в скважину, в дюймах;

Dн2/2 – количество продавочной жидкости, необходимое для заполнения 1 м спущенных труб, л;

Н1 – глубина установки кольца "стоп", т.е. глубина продавки цементного раствора.

Для эксплуатационной колонны:


Vпр = 5*3270/2 = 40875 л = 40,88 м 3.


2.5.5 Расчет давления при закачке

Максимальное давление перед посадкой верхней пробки на упорное кольцо определяется из уравнения:


Рmax = Р1 + Р2,


где Р1 – давление, необходимое для преодоления сопротивления, обловленного разностями плотностей жидкости в трубах и затрубном пространстве;

Р2 - давление, необходимое для преодоления гидравлических сопротивлений.


Р1 = (1/105)*[(Нц – h)*(ρц – ρр)], МПа


Величину Р2 обычно находят по эмпирическим формулам. Наиболее распространенной является формула Шищенко-Бакланова; для скважин глубиной более 1500 м:


Р2 = 0,001*Н + 1,6 МПа.


Для колонны диаметром 324 мм:


Р1 = (1/105)*[(30 – 5)*(1420 – 1100)] = 0,08 МПа

Р2 = 0,001*30 + 1,6 = 1,63 МПа.

Рmax = 0,08 + 1,62 = 1,7 МПа.


Для колонны диаметром 245 мм:


Р1 = (1/105)*[(850 – 20)*(1420 – 1100)] = 2,66 МПа

Р2 = 0,001*850 + 1,6 = 2,45 МПа.

Рmax = 2,66 + 2,45 = 5,11 МПа.


Для колонны диаметром 146 мм:


Р1 = (1/105)*[(1500 – 20)*(1420 – 1100) + 1660*(1860 – 1200)] = 15,7 МПа

Р2 = 0,001*3160 + 1,6 = 4,76 МПа.

Рmax = 15,7 + 5,26 = 13,73 МПа.

2.5.6 Расчет количества цементированных агрегатов

Число цементировочных агрегатов определяю, исходя из условия получения скорости подъема цементного раствора в кольцевом пространстве у башмака колонны в момент начала продавки (не менее 15 м/с для кондуктора и промежуточных колонн инее менее 1,8 – 2,0 м/с для эксплуатационных колонн); это условие вытекает из предположения, что увеличение скорости движения цементного раствора в затрубном пространстве способствует более полному вытеснению глинистого раствора и замещению его цементным.

Часто ствол скважины искривлен, имеет локальные расширения, а колонна не строго сцементирована в нем. В подобных случаях целесообразно цементный раствор вытеснять из колонны, поддерживая небольшую скорость подъема цементного раствора в затрубном пространстве (ω = 0,1-0,4 м/с). Так же следует поступать и в том случае, если колонна хорошо центрирована, но создать турбулентный режим течения цементного раствора в затрубном пространстве невозможно. Так как продавка почти всегда начинается на высшей скорости (как правило, на IV), то количество агрегатов из условия обеспечения скорости (м. v/c) подъема цементного раствора в затрубном пространстве определяют по формуле:


Nц.а = [0,785*К1*(D2 – d12)*ω/QIV] + 1,


где QIV – производительность цементировочного агрегата на IV скорости, м3/с.

Выбираем цементировочный агрегат типа ЦА-320М с установленными в его насосе 9Т цилиндровыми 127-мм втулками (с этими втулками можно работать при рmax в конце цементирования). Максимальная производительность при этом 0,9 м3/мин при давлении 6,1 МПа.

Для колонны диаметром 324 мм:

nц.а = [0,785*1,2*(0,39372 – 0,3242)*1,5/60] + 1 = 2 агрегата.


Учитывая установившуюся практику буровых работ в данном районе, принимаем nц.а. = 1 агрегат.

Для колонны диаметром 245 мм:


nц.а = [0,785*1,2*(0,29532 – 0,2452)*1,5/60] + 1 = 3 агрегата.


Учитывая опыт работ в данном районе, принимаем 2 агрегата.

Для колонны диаметром 146 мм:


nц.а = [0,785*1,2*(0,21592 – 0,1462)*2/(0,9/60)] + 1 = 5 агрегатов.


Учитывая установившуюся практику буровых работ в данном районе, принимаем nц.а = 9 агрегатов ЦА-320М.


2.5.7 Расчет производительности цементирования

Производительность цементирования (продолжительность процесса цементирования в мин) можно определить по формуле:


tц = [(V1/Qца) + ((Vц + Vпр – V1)/Qм)] + tвсп.


где V1 = Vпр - ΔV, ΔV принимаем равным 1 – 2 м3;

Qца – суммарная производительность цементировочных агрегатов, м3/мин;

Qм – производительность цементировочных агрегатов, при которой достигается наиболее полное вытеснение бурового раствора цементным, м3/мин.


Qм = 0,785*(D2 – d12)*К1*ω,


tвсп – время, расходуемое при цементировании на вспомогательные операции, мм (tвсп + 10 – 15 мин.)

Для колонны диаметром 324 мм:


Qм = 0,785*(0,39372 – 0,3242)*1,2*1,5 = 0,07 м3/с = 4,2 м3/мин.

tц = [(0,76/0,9*1) + ((2,02+ 2,26 – 0,76)/4,2)] + 15 = 16,68 мин.


Для колонны диаметром 245 мм:


Qм = 0,785*(0,29532 – 0,2452)*1,2*1,5 = 0,04 м3/с = 2,4 м3/мин.

tц = [(19,12/0,9*2) + ((13,63+ 20,62 – 19,12)/2,4)] + 15 = 31,92 мин.


Для колонны диаметром 146 мм:


Qм = 0,785*(0,21592 – 0,1462)*1,2*1,5 = 0,048 м3/с = 2,88 м3/мин.

tц = [(45,27/0,9*10) + ((78,96+ 46,77 – 45,27)/2,88)] + 15 = 57,43 мин.


Продолжительность цементирования не должна превышать 75% времени начала схватывания цементного раствора. Тогда допустимое время цементирования:


tдоп = 0,75*tн.схв. = 0,75*120 = 90 мин.


Таким образом, выбранное число цементировочных агрегатов и произведенные расчеты удовлетворяют условиям цементирования обсадных колонн[6].

2.5.8 Расчет количества цементосмесительных машин

Исходя из условия обеспечения цементным раствором всех работающих агрегатов ЦА-320 М,


nцсм = nца*Qца/Qцсм


где Qца – средняя производительность одного работающего агрегата при закачке цементного раствора в колонну, м3/мин;

Qцсм – средняя производительность одной цементосмесительной машины 2СМН-20, м3/мин.

Исходя из условия размещения цементного порошка, подвезенного к буровой в бункерах смесительных машин:


nцсм = Qц1/qцб,


где Qц1 – весовое количество сухого цемента, подвезенного к буровой с учетом предполагаемых потерь, т;

qцб – весовое количество цемента, вмещаемого в бункер одной цементосмесительной машины

Для колонны диаметром 324 мм:


nцсм = 1*0,9/1 = 0,9 = 1 машина.

nцсм = 1,93/20 = 0,1 = 1 машина 2СМН-20.


