РУБРИКИ

Основы геодезических измерений

   РЕКЛАМА

Главная

Зоология

Инвестиции

Информатика

Искусство и культура

Исторические личности

История

Кибернетика

Коммуникации и связь

Косметология

Криптология

Кулинария

Культурология

Логика

Логистика

Банковское дело

Безопасность жизнедеятельности

Бизнес-план

Биология

Бухучет управленчучет

Водоснабжение водоотведение

Военная кафедра

География экономическая география

Геодезия

Геология

Животные

Жилищное право

Законодательство и право

Здоровье

Земельное право

Иностранные языки лингвистика

ПОДПИСКА

Рассылка на E-mail

ПОИСК

Основы геодезических измерений

Абсолютная погрешность не даёт представления о точности полученного результата. Например, погрешность в 0,06 м может быть получена при измерении l = 100 м или l = 1000 м. Поэтому вычисляют относительную погрешность:

 

C = Eср / X


C = 0,06 / 100 = 1/1667, т.е на 1667 м измеряемой l допущена погрешность в 1 метр.

Относительная погрешность – отношение абсолютной погрешности к истинному или измеренному значению. Выражают дробью. По инструкции линия местности должна быть измерена не грубее 1/1000.

Погрешности, происходящие от отдельных факторов, называются элементарными. Погрешность обобщенная – это сумма элементарных.

Возникают:

·                   грубые (Q),

·                   систематические (O),

·                   случайные (∆).

Грубые погрешности измерений возникают в результате грубых промахов, просчётов исполнителя, его невнимательности, незамеченных неисправностях технических средств. Грубые погрешности совершенно недопустимы и должны быть полностью исключены из результатов измерений путем проведения повторных, дополнительных измерений.

Систематические погрешности измерений – постоянная составляющая, связанная с дефектами: зрение, неисправность технических средств, температура. Систематические погрешности могут быть как одностороннего действия, так и переменного (периодические погрешности). Их стремятся по возможности учесть или исключить из результатов измерений при организации и проведении работ.

Случайные погрешности измерений неизбежно сопутствуют всем измерениям. Погрешности случайные исключить нельзя, но можно ослабить их влияние на искомый результат за счет проведения дополнительных измерений. Это самые коварные погрешности, сопутствующие всем измерениям. Могут быть разные как по величине, так и по знаку.


E = Q + O +∆


Если грубые и систематические погрешности могут быть изучены и исключены из результата измерений, то случайные могут быть учтены на основе глубокого измерения. Изучение на основе теории вероятностей.

На практике сложность заключается в том, что измерения проводятся какое-то ограниченное количество раз и поэтому для оценки точности измерений используют приближённую оценку среднего квадратического отклонения, которую называют среднеквадратической погрешностью (СКП).

Гауссом была предложена формула среднеквадратической погрешности:


∆2ср = (∆21 + ∆22 +… +∆2n) / n,

∆2 = m2 = (∆21 + ∆22 +… +∆2n) / n,

∆ = m,

∆ср = m = √(∑∆2i / n)


Формула применяется, когда погрешности вычислены по истинным значениям.

Формула Бесселя:

 

m = √(∑V2i / (n-1))


Средняя квадратическая погрешность арифметической середины в Ön раз меньше средней квадратической погрешности отдельного измерения

 

М=m/Ön


При оценке в качестве единицы меры точности используют среднеквадратическую погрешность с весом равным единице. Её называют средней квадратической погрешностью единицы веса.

µ2 = P×m2 – µ = m√P, m = µ / √P, т.е. средняя квадратическая погрешность любого результата измерения равна погрешности измерения с весом 1 (µ) и делённая на корень квадратный из веса этого результата (P).

При достаточно большом числе измерений можно записать ∑m2P=∑∆2P (так как ∆ = m):

µ = √(∑(∆2×P)/n), т.е. средняя квадратическая погрешность измерения с весом, равным 1 равна корню квадратному из дроби в числителе которого сумма произведений квадратов абсолютных погрешностей неравноточных измерений на их веса, а в знаменателе – число неравноточных измерений.

Средняя квадратическая погрешность общей арифметической середины по формуле:

 

M0 = µ / √∑P

Подставив вместо µ её значение получим :


M0 = √(∑∆2×P/n) / (√∑P) = √[(∑∆2×P) / n×(∑P)]

 

M0 = √[ (∆12P1 + ∆22P2 +… + ∆n2Pn) / n×(P1 + P2 + … + Pn) ] – формула Гаусса, средняя квадратическая погрешность общей арифметической середины равна корню квадратному из дроби, в числителе которой сумма произведений квадратов погрешностей неравноточных измерений на их веса, а знаменатель – произведение количества измерений на сумму их весов.

µ = √ [∑( V2×P ) / (n-1)] Это формула Бесселя для вычисления средней арифметической погрешности с измерением веса, равным 1 для ряда неравноточных измерений по их вероятнейшим погрешностям. Она справедлива для большого ряда измерений, а для ограниченного (часто на практике) содержит погрешности: mµ = µ / [2×(n-1)] – это надёжность оценки µ.

Контрольная задача 1

Для исследования теодолита им был многократно измерен один и тот же угол. Результаты оказались следующими: 39˚17.4'; 39˚16.8'; 39˚16.6'; 39˚16.2'; 39˚15.5'; 39˚15.8'; 39˚16.3'; 39˚16.2'. Тот же угол был измерен высокоточным угломерным прибором, что дало результат 39˚16'42". Приняв это значение за точное, вычислить среднюю квадратическую погрешность, определить надёжность СКП, найти предельную погрешность.


Решение:

№ измерения

Результаты измерений, l

Погрешности

∆ = l-X

∆2

1

39˚17.4'

+0.7'

0.49

2

 16.8

+0.1

0.01

3

 16.6

-0.1

0.01

4

 16.2

-0.5

0.25

5

 15.5

-1.2

1.44

6

 15.8

-0.9

0.81

7

 16.3

-0.4

0.16

8

 16.2

-0.5

0.25

Сумма



3.42


39˚16'42" = 39˚16.7'

Средняя квадратическая погрешность: m = √([∆2]/n),

m = √(3.42/8) = 0.65'.

Оценка надёжности СКП: mm = m / √2n,

mm = 0.65 / √16=0.1625≈0.16'.

Предельная погрешность: ∆пр = 3×m,

∆пр = 3×0.65' = 1.96'

Контрольная задача 2

Дана совокупность невязок треугольников триангуляции объёмом 50 единиц. Считая невязки истинными погрешностями, вычислить среднюю квадратическую погрешность и произвести надёжность СКП, вычислить предельную погрешность. На данной совокупности проверить свойство случайных погрешностей:

Lim[∆] / n =0, для чего вычислить W = [W] / n.


N

W

N

W

N

W

N

W

N

W

1

+1,02

11

-1,72

21

-0,90

31

+2,80

41

-0,44

2

+0,41

12

+1,29

22

+1,22

32

-0,81

42

-0,28

3

+0,02

13

-1,81

23

-1,84

33

+1,04

43

-0,75

4

-1,88

14

-0,08

24

-0,44

34

+0,42

44

-0,80

5

-1,44

15

-0,50

25

+0,18

35

+0,68

45

-0,95

6

-0,25

16

-1,89

26

-0,08

36

+0,55

46

-0,58

7

+0,12

17

+0,72

27

-1,11

37

+0,22

47

+1,60

8

+0,22

18

+0,24

28

+2,51

38

+1,67

48

+1,85

9

-1,05

19

-0,13

29

-1,16

39

+0,11

49

+2,22

10

+0,56

20

+0,59

30

+1,65

40

+2,08

50

-2,59


Решение:

W = [W] / n, W = +2,51 / 50 = 0,05

Среднюю квадратическую погрешность в данном случае целесообразно вычислять по формуле: m = √( [W2] – [W]2/n ) ÷ (n-1),

m = √( 76,5703 – (2,512)/50) ÷ 49 = 1,249

Оценку надёжности СКП по формуле: mm = m / √2(n-1),

mm = 1,249/ √(2×49) = 0,13.