Для колонны диаметром 245 мм:


nцсм = 2*0,9/1 = 1,8 = 2 машины.

nцсм = 13,03/20 = 0,65 = 1 машина 2СМН-20.


Принимаем 1 цементосмесительную машину 2СМН-20.

Для колонны диаметром 146 мм:


nцсм = 10*0,9/1 = 9 машин.

nцсм = 77,62/20 = 4 машины 2СМН-20.


Принимаем 4 цементосмесительные машины 2СМН-20


2.5.9 Цементировочное оборудование

Цементировочные агрегаты

Цементировочные агрегаты предназначены:

-              для приготовления, закачки и продавки тампонажных (или других) растворов в скважины;

-              для проведения различного рода промывок скважин через спущенные колонны труб;

-              для обработки призабойной зоны скважин, закачки растворов изотопов, проведения гидропескоструйной перфорации и других технологических операций в скважинах;

-              для перекачки различных жидкостей или растворов из емкостей колодцев и водоемов;

-              для гидравлической опрессовки обсадных труб и колонн, а также различного оборудования.

Наиболее широкое распространение в промысловой практике нефтегазовых районов страны получили цементировочные агрегаты ЦА-320М и ЗЦА-400А.

При цементировании проектной скважины будут использоваться цементировочные агрегаты ЦА-320М.

Технологическая характеристика цементировочного агрегата ЦА-320М:

Монтажная база……………………………..шасси автомобиля КрАЗ-257

Цементировочный насос:

тип………………………………………………………………………….9Т

гидравлическая мощность, л.с………………………………………….125

ход поршня, мм…………………………………………………….…….250

максимальное давление, кгс/см2………………………………………..320

максимальная подача, л/с………………………………………………...23

привод от двигателя автомобиля КрАЗ-257

водоподающий насос:

тип………………………………………………………………………....1В

диаметр плунжера, мм…………………………………………………..125

ход плунжера, мм………………………………………………………..170

подача, л/с…………………………………………………………………13

давление, кгс/см2………………………………………………………….15

привод………………………………………………от двигателя ГАЗ-51А

емкость мерного бака, м……………………………………..…………..6,4

емкость цементного бачка, м…………………………………………..0,25

диаметр приемных трубопроводов, мм…………………………..…….100

диаметр нагнетательных трубопроводов, мм…………………………..50

общая длина разборного трубопровода, м………………………………22

Общая масса агрегата, т………………………………………………...17,5

Цементосмесительные машины

Цементосмесительные машины и агрегаты предназначены для транспортировки сухих тампонажных материалов (глинопорошков) и механизированного приготовления тампонажных (глинистых) растворов.

В промысловой практике применяются цементосмесительные машины 2СМН-20, СМП-20, СМ-10, СМ-4М и агрегаты 1АС-20, 2АС-20, ЗАС-30.

В данном случае будут применяться цементосмесительные машины 2СМН-20.

Техническая характеристика машины 2СМН-20:

Монтажная база……………………………..шасси автомобиля КрАЗ-257

Транспортная грузоподъемность, т………………………………….8 – 10

Объем бункера, м……………………………………………….……….14,5

Вместимость бункера (по цементу), т……………………..…………….20

Способ получения раствора…………..………механико-гидравлический

Производительность в м/мин при приготовлении:

Цементного раствора………………………………………………0,6 – 1,2

Цементно-бентонитового раствора……………………………….0,5 – 1,0

Глинистого раствора……………………………………………….1,0 – 2,0

Давление жидкости затворения, кгс/см2…………………………….8 – 20

Общая масса не загруженной машины, т……………………………...13,8

Способ погрузки в бункер………………………...шнековым погручиком

Плотность тампонажного раствора регулируются изменением количества подаваемой в смеситель воды при помощи устройства с набором насадок и крана на обводной линии, а также количества подаваемого сухого цемента посредством изменения скорости вращения вала двигателя и двух параллельных загрузочных шнеков, расположенных в днище бункера 2СМН-20[2].


2.6 Технология крепления скважины

2.6.1 Подготовительные работы к спуску обсадной колонны

2.6.1.1 Проверка состояния фундаментов и оборудования буровой установки

До начала работ по подготовке скважины к спуску обсадной колонны проверяется состояние фундаментов оснований, подроторных балок и другого оборудования буровой установки (подъемное, насосное и силовое).

Фундаменты не должны иметь нарушений, промоин и осадок грунта.

Основания под оборудование и вышку должны располагаться на фундаментах всей опорной поверхности и не иметь трещин или других дефектов.

Вышка центрируется относительно устья скважины, а все ее соединительные элементы закрепляются.

Проверяются: буровая лебедка, приводы, двигатели и при необходимости производится ремонт с заменой отдельных звеньев цепных передач, клиновых ремней и других узлов. При проверке особое внимание уделяется надежности тормозной системы.

Буровые насосы, нагнетательные линии с запорной арматурой и система очистки промывочной жидкости должны обеспечивать бесперебойную подачу и очистку жидкости на различных режимах промывки скважины. Насосы должны обеспечивать подачу продавочной жидкости цементировочным агрегатам.

Проверяется состояние противовыбросового оборудования. Перед спуском эксплуатационных колонн на одном из превенторов заменяются плашки под соответствующий диаметр обсадных труб.

Проверяется исправность и точность показаний индикатора веса, манометров и других контрольно измерительных приборов на буровой.

Устраняются выявленные при осмотре дефекты, и составляется акт о готовности буровой установки к креплению скважины.


2.6.1.2 Подготовка обсадных труб

Подготовка обсадных труб (гидравлическое испытание, калибровка резьб, шаблонирование, маркировка, сортировка и замер длины) к спуску в скважину осуществляется на трубных базах или непосредственно на буровой.

Обсадные трубы завозятся на буровую заранее, чтобы иметь возможность подготовить их для спуска в скважину.

Запрещается транспортирование обсадных труб без предохранительных колец и ниппелей.

Обсадные трубы, подготовленные к креплению скважины, должны удовлетворять всем требованиям действующих стандартов и технических условий.

Соответствие внутреннего диаметра трубы номинальному по всей трубе проверяется с помощью жесткого цилиндрического шаблона.

С целью выявления скрытых дефектов заводского изготовления обсадные трубы перед спуском в скважину испытываются на внутреннее давление водой с выдержкой времени не менее 30 сек.

Трубы, которые не выдержали гидравлического испытания и (или) через которые не прошел шаблон, отбраковываются.

На каждые 1000 м подготовленных к спуску труб на буровую доставляют дополнительно 50 м проверенных резервных труб максимальной прочности.

Подготовленные обсадные трубы укладываются штабелями на стеллажи в порядке очередности их спуска в скважину согласно плану работ, а резервные трубы укладываются отдельно.

После укладки труб предохранительные ниппели вывинчивают из муфт и слегка ослабляют предохранительные кольца на других концах труб.

При укладке труб на стеллажи очищаются, промываются дизельным топливом и протираются насухо резьбы, на ниппельные концы наворачиваются аналогично подготовленные предохранительные кольца. Применение металлических приспособлений для очистки резьб не допускается.

Сведения о подготовленных к спуску в скважину обсадных трубах заносятся в буровой журнал.


2.6.1.3 Подготовка ствола скважины

Подготовка скважины к спуску колонны и обработка глинистого раствора начинается за 2 – 3 долбления перед достижением проектной глубины. В глинистый раствор добавляется графит (1%) или СМАД (1 – 1,5%), что способствует хорошему взаимодействию нефти с раствором и образованию в стенках скважины глинистой корки пониженной липкости. Это обеспечит нормальное проведение комплекса заключительных геофизических исследований и спуск обсадной колонны на проектную глубину.

Для уточнения фактической глубины скважины при спуске бурильного инструмент на последнее долбление производится контрольный замер длины бурильных труб с помощью проверенной стальной рулетки.

В процессе последнего долбления параметры глинистого раствора в скважине и его резервного объема приводятся в соответствии с требованиями ГТН и утвержденным планом работ по укреплению скважины.

После окончания углубления скважины производится комплекс заключительных геофизических исследований.

Приняв решение о спуске обсадной колонны, начальник геологической службы по результатам геофизических исследований корректирует глубину установки башмака, упорного кольца, объем скважины, интервалы цементирования, проработки и установки элементов технологической оснастки и др.

Перед спуском колонны открытый ствол скважины прорабатывается в интервалах сужений (согласно профилю и кавернограммам), "посадок" и "затяжек" инструмента до полной их ликвидации.

Перед последним подъемом инструмента, который предшествует спуску эксплуатационной колонны, чтобы проверить проходимость ствола скважины поднимается инструмент на 500 – 600 м выше интервала продуктивного горизонта, затем сразу же допускается на забой. Промывают скважину в течение не менее двух циклов, приводятся параметры глинистого раствора в соответствии с требованиями ГТН, и инструмент поднимается, выбрасывается на мостки и укладывается на стеллажи.

Проведение перечисленных работ должно оговариваться в плане работ на крепление скважины обсадной колонной.

По окончании подготовки ствола скважины, труб и оборудования составляется акт готовности буровой установки к креплению скважины.

2.6.2 Технология спуска обсадной колонны

Процесс спуска обсадной колонны в скважину будет осуществляться в один прием (одной сплошной секцией).

Работа по спуску обсадной колонны должна быть организована так, чтобы каждый член буровой бригады четко выполнял свои обязанности. Во избежание несчастных случаев при пуске обсадной колонны в скважину все члены бригады должны быть тщательно проинструктированы, рабочее место должно быть очищено от посторонних предметов. Работами по спуску колонны должно руководить одно лицо – буровой мастер, ответственный за работу по спуску колонны согласно разработанному техническому плану.

При организации рабочего места и расстановке рабочей силы для спуска обсадной колонны в каждой вахте выделяется лицо, ответственное за проведение повторного шаблонирования каждой трубы, сохранность шаблона во время спуска колонны и проверку соблюдения установленного порядка спуска труб. Колонну должны спускать при помощи клиновых захватов или клиньев для обсадных труб, позволяющих докреплять резьбовые соединения в процессе спуска. Элеваторы для спуска в скважину обсадных труб используют как исключение.

Низ технических колонн и кондукторов собирается в соответствии с планом работ в следующей последовательности:

-              колонный башмак;

-              обратный клапан типа ЦКОД;

-              обсадные трубы согласно компоновке.

Перед спуском в скважину повторно проверяется качество крепления и работоспособность обратных клапанов.

Обратный клапан типа ЦКОД устанавливается между второй и третьей обсадными трубами. Седло клапана одновременно служит упорным кольцом.

Для предотвращения расслабления муфтового соединения промежуточной колонны и кондуктора от последующего воздействия на них бурильной колонны первые 5 – 10 труб от башмака после закрепления их машинными ключами приваривают. Во избежание смятия колонны при спуске ее с обратным клапаном каждую навинченную трубу после снятия ее с клиньев или элеваторов спускают с такой скоростью, чтобы стрелка индикатора масса (веса) колебалась в пределах пяти делений.

В процессе спуска обсадной колонны с обратным клапаном типа ЦКОД, обеспечивающим саморегулируемое заполнение колонны глинистым раствором, необходимо систематически контролировать характер заполнения по объему вытесняемой жидкости и нагрузке на крюке.

Скважину во время спуска промывают в интервалах, предусмотренных планом спуска. Продолжительность промывки не должна превышать одного цикла циркуляции, причем основным критерием для прекращения промежуточной промывки считается необходимое качество и постоянство показателей глинистого раствора по плотности и вязкости и падение давления на манометре до величин, равных гидравлическим сопротивлениям. Режимы спуска обсадной колонны и последующего ее цементирования должны быть рассчитаны таким образом, чтобы не допустить гидроразрыва пород и связанных с ним осложнений.

Контроль за спуском обсадной колонны должен осуществляться по записям и замеру длины колонны, а также по записям регистрирующего манометра индикатора массы (вса). В записях замера обсадных труб указываются число спущенных труб и их суммарная длина.

Спуск обсадных колонн является одной из трудоемких и ответственных операций, от темпов которой зависит успех всего процесса бурения. В настоящее время довольно широко применяются средства механизации, облегчающие труд рабочих, а также ускоряющие спуск обсадных труб. В процессе подготовки к спуску эксплуатационной колонны ко 2-му и 3-му поясам вышки прикрепляют хомутам две перекладины из насосно-компрессорных труб. Между этими перекладинами на роликах монтируется двухэтажная люлька для верхнего рабочего. Люлька может передвигаться как в вертикальном, так и горизонтальном направлениях. Находящийся в люке рабочий центрирует обсадные трубы в момент навинчивания.

Для подъема обсадных труб над ротором вместо обычного элеватора применяют легкий шарнирный хомут, подвешиваемый на крюке на двух штропах. Хомут надевают на трубу одновременно со спуском и установкой колонны на ротор. Навинчиваемая труба находится в подвешенном состоянии на хомуте только до тех пор, пока труба не завинчивается на 3 – 4 нитки. После этого хомут снимают и продолжают свинчивать при свободном верхнем конце трубы.

По окончании спуска обсадную колонну устанавливают в скважине с учетом расположения оборудования низа согласно утвержденного плана и оставляют подвешенной на талевой системе для обеспечения возможности расхаживания в процессе цементирования или перемещения при изменении растягивающих усилий в период ОЗЦ.

Скважину промывают до выравнивания параметров глинистого раствора по всему стволу скважины[3].


2.6.3 Подготовка к цементированию

2.6.3.1 Выбор рецептуры и подготовка тампонажных материалов

Выпускаемые промышленностью для закрепления скважин тампонажные материалы должны удовлетворять требованиям ГОСТа или соответствующих технических условий.

Потребное количество тампонажного материала для цементирования обсадной колонны определяют с учетом данных профилеметрии ствола и имеющего опыта цементирования скважин на конкретной площади.

Количество тампонажного материала, затаренного в цементосмесительные машины, контролируют взвешиванием.

Подбор рецептуры раствора производят не позднее чем за 5 суток до цементирования.

Проведение цементирования при отсутствии результатов контрольных испытаний проб тампонажного материала и рецептуры раствора запрещается.

Рекомендуется применять тампонажные смеси заводского приготовления.

Лежалые тампонажные материалы подвергаются диспергированию с помощью дезинтеграторных установок.