Предельная погрешность по формуле: ∆пр = 3×m,

∆пр = 3×1,249= 3,747.

Контрольная задача 5

Определить СКП расстояния вычисленного по формуле


S = √(x2 – x1)2 + (y2 – y1)2


если x2 = 6 068 740 м; y2 = 431 295 м;

x1 = 6 068 500 м; y2 = 431 248 м;

mх = my = 0,1 м.

Решение:

S =√(6 068 740 - 6 068 500 )2 + (431 295 - 431 248)2 =235,36

mm = 0,1/ √4 = 0,05

Контрольная задача 6

Один и тот же угол измерен 5 раз с результатами: 60˚41'; 60˚40'; 60˚40'; 60˚42'; 60˚41'. Произвести математическую обработку этого ряда результатов измерений.


Решение:

Nп/п

l, ˚

ε, '

v, '

v2, '

1

60˚41'

1

-0,2

0,04

2

60˚40'

0

+0,8

0,64

3

60˚40'

0

+0,8

0,64

4

60˚42'

2

-1,2

1,44

5

60˚41'

1

-0,2

0,04

Сумма


4

0

2,8


l0 – минимальное значение измеряемой величины, l0 = 60˚40' ; ε – остаток, полученный как ε = l1 - l0 ; L – наилучшее значение измеряемой величины,

L = [l]/n; m = √([ v2]/(n – 1), где v-уклонение от арифметического среднего. М – оценка точности среднего арифметического значения, М = m/√n.

L = 60˚40' + 4/5 = 60˚40,8'

m = √2,8 / 4 = 0,7'

М = 0,7'/√5 = 0,313'

Контрольная задача 7

Произвести математическую обработку результатов измерения планиметром площади одного и того же контура: 26,31; 26,28; 26,32; 26,26; 26,31 га.


Решение:

Nп/п

l, га

ε, га

v, га

v2, га

1

26,31

0,05

-0,014

0,000196

2

26,28

0,02

+0,016

0,000256

3

26,32

0,06

-0,024

0,000576

4

26,26

0

0,036

0,001296

5

26,31

0,05

-0,014

0,000576

Сумма


0,18

0

0,0029


l0 = 26,26

L = 26,26 + 0,18/5 = 26,296 га

m = √0,0029/ 4 = 0,0269 га

М = 0,0269/√5 = 0,01204 га

Контрольная задача 8

При исследовании сантиметровых делений нивелирной рейки с помощью женевской линейки определялась температура в момент взятия отчета. Для пяти сантиметровых отрезков получены значения: 20,3˚; 19,9˚; 20,1˚; 20,2˚; 20,3˚. Провести математическую обработку результатов измерения.


Решение:

Nп/п

l, ˚

ε, ˚

v, ˚

v2, ˚

1

20,3

0,4

-0,14

0,0196

2

19,9

0

-0,26

0,0676

3

20,1

0,2

-0,06

0,0036

4

20,2

0,3

0,04

0,0024

5

20,3

0,4

0,14

0,0196

Сумма


1,3

0

0,1128


l0 = 19,9

L = 19,9 + 1,3/5 = 20,16˚

m = √0,1128/ 4 = 0,168˚

М = 0,168/√5 = 0,075˚


3.3 Веса измерений

Вес измерения – это отвлеченное число, обратно пропорциональное квадрату СКП результата измерения.

Формула веса:

P = К / m2,


где P – вес результата измерения,

К – произвольное постоянное число для данного ряда измерений,

m – СКП результата измерения.

Из формулы видно, что чем меньше СКП измерения, тем оно точнее и его вес больше.

Отношение весов двух измерений обратнопропорционально квадратам СКП этих измерений, т.е.:

P1 / P2 = m22 / m12


Если имеется ряд измерений l1, l2, …, ln, то очевидно, что вес одного измерения будет меньше веса среднего арифметического этих значений, т.е.:


Pm < PM,


где m – погрешность одного измерения,

M – погрешность среднего арифметического значения.