2.6.3.2 Приготовление воды затворения и буферной жидкости

На буровой необходимо устанавливать дополнительные металлические емкости с водой из расчета полного объема воды затворения с учетом буферной жидкости. За 2 – 3 суток до начала цементирования обсадной колонны в этих емкостях согласно рецептурам тампонажного раствора, подобранным в лаборатории, готовятся водные растворы химреагентов.

Подбирая рецептуру буферной жидкости необходимо выполнять условие, при котором удельный вес и вязкость жидкости находятся в пределах промежуточных значений аналогичных параметров разделяемых глинистого и тамонажного растворов.


2.6.3.3 Подготовка цементировочного оборудования

При подготовке к выезду на буровую очищают мерные емкости агрегатов, проверяется соответствие размеров цилиндровых втулок и поршней цементировочных насосов ожидаемому давлению, наличие и исправность манометров высокого и низкого давлений, предохранительных клапанов и запорных устройств, у цементосмесительных машин – соответствие размеров насадок заданной плотности тампонажных растворов.

Цементировочные головки оборудуются манометрами, кранами высокого давления и заблаговременно опрессовываются на полуторакратное максимальное рабочее давление, которое ожидается при цементировании.

2.6.3.4 Подготовка к процессу цементирования

Подготовку к цементированию производят одновременно с подготовкой к спуску и во время спуска колонны. В ней принимают участие буровая бригада, БПО УБР и тампонажная контора или цех.

Расстановку и обвязку цементировочной техники на буровой производят в соответствии с утвержденной типовой схемой (приложение 5) и обеспечивают горизонтальность размещения цементировочных агрегатов.

При цементировании с использованием осреднительной емкости с каждой цементосмесительной машиной обвязывается один агрегат, который откачивает цементный раствор в осреднительную емкость. Для закачки цементного раствора в скважину у осреднительной емкости ставятся агрегаты, количество которых соответствует числу цементосмесительных машин.

Для заполнения мерных емкостей цементировочных агрегатов водой затворения и продавочной жидкостью в первую очередь прокладываются приемные линии, затем – линии высокого давления от агрегатов к блоку манифольдов и цементировочной головке.

У дополнительных емкостей с водой затворения устанавливают не менее двух цементировочных агрегатов, мерники которых заполняют водой после окончания спуска обсадной колонны во время промывки скважины.

Заполнение мерников цементировочных агрегатов глинистым раствором производится после прекращения промывки скважины одновременно со сборкой трубопроводв высокого давления от блока манифольдов к цементировочной головке.

Обвязкой агрегатов с цементировочной головкой предусматривается наличие отдельной линии высокого давления для продавливания верхней разделительной пробки закачивания тампонажного раствора.

По окончании сборки линии высокого давления опрессовывают на полуторакратное максимальное рабочее давление, которое ожидается при цементировании.

Расстановка и обвязка цементировочной техники планируется так, чтобы время их окончания совпадала с окончанием спуска обсадной колонны.

По окончании расстановки и обвязки цементировочного оборудования инженер по цементированию должен произвести проверку правильности установки цементировочных агрегатов, цементосмесительных машин и коммуникаций.


2.6.4 Цементирование скважины

Крепление скважин осуществляется для разобщение нефтегазоносных пластов от всех вышележащих с обязательным одновременным разобщением нефтесодержащих и газосодержащих пластов друг от друга и защиты обсадных труб от корродирующего действия минерализованных вод, циркулирующих в недрах. Поэтому в скважину обсадные колонны должны быть зацементированы путем закачки тампонажного материала в кольцевое пространство между стенками скважины и обсадной колонны.

Существует ряд методов цементирования скважин. К ним относятся: одно- и двухступенчатое цементирование, манжетное цементирование, цементирование хвостовиков, цементирование под давлением. В зависимости от условий залегания нефтяных или газовых пластов, степени их насыщенности, литологического состава, проницаемости применяют тот или иной метод цементирования скважины.

Проектная скважина будет подвержена одноступенчатому цементированию (одноцикловый способ) – наиболее распространенный вид цементирования.

Процесс цементирования заключается в следующем. После того как обсадная колонна спущена, скважину подготавливают к цементированию, промывая ее после спуска обсадной колонны труб. Для этого на спущенную колонну труб навинчивают цементировочную головку и приступают к промывке. Промывку производят до тех пор, пока буровой раствор не перестанет выносить взвешенные частицы породы, т.е. плотность бурового раствора, поступающего в скважину, и плотность бурового раствора, выходящего из нее, станут одинаковыми. При промывке необходимо фиксировать давления на выкиде насоса.

После того как скважина промыта и вся арматура проверена приступают к приготовлению и закачиванию цементного раствора в скважину. Рекомендуется непосредственно перед началом затворения цементной смеси произвести закачивание в колонну буферной жидкости, в качестве которой наиболее широко используется вода и водные растворы солей NaCI, NaCI2 и т.п., щелочей КаОН и ПАВ (сульфанол). Смешиваясь с буровым раствором, они разжижают его, уменьшают статическое и динамическое напряжение сдвига и вязкость. Объем буферной жидкости подсчитывается из условия допустимого снижения гидростатического давления на продуктивный пласт. После закачивания буферной жидкости в колонну опускают нижнюю пробку. Затем при помощи цементосмесителей и цементировочных агрегатов приготавливают цементный раствор, который агрегатами перекачки перекачивается в скважину. После закачки цементного раствора из цементировочной головки продавливают верхнюю пробку и цементный раствор движется между двумя пробками к башмаку колонны.

Далее приступают к продавке цементного раствора вниз. Для предупреждения быстрого роста давления в начале закачки тампонажных смесей и продавочной жидкости цементировочные агрегаты подключают в работу поочередно. Буровые насосы перекачивают глинистый раствор в тарированные мерники цементировочных агрегатов. При продавке цементного раствора ведется счет закачиваемой в колонну продавочной жидкости. Это делается для того, чтобы до прокачки оставшейся 0,5 – 1,0 м3 продавочной жидкости перейти на один агрегат, которым и производится посадка пробок на упорное кольцо. Этот момент характеризуется резким повышением давления на заливочной головке, так называемым "ударом". Величина "удара" зависит от руководителя работ и обычно не превышает 0,5 – 1,0 МПа сверх максимального давления, имевшего перед моментом схождения пробок. На этом заканчивается процесс цементирования, и скважина оставляется в покое при закрытых кранах на головке на срок, необходимый для схватывания и твердения цементного раствора.


2.6.5 Контроль процесса цементирования

При цементировании проектируемой скважины будет использоваться компьютеризированный комплекс оборудования для контроля и управления процессом цементирования КСЦ – 32.

Комплекс КСЦ – 32 предназначен для использования при строительстве скважин различного назначения и, в частности, при цементировании обсадных колонн в умеренном и холодном макроклиматических районах.

В состав КСЦ – 32 входят:

-        модернизированный блок манифольдов (МБМ-32), на котором установлена измерительная вставка с датчиками расхода, плотности, давления, температуры;

-        комплексный прибор для осреднительной емкости, включающий датчики плотности, уровня, температуры;

-        световое информационное табло с отдельным кабелем;

-        световое информационное табло с отдельным кабелем;

-        станция контроля и управления процессом цементирования компьютеризированная (СКУПЦ-К).

В состав СКУПЦ-К входят:

-        система сбора информации;

-        преобразователь ±24/V в ~220V;

-        бортовой промышленный компьютер (смонтированный в тумбе стола);

-        промышленный монитор с температурой хранения – 400С;

-        промышленная клавиатура и др.;

-        специальное программное обеспечение;

-        комплект кабелей на мобильных смотках.

Базовый вариант блока манифольдов смонтирован на шасси автомобиля "Урал".

Базовый вариант СКУПЦ-К смонтирован в специальном автобусе на шасси автомобиля КАМАЗ или УРАЛ любой модели.

Технологические задачи КСЦ-32:

-        управление процессом цементирования в реальном времени с предотвращением гидроразрывов тампонажного раствора в затрубном пространстве, гидроударов при посадке продавочной пробки на упорное кольцо;

-        слежение за приготовлением тампонажного раствора при использовании осреднительной емкости.

Технологические характеристики датчиков:

1. Датчик давления на блоке манифольдов:

пределы измерения, МПа………………………………………0 – 40;

относительная погрешность, %……………………………..……± 1.

2. Датчики плотности на блоке манифольдов и на осреднительной емкости: пределы измерения, кг/м3…………………………………800 – 2600;

относительная погрешность, %……………………………...………± 2.

3. Датчик расхода на блоке манифольдов:

пределы измерения, м3/с…………………………………….…0 – 0,050;

относительная погрешность, %………………...……………………± 2.

4. Датчик температуры на блоке манифольдов и на осреднительной емкости: пределы измерения, 0С………………………………………-40 – +60;

относительная погрешность, %…………………………………..…± 0,5.

5. Датчик уровня на осреднительной емкости:

пределы измерения, МПа……………………………………………0 – 2;

относительная погрешность…………………………………………± 2.

Технические характеристики определяемых параметров:

1. Параметр объема закачиваемых агентов:

пределы измерения, м3……………………………………..……0 – 100;

относительная погрешность, %………………………………………± 2.

2. Параметр суммарного объема закачиваемых агентов:

пределы измерения, м3……………………………………………0 – 200;

относительная погрешность, %………………………………….……± 2.

3. На выносном табло отображается: давление, плотность, расход, объем, уровень, температура.

Техническая характеристика КСЦ-32:

Наибольше рабочее давление, МПа……………………………………..32

Плотность перекачиваемых агентов, кг/м3…………………….800 – 2600

Число контролируемых параметров на МБМ-32, шт……………………5

(давление, температуры, плотность, расход, объем)

Число контролируемых параметров на осреднительной емкости, шт…4

(средняя плотность, уровень, объем, температура)

Влажность окружающей среды, %.....................................................до 100

Температура применения, 0С……………………………………...-40 - +50

Точность измерительных параметров соответствует техническим требованиям процесса цементирования скважин.

По желанию заказчика дополнительно (по отдельному договору) может быть представлен мобильный измерительный комплекс для контроля параметров на выходе из скважины. Цементирование нефтяных и газовых скважин – наиболее ответственный этап их строительства. Неудачи при его выполнении могут свести к минимуму успехи предыдущих этапов строительства скважины Согласно данным статистики, стоимость работ по креплению и цементированию скважины составляет значительный процент от всей ее стоимости, поэтому проведение этих работ имеет существенное значение для успешного закачивания скважины и обеспечивает оптимальные условия ее эксплуатации[1].

3.                Аварии и осложнения

3.1 Предупреждение аварий и осложнений

3.1.1 Предупреждение обвалов

Основными осложнениями, которые могут возникнуть при бурении проектной скважины являются обвалы, которые обычно происходят во время прохождения уплотненных глин, аргиллитов или глинистых сланцев.

Основными мерами предупреждения и ликвидации обвалов являются:

1.      бурение в зоне возможных обвалов с промывкой буровым раствором, имеющим минимальную водоотдачу и максимально высокую плотность;

2.      организация работ, обеспечивающая высокие скорости проходки;

3.      выполнение следующих рекомендаций:

-                    бурить скважины по возможности меньшего диаметра;

-                    бурить от башмака предыдущей колонны до башмака последующей колонны долотами одного размера;

-                    поддерживать скорость восходящего потока в затрубном пространстве не менее 1,5 м/с;

-                    подавать бурильную колонну на забой плавно, без рывков;

-                    избегать значительных колебаний бурового раствора;

-                    не допускать длительного пребывания бурильной колонны без движения.

3.1.2 Предупреждение аварий при спуске обсадных колонн

Спуск тяжелых обсадных колонн (более 100 т) необходимо производить на спайдер-элеваторах или с помощью верхнего спайдера ПКРО.

Подачу обсадных труб на буровую следует производить осторожно при навинченных предохранительных кольцах, которые нужно снимать при полной готовности труб к свинчиванию. На воротах вышки необходимо устанавливать удерживающее приспособление, предотвращающее удар труб о ротор при подаче в буровую.

Каждую подаваемую для спуска обсадную трубу необходимо шаблонировать, закрепив за указанной операцией опытного помощника бурильщика.

Все резьбовые соединения башмачной части обсадной колонны (50 – 60 м) после закрепления манными ключами должны быть усилены прерывистым сварным швом с обязательным применением спецколец или электрозаклепок.

Сварочные работы должны производиться квалифицированными сварщиками. Не допускается принудительное охлаждение сварного шва (водой или буровым раствором).

Последнюю обсадную трубу колонны рекомендуется спускать в скважину с минимальной скоростью и промывкой.

Крепление резьбовых соединений всех обсадных колонн должно проводиться с использованием моментометров.

Во избежание поглощения, гидроразрыва пластов, нарушения устойчивости стенок скважины, смятия обсадной колонны в плане работ указывать допустимую скорость спуска колонны. Скорость спуска подвески из бурильных труб не должна превышать скорости спуска обсадных труб.

Для предотвращения прихвата обсадной колонны в процессе ее заполнения, восстановления циркуляции и промежуточных промывок колонну необходимо держать на весу и расхаживать через каждые 5 минут.

Если в процессе спуска колонны появилась необходимость ее расхаживать, то перед расхаживанием необходимо долить колонну до устья.

ЗАПРЕЩАЕТСЯ:

-              изменять проектные решения без оформления соответствующего протокола;

-              применять для замера бурильных и обсадных труб рулетки имеющие поправки после их ремонта;

-              спускать обсадную колонну без предварительной гидравлической опрессовки труб;

-              применять обсадные трубы, которые имели пропуски в резьбовых соединениях при их опрессовке;

-              спускать обсадные трубы, в соединениях которых после наворота на скважине выявлен перекос резьб;

-              производить обварку резьбовых соединений для "усиления" при ненормальном свинчивании обсадных труб;

-              принудительно пропускать колонну через зоны посадок;

-              применять разъединитель, который не позволяет производить промывку по время ОЗЦ[9].


3.1.3 Предупреждение аварий и брака из-за некачественного цементирования

Цементирование обсадных колонн, установка цементных мостов, заливка зон поглощений должны производиться только при наличии на буровой лабораторных анализов тампонажных растворов или их смесей, проведенных тампонажной конторой (цехом) или лабораторией в полном соответствии с заданными условиями (температура, давление, исходная вода для приготовления жидкости затворения).