Тогда отношение весов обратнопропорционально отношению квадратов СКП:


PM/Pm = m2/M2;M = m/√n;

PM/Pm = m2/ (m/√n) 2 = m2/ (m2/n) = m2×n/m2 = n.


Таким образом, вес среднего арифметического значения больше отдельно взятого значения в n раз. Следовательно, вес арифметической середины равен числу измерений, из которых она составлена.

Общая арифметическая середина из неравноточных измерений равна дроби, в числителе которой – сумма произведений средних арифметических значений из результатов измерений на их веса, а знаменатель – сумма всех весов измерений. Следовательно, вес общей арифметической середины равен сумме весов неравноточных измерений:


A0 = (a1P1 + a2P2 + … + anPn) / (P1 + P2 + … +Pn),


где A0 – общая арифметическая середина,

ai – результат отдельно взятого измерения,

Pi – вес отдельно взятого измерения.

СКП любого результата измерения равна погрешности измерения с весом 1, делимой на корень квадратный из веса этого результата, т.е.:


m = M/√P,


где m – СКП любого результата измерения;

M – погрешность измерения с весом 1;

P – вес данного результата измерения.

СКП измерения с весом 1 равна корню квадратному из дроби, в числителе которой – сумма произведений квадратов абсолютных погрешностей неравноточных измерений на их веса, а в знаменателе – число неравноточных измерений.


M = √ (∑∆2P/n),


где ∆ - абсолютная погрешность неравноточного измерения;

P –его вес;

n – число измерений.

Контрольная задача 9

Результатам измерения углов соответствуют m1 = 0,5; m2 = 0,7; m3 = 1,0. Вычислить веса результатов измерений.

Решение:

P = К / m2;

P1 = 1 / (0,5)2 = 4;

P1 = 1 / (0,7)2 = 2,04;

P1 = 1 / (1,0)2 = 1.

 

Ответ: 4; 2,04; 1.

Контрольная задача 11

Найти вес невязки в сумме углов треугольника, если все углы измерены равноточно.

Решение:


m = √[V2] / (n-1), n = 3

P = К / m2

m = √[ V21 + V22+ V23]/(3 – 1) = √[ V21 + V22+ V23]/2

P = К / √[ V21 + V22+ V23]/2 = 2 К / √[ V21 + V22+ V23] = 2/ ∑ V2i

3.4 Функции по результатам измерений и оценка их точности


В практике геодезических работ искомые величины часто получают в результате вычислений, как функцию измеренных величин. Полученные при этом величины (результаты) будут содержать погрешности, которые зависят от вида функции и от погрешности аргументов по которым их вычисляют.

При многократном измерении одной и той же величины получим ряд аналогичных соотношений:


∆U1 = k∆l1

∆U2 = k∆l2

…………..

∆Un = k∆ln


Возведём в квадрат обе части всех равенств и сумму разделим на n:


(∆U12 + ∆U22 + … + ∆Un2) / n = k2×(∆l12 + ∆l22 + ... + ∆ln2) / n;

∑∆U2 / n = k2×(∑∆l2 / n);

m = √(∑∆U2 / n);

m2 = k2 × ml2,


где ml – СКП дальномерного отсчёта.

m = k × ml.


СКП функции произведения постоянной величины на аргумент равна произведению постоянной величины на СКП аргумента.

Функция вида U = l1 + l2

Определить СКП U, где l1 и l2 – независимые слагаемые со случайными погрешностями ∆l1 и ∆l2. Тогда сумма U будет содержать погрешность:


∆U = ∆l1 + ∆l2.


Если каждую величину слагаемого измерить n раз, то можно представить:

∆U1 = ∆l1' + ∆l2' – 1-е измерение,

∆U2 = ∆l1" + ∆l2" – 2-е измерение,

…………………

∆Un = ∆l1(n) + ∆l2(n) – n-е измерение.

После возведения в квадрат обеих частей каждого равенства почленно их сложим и разделим на n:


∑∆U2 / n = (∑∆l12)/n + 2×(∑∆l1×∆l2)/n + (∑∆l22)/n.