Подбор рецептуры тампонажного раствора необходимо производить за 5 суток до цементирования. Если со дня выбора рецептуры до начала цементирования прошло более 10 суток, то рецептуру следует подвергнуть контрольной проверке и в случае необходимости – корректировке.

В лаборатории должно быть проверено отсутствие отрицательного воздействия буферной жидкости на тампонажный и буровые растворы. При этом буферные жидкости (состав и реологические параметры) должны обеспечивать:

-        гарантированное разделение бурового раствора от цементного, что достигается подбором плотности буферной жидкости;

-        отмывающую способность глинистой корки на границах "горная порода" - "обсадная колонна";

-        повышение адгезионной способности горной породы ствола скважины и металла обсадных труб по отношению к цементу.

Время загустевания тампонажного раствора, определяемое на консистометрах при взаимодействии температуры и давления, имитируемых по процессу цементирования, должно быть на 25% больше расчетного времени цементирования, но не менее чем на 30 и не более чем на 90 мин.

Потребное количество тампонажного материала для цементирования обсадной колонны следует определять с учетом коэффициента сжижаемости растворов (смесей), промыслово-геофизических данных (по профилеметрии, произведенной при выполнении заключительного комплекса геофизических работ) и накопленного опыта цементирования скважин на данной площади.

Доставка цемента на буровую, как правило, должна осуществляться цементосмесительными машинами и цементовозами в опломбированном виде с документами о количестве цемента и паспортных сведениях на него и сдаваться буровому мастеру, который должен вести учет завозимого тампонажного материала.

Конструкция цементировочной головки, должна обеспечивать возможность предварительного размещения в ней 2-х разделительных пробок, удерживаемых с помощью стопоров, и исключать возникновение перепада давления на них при цементировании.

Цементировочная головка должна быть опрессована на полуторакратное максимальное давление, которое ожидается при цементировании, в нее должна быть вставлена верхняя разделительная пробка. Цементировочная головка должна быть оборудована манометрами и кранами высокого давления. К цементировочной головке должны быть подведены три линии (две рабочие и третья для выдавливания разделительной пробки).

Процесс цементирования должен производиться непрерывно, соблюдая заданную гидравлическую программу и обеспечивая расчетную скорость восходящего потока тампонажного раствора в затрубном пространстве.

Последние 1,0 – 1,05 м3 продавочной жидкости для обсадных колонн диаметром до 245 мм закачивать одной насосной установкой с Q = 3 – 4 л/с.

По окончании цементирования обсадных колонн, перекрывающих пласты с АВПД и газовые горизонты, а также в скважинах, склонных к газонефтепроявлениям, на период ОЗЦ необходимо герметизировать заполненное до устья затрубное пространство и обеспечить дежурство цементировочного агрегата, обвязанного с устьем скважины.

ЗАПРЕЩАЕТСЯ:

-              проводить цементирование при отсутствии рецептуры лаборатории Тампонажной конторы (цеха) или лаборатории филиала;

-              проводить цементирование эксплуатационных колонн без проведения контрольного анализа перед началом работ;

-              цементировать обсадные колонны без применения продавочных пробок;

-              приступить к оборудованию устья скважины до окончания ОЗЦ и определения высоты подъема цемента за обсадной колонной (по ОЦК, АКЦ);

-              допускать отклонение от типовых схем оборудования устья, установленных ГОСТом и действующими инструкциями;

-              спускать в скважину бурильные трубы до полного окончания обвязки ПВО;

-              проводить работы по разбуриванию цементного стакана, обратного клапана, направляющей пробки до окончания обвязки ПВО, определения его герметичности, а также с применением КНБК, включающей центрирующие приспособления (калибратор, расширитель и др.);

-              бурить роторным способом или проворачивать бурильную колонну при нахождении калибратора в башмаке обсадной колонны[7].


3.2           Охрана недр и окружающей среды

3.2.1 Общие сведения

В соответствии с основами законодательства о недрах, основами водного законодательства и водного кодекса РФ, действующим положением о Госгортехнадзоре, постановлениями Совета Министров по усилению охраны природы и улучшению использования природных ресурсов, поиск и разведка, разбуривание и разработка нефтяных месторождений должны осуществляться при полном и строжайшем соблюдении мер по охране недр и окружающей среды.

Основными требованиями по охране недр, предъявляемыми к поиску и разведке нефтяных месторождений, являются государственный контроль за рациональным использованием и охраной недр, (а также установление порядка его проведения), соблюдение утвержденных в установленном порядке стандартов, регламентирующих условия недр, атмосферного воздуха, земель, лесов, вод (Закон Российской Федерации "О недрах").

Охрана недр предусматривает осуществление комплекса мероприятий, направленных на предотвращение потерь нефти в недрах вследствие низкого качества проводки скважин, нарушений технологии нефтяных залежей и эксплуатации скважин, приводящих к преждевременному обводнению или дегазации пластов, перетокам жидкости между продуктивными и смежными горизонтами, разрушению нефтесодержащих пород, обсадной колонны и цемента за ней.

Охрана окружающей среды предусматривает мероприятия, направленные на обеспечение безопасности населенных пунктов, рациональное использование земель и вод, предотвращение загрязнения поверхностных и подземных вод, воздушного бассейна, сохранение лесных массивов, заповедников.

Основными требованиями по охране окружающей среды при эксплуатации скважин является подбор глубинного и наземного оборудования и установление оптимальных режимов его работы.

Во исполнение указанных требований по охране недр и окружающей среды при бурении проектных скважин должны принимать меры, обеспечивающие:

а) предотвращение открытого фонтанирования, графинообразования, поглощения промывочной жидкости, обвалов стенок скважин и межпластовых перетоков нефти, воды и газов в процессе проводки, освоения и их дальнейшей эксплуатации;

б) надежную изоляцию в скважинах нефтеносных, газоносных и водоносных пластов по всему разрезу;

в) герметичность всех технических и обсадных колонн, спущенных в скважину, их качественное цементирование;

г) предотвращение ухудшения коллекторских свойств продуктивных пластов, сохранение их естественного состояния при вскрытии, креплении и освоении.

Перфорация и торпедирование скважин должны производиться при строгом соблюдении действующих инструкций. После окончания бурения скважины и перфорации колонны для предотвращения снижения проницаемости и призабойной зоны из-за длительного воздействия на нее воды или глинистого раствора скважина должна осваиваться в кратчайшее время.

При наличии опасности межпластовых перетоков нефти, газа и воды не допускается проведение мероприятий по интенсификации притоков нефти и газа.

При испытании скважин продукты освоения должны собираться в закрытые емкости.

Транспортирование вспомогательных материалов и нагнетаемых в нефтяной пласт растворов должно производиться в закрытой таре или емкостях, исключающих их утечку.

При разливе нефти на поверхности земли или попадания ее в водный объект в результате нефтегазового выброса, открытого фонтанирования скважины или аварии трубопровода необходимо сообщить об этом органам, осуществляющим государственный контроль за состоянием водных объектов, не позднее 3-х часов с момента обнаружения, прекратить забор поверхностных и подземных вод для питьевого водоснабжения и принять меры, обеспечивающие предотвращение дальнейшего распространения загрязнения.