Так как в удвоенном произведении ∆l1 и ∆l2 имеют разные знаки, они компенсируются и делим на бесконечно большое число n, то можно пренебречь удвоенным произведением.


mU2 = ml12 + ml22;

mU = √( ml12 + ml22 ).


СКП суммы двух измеренных величин равна корню квадратному из суммы квадратов СКП слагаемых.

Если слагаемые имеют одинаковую СКП, то:


ml1 = ml2 = m;

mU = √(m2 + m2) = √2m2 = m√2.


В общем случае:


mU = m√n,


где n – количество аргументов l.

Функция вида U = l1 - l2


mU = m√n;

mU = √( ml12 + ml22).


СКП разности двух измерений величин равна корню квадратному из суммы квадратов СКП уменьшаемого и вычитаемого.

Функция вида U = l1 - l2 + l3


mU = √( ml12 + ml22 + ml32…)


СКП суммы n измеренных величин равна корню квадратному из суммы квадратов СКП всех слагаемых.

Линейная функция вида U = k1l1 + k2l2 + … + knln


mU = √[ (k1ml1)2 + (k2ml2)2 + … + (knmln)2],


т.е. СКП алгебраической суммы произведений постоянной величины на аргумент равна корню квадратному из суммы квадратов произведений постоянной величины на СКП соответствующего аргумента.

Функция общего вида U = ƒ( l1, l2, …, ln)

Это наиболее общий случай математической зависимости, включающий все рассматриваемые выше функции, являющиеся частным случаем. Это значит, что аргументы l1, l2, …, ln могут быть заданы любыми уравнениями. Для определения СКП такой сложной функции необходимо проделать следующее:

1. Найти полный дифференциал функции:


dU = (dƒ/dl1)×dl1 + (dƒ/dl2)×dl2 + … + (dƒ/dln)×dln,


где (dƒ/dl1), (dƒ/dl2), …,(dƒ/dln) – частные производные функции по каждому из аргументов.

2. Заменить дифференциалы квадратами соответствующих СКП, вводя в квадрат коэффициенты при этих дифференциалах:

mU2 = (dƒ/dl1)2×ml12 + (dƒ/dl2)2×ml22 + … +(dƒ/dln)2×mln2.

3. Вычислить значения частных производных по значениям аргументов:


(dƒ/dl1), (dƒ/dl2), …,(dƒ/dln).


И тогда mU = √[ (dƒ/dl1)2× ml12 + (dƒ/dl2)2×ml22 + … +(dƒ/dln)2×mln2].

СКП функции общего вида равна корню квадратному из суммы квадратов произведений частных производных по каждому аргументу на СКП соответствующего аргумента.

3.5 Оценка точности по разностям двойных измерений и по невязкам в полигонах и ходах.


В практике геодезических работ часто одну и ту же величину измеряют дважды. Например, стороны теодолитного хода в прямом и обратном направлении, углы двумя полуприемами, превышения – по черной и красной стороне вех. Чем точнее произведены измерения, тем лучше сходимость результатов в каждой паре.


mlср. = ½ √∑d2/n


где d – разности в каждой паре; n – количество разностей.

Формула Бесселя:


mlср = ½ √∑d2/n-1


Если измерения должны удовлетворять какому-либо геометрическому условию, например, сумма внутренних углов треугольника должна быть 180˚, то точность измерений можно определить по невязкам получающимся в результате погрешностей измерений.


μ=√∑ [f2 /n]/N,


где - СКП одного угла;

f – невязка в полигоне;

N – количество полигонов;

n – количество углов в полигоне.


4. Определение дополнительных пунктов

4.1 Цель и методы определения дополнительных пунктов


Дополнительные пункты определяются наряду со съемочной сетью в основном для сгущения существующей геодезической сети пунктами съемочного обоснования. Они строятся прямыми, обратными, комбинированными, а при наличии электронных дальномеров – линейными засечками и лучевым методом.