Разлившаяся из поверхности объекта нефть должна быть локализована, собрана техническими средствами и способами, безвредными для обитателей водных объектов и не оказывающими вредного влияния на условия санитарно-бытового водоснабжения, и отправлена на установки подготовки нефти или очистительные сооружения.

На загрязненном участке земли должны быть проведены по сбору или нейтрализации загрязнения с последующей рекультивацией земли в соответствии с ГОСТ 17.5.3.04-83. При нарушении обваловки и гидроизоляции участков они должны быть восстановлены.


3.2.2 Рекультивация земельного участка

Пред началом строительства скважины проводятся работы по выбору и отводу земли. Площадка для бурения выбирается, как правило, на пастбищах, кормовые достоинства которых невелики. Мощность черноземного слоя не превышает 20 – 40 см. Размер отводимого участка выбирается согласно "Норм отвода земель для нефтяных и газовых скважин" - СН 459-74 в зависимости от цели бурения и типа буровой установки. При подготовительных работах проводятся работы по снятию и складирования почвенного слоя земли в соответствии с ГОСТ 17.4.3.02-85. Он складируется в специально отведенные места в виде буртов. В целях предупреждения ветровой и водной эрозии предусматривается посев многолетних трав. Все эти работы должны проводиться до наступления устойчивых, отрицательных температур. Площадка должна иметь уклон в сторону амбаров для стока жидких отходов.

Современное производство буровых работ пока использует для сбора и захоронения выбуренной породы, а также для хранения технической воды, специально оборудованные земляные амбары. Стенки и дно амбара глинизируются с целью создания экрана, предотвращающего уход водной фракции за пределы амбара и фильтрацию в почву. Как правило, разработка грунта при оборудовании амбаров ведется до глинистой "подушки", т.е. в качестве экрана используется глинистая толща горных пород (глины четвертичного и мезозойского возрастов). После этого производится опрессовка амбара путем закачки в него воды. Если происходит снижение уровня воды в амбаре, то проводится повторная опрессовка.

У амбаров устанавливается центробежный насос, с помощью которого откачивается техническая вода для повторного использования. Для предупреждения растекания вод площадка буровой оборудуется сточными лотками и отвалами, направленными в технологические амбары. Объемы технологических амбаров определяются в зависимости от глубины скважин и ее конструкции.

Монтаж буровогооборудования начинается после проведения всех подготовительных работ. Площади под буровым и вспомогательным оборудованием должно быть гидроизолированным, а также иметь сточные лотки и отводы. При бурении скважины циркуляции бурового раствора осуществляется по замкнутому циклу с применением средств очистки (гидроциклоны, вибросита и т.д.), входящих в комплект буровой установки. В период бурения осуществляется постоянный контроль за герметичностью циркуляционной системы, емкостей для долива скважины и обработки бурового раствора химическими реагентами, емкостей ГСМ.

После окончания строительства скважины, демонтажа бурового оборудования, проводятся работы по ликвидации амбаров и рекультивации площади буровой. Все эти работы проводятся силами строительной организации для проведения в состояние, пригодное для использования в сельском хозяйстве. При ликвидации амбаров проводятся работы по откачке осветленной жидкой фазы для дальнейшего использования, а загустевшие остатки бурового раствора и выбуренной породы после естественного или принудительного выпаривания захоронятся на месте.

Техническая рекультивация проводится для сохранения плодородного слоя почвы и включает выполнение следующих работ:

-        срезка и складирование плодородного и минерализованного слоев почвы;

-        срезка загрязненной и замусоренной почвы;

-        обратное перемещение и разравнивание плодородного и минерального слоев почвы после окончания строительства.

Биологическая рекультивация проводится после технической. Технология биологической рекультивации разрабатывается специализированной организацией по заявке "Заказчика" на основе данных по фоновому состоянию почв до начала строительства и данных по динамике изменения этого фона под действием факторов строительства после окончания его. "Заказчик" представляет эти данные специализированной организации. Технология биологической рекультивации должна включать порядок и количество вносимых удобрений для восстановления плодородия почв, количество применяемой техники. Приведение земельного участка в пригодное состояние производится в течение одного года после завершения работ. Передача землепользователю рекультивируемых земель оформляется атом в установленном порядке при участии представителей землепользователя, строительной организации м органов, осуществляющих контроль за использованием земель[11].

3.2.3 Охрана поверхностных и подземных вод

При строительстве скважины особое внимание уделяется охране поверхностных и подземных вод. При выборе площадки учитывается удаленность от открытых водных объектов с учетом их водоохранных зон. С целью предотвращения растекания технической воды, бурового раствора и отходов бурения за пределы площадки буровой и попадания в водный объект проводятся работы по обваловке этой площадки грунтом. На участке строительства проводятся работы по обваловке этой площадки грунтом. На участке строительства проводятся работы по изоляции площадок технологического оборудования, складов химических реагентов, блока приготовления раствора. Предусматривается инженерная система сбора отходов бурения с помощью лотков в амбары.

Для нужд строительства и испытания скважины применяется техническая вода. В процессе строительства скважины должен вестись учет расхода с помощью расходометров, мерных емкостей и других средств, приданных буровой установке.

В процессе бурения скважины осуществляется замкнутый цикл циркуляции бурового раствора с очисткой от выбуренной породы средствами, приданными буровой установке. Оставшаяся вода откачивается и повторно используется на технологические нужды. Она должна отвечать требованиям ГОСТа 51-01-0384. Буровой раствор (частично) вывозится на близлежащие буровые для дальнейшего использования.

Для предотвращения загрязнения водоносных горизонтов и надежной их изоляции при бурении скважины рабочим проектом разрабатывается конструкция скважины в соответствии с "Правилами безопасности в нефтяной и газовой промышленности, 1998г."

Для перекрытия заколонного пространства и предотвращения межпластовых перетоков за обсадными колоннами формируется цементная оболочка, для чего используется тампонажный цемент в соответствии с ГОСТ 1581-85.

В процессе проводки на основе геологического строения и с учетом возможных осложнений применяют буровой раствор с заданными параметрами (эксплуатационными свойствами) для данных условий бурения.

Буровой раствор представляет собой устойчивую глинистую суспензию на водной основе, (эти параметры разработаны в соответствии с "Правилами безопасности в нефтяной и газовой промышленности"), обработанную химическими реагентами. Применение химических реагентов позволяет поддерживать и регулировать эксплуатационные свойства бурового глинистого раствора, необходимые для безаварийной проводки скважины до перебойного забоя. Самарским государственным предприятием "Экология" был выполнен анализ химического состояния бурового раствора, применяемого буровыми предприятиями Самарской области, для определения класса опасности данного отхода. Учитывая все факторы, сделан вывод, что буровой раствор относится к 4 классу опасности.

3.2.4 Охрана атмосферного воздуха

К основным источникам загрязнения атмосферного воздуха относятся: спецтехника, автотранспорт, тракторная техника, привод буровой, котельная. В процессе испытания скважины из нефти, поступающей на поверхность сепарируется попутный газ, который сжигается на факеле.

Санитарно-защитная зона при строительстве скважин на нефть и газ составляет 300 метров (СН245-71).


3.2.5 Мониторинг за состоянием окружающей среды

Контроль за окружающей средой при строительстве скважины – это наблюдение за состоянием и изменением качества почв, подземных и поверхностных вод, воздуха. В задачи контроля на период строительства скважины входит работы по проверке соблюдения требований по охране окружающей среды и организации контроля вредных веществ, поступающих в природную среду в процессе строительства. Контроль за поступлением вредных веществ осуществляется методом отбора проб до начала строительства, в период бурения и после окончания. Отбор проб и определение химического состава почвы проводится в два этапа:

1 этап – до начала строительства – определение фона;

2 этап – после окончания строительства и рекультивации нарушенных земель – фактическое состояние почвы.

Учитывая, что в процессе проводки скважины применяется буровой глинистый раствор, обработанный химическими реагентами, относящимися по классу опасности к нетоксичным и малотоксичным, анализ почв проводят по следующим параметрам:

-              нефтепродукты методом капельного анализа;

-              рН солевой и водной вытяжки;

-              хлорид и сульфат – ионы;

-              карбонат кальция.

Контроль загрязнения подземных вод осуществляется методом отбора и анализа проб из контрольно-наблюдательных скважин, пробуренных на месторождении. Отбирают пробы воды на анализ до начала строительства – фоновый показатель, во время бурения – контроль за изменением состава воды, после окончания строительства – полный анализ воды. Контроль за качеством подземных вод должен быть осуществлен по следующим показателям:

-              щелочность – мг-экв/л;

-              жесткость – мг/л;

-              растворенный кислород – мг/л;

-              ХПК – мг/л;

-              сухой остаток – мг/л;

-              хлориды – мг/л;

-              сульфаты – мг/л;

-              железо общее – мг/л;

-              азот аммонийный – мг/л;

-              нефть и нефтепродукты – мг/л.

Сравнение фоновых показателей с показателями, определенными в процессе строительства, дает возможность определить источник и степень загрязнения подземных и поверхностных вод.

Бурение скважин на площадях Самарской области ведется, в основном, буровыми установками с электрическим приводом.

Основным источником загрязнения атмосферного воздуха является сжигание попутного газа на факеле. Замеры контролируемых веществ осуществляется до начала строительства как фоновый показатель, и во время сжигания таза. Анализ проводится по следующим основным веществам:

-              сероводород;

-              окислы азота;

-              окислы углерода;

-              углеводороды;

-              окислы серы;

-              окись ванадия.

Из приведенных сведений следует, что воздействие на окружающую природную среду отходов бурового процесса ограничивается территорией площадки, отведенной под строительство буровой установки и привышечных вспомогательных сооружений.

Отходы в виде выбуренной породы, отработанного бурового раствора, буровых сточных вод имеют 4-й класс опасности. Выбуренная порода и твердая фаза бурового раствора захороняются в амбаре. Буровые сточные воды и буровой глинистый раствор частично вывозятся для повторного использования на соседнее буровые. Остальная часть буровых сточных вод частично испаряется, вымерзает, насыщает минеральный грунт площадки.

Территория площадки буровой после рекультивации самовостанавливается, как показывает опыт, в течение 1,5 – 2-х лет.

Выбросы в атмосферу вредных веществ незначительны. За пределами площадки буровой их концентрация ниже ПДК для населенных пунктов, какого0либо влияния на ближайшие населенные пункты эти выбросы не оказывают.

Надежная конструкция скважины, современное устьевое противовыбросовое оборудование и применяемая технология бурения должны обеспечить предупреждение нефтегазопроявлений, что и подтверждается многолетней практикой работы буровых предприятий в данном районе.

Численность работающий на буровой, эпизодически привлекаемая спецтехника оказывают влияние на животный мир незначительно и, в основном, в пределах территории буровой.

Таким образом, предложенные технические, технологические и организационные мероприятия должны обеспечить незначительное воздействие на окружающую среду[11].

4.Сметный расчет на строительство скважины


Наименование работ и затрат

Прямые затраты,

руб.

В т.ч. осн. з/плата рабочих, руб.

1

2

3

Глава 1

Строительство и разработка вышки, при-

вышеечн. сооруж., монтаж и демонт. БУ

Строительство и монтаж

Разборка и демонт. К=0,2

Итого

Транспорт 9,8%

Итого по гл.1

Глава 2

Бурение и крепление скважины

Бурение скважины

Крепление скважины

Итого

Транспорт 9,8%

Итого по гл.2

Глава 3

Испытание скв. на продуктивность

Обвязка устья скважины

Испытание скв. на продуктивность

Итого

Транспорт 9,8%

Итого по гл. 3

Всего по сметному расчету




210012

42763

252775

24771

277546



3622598

2854719

6477317

634777

71112094



27006

224167

251173

24614

275787




18249




18249



183215

60550



243765



2002

19516



21518

283532


ЗАКЛЮЧЕНИЕ

В ходе написания дипломной работы были проанализированы геологические условия района проведения буровых работ на нефть и газ для обоснования строительства скважины.

Технические решения, принятые в данной работе направлены на создание качественной скважины в плане надежности, долговечности при строгих условиях окружающей среды.


Литература


1.                 Ганджумян, Р.А. Инженерные расчеты при бурении глубоких скважин / Р.А. Ганджумян, А.Г. Калинин. – М.: Недра, 2000.

2.                 Булатов, А.И. Справочник инженера по бурению: в 4т. / А.И. Булатов, А.Г. Аветисов. – М.: Недра, 1985. – т. 1-2.

3.                 Вадецкий, Ю.В. Бурение нефтяных и газовых скважин: Учебник для нач. проф. Образования / Ю.В. Вадецкий. – М.: Издательский центр "Академия", 2003.

4.                 Алексеевский, Г.В. Буровые установки Уралмаш завода. – 3-е изд., перераб. и доп. – М.: Недра, 1981.

5.                 Воздвиженский, Б.И. Буровая механика. – 3-е изд., перераб. и доп. / Б.И. Воздвиженский, М.Г. Васильев. – М.: ГНТИ, 1954.

6.                 Ганджумян, Р.А. Расчеты бурения (справочное пособие) / Р.А. Ганджумян, А.Г. Калинин, Н.И. Сердюк. – М.: РГГРУ, 2007.

7.                 Калинин, А.Г. Практическое руководство по технологие бурения на жидкие и газообразные полезные ископаемые: Справочное пособие / А.Г. Калинин и [др]. –М.: ООО "Недра – Ббизнес центр", 2001.

8.                 Палашкин, Е.А. Справочник механика по глубокому бурению / Е.А. Палашкин. – М.: Недра, 1974.

9.                 Денисов, П.Г. Сооружение буровых / П.Г. Денисов. - М.: Недра, 1974.

10.            Иогансен, К.В. Спутник буровика: Справочник. – 3-е изд., перераб. и доп. / К.В. Иогансен. – М.: Недра, 1990.

11.            Хаустов, А.П. Охрана окружающей среды при добыче нефти / А.П. Хаустов, М.М. Редина. – М.: изд-во "Депо", 2006.


Страницы: 1, 2


© 2000
При полном или частичном использовании материалов
гиперссылка обязательна.