В некоторых случаях дополнительный пункт определяется передачей (снесением) координат с вершины знака на землю.

4.2 Передача координат с вершины знака на землю. (Решение примера)

При производстве топографо-геодезических работ в городских условиях невозможно бывает установить теодолит на пункте геодезической сети (пунктом является церковь, антенна и т.п.). Тогда и возникает задача по снесению координат пункта триангуляции на землю для обеспечения производства геодезических работ на данной территории.

Исходные данные: пункт A с координатами XA, YA; пункты геодезической сети B (XB, YB) и C (XC, YC).

Полевые измерения: линейные измерения выбранных базисов b1 и b'1; измерения горизонтальных углов ß1 , ß'1 , ß2 , ß'2 ; б , б'.

Требуется найти координаты точки P – XP, YP.

Решение задачи разделяется на следующие этапы:

Решение числового примера



Исходные данные

Обозначе-

ния

А

ХА, YА

B

ХB, YB

C

ХC, YC

β1

β2

β2

β2`

β1

β1`

б

б‘

Численные значения

6327,46

8961,24

5604,18

266,12

38o26'00"

70o08'54"

138o33'49"

27351,48

25777,06

22125,76

198,38

42˚26'36"

87˚28'00"

71˚55'02"


Вычисление расстояния DАР

Обозначе-

ния

B1

B2

sinβ2

sinβ‘2

sin(β1+β2 )

sin(β‘1+β‘2)

B1 sinβ2

B2 sinβ‘2

D1

D2

D1 -D2

2D/T

Dср

Численные значения

266,12

0,62160

0,94788

165,420

174,52

0,00


174,52

198,38

0,67482

0,76705

133,871

174,52


Решение обратных задач

Обозначения

YB

ХB

ХА

YC

ХC

ХА

tgαAB

αAB

tgαAC

αAC

sinα AB

sinα AC

cos αAB

cosαAC

S AB

S AC

Численные значения

10777,06

8961,24

7125,76

5605,08

-0,5977

7,23421

-0,51309

-0,99058

0,85833

-0,13693

3068,48

12351,48

6327,46

12351,48

6327,46

329˚07'55"

262o07'51"

5275,51


Вычисление дирекционных углов αАР = αD

Обозна-

чения

D

sinб

sinб'

S AB

S AC

sin ψ

sin ψ'

ψ

ψ'

φ

φ'

αAB

αAC

αD

α'D

αD-α'D

õmß

Численные значения

174,52

0,66179

3068,48

0,03950

2o15'50"

39o10'41"

329o07'55"

8o18'36"

∆α=1'30"

0,95061

5275,51

0,03292

1o53'13"

106o11'46"

262o07'51"

8o18'37"


sin ψ = D×sinб/ S AB; sin =174,52×0,66179/3068,48=0,03950;

sin ψ' = D×sinб'/ S AС; sin `=174,52×0,95061/5275,51=0,03292;

ψ = arcsin 0,03950 =2 o15` 50``;

ψ'= arcsin 0,03292=1 o53` 13``;

φ = 180 o – (б+ ψ) = 180 o – (138o33` 49``+2 o15` 50``) = 39o10` 41``

φ`= 180 o – (б`+ ψ` ) = 180 o – (71o55` 02``+1 o53` 13``) = 106 o11` 46``

αD = αAB ± φ =329o07` 55``+ 39o10` 41``= 8o18` 36``

αD`= αAC ± φ`=262o07` 51``+ 106 o11` 46``= 8o18` 37``


Контроль:


(αD – α'D) õmβ;


где mβ –СКП измерения горизонтальных углов.

Знак «+» или «-» в формулах вычисления дирекционного угла берется в зависимости от взаимного расположения пунктов А, Р, В и С.

(8o18` 36``-8o18` 37``) ≤ 30``

0o00` 01`` ≤ 30``


Решение прямых задач (вычисление координат т.Р)

Обозначения


αD

αD'


sinαD

sinαD'


cosαD

cosαD'


DcosαD

DcosαD'


DsinαD

Dsinα'D


∆Х - ∆Х'

∆Y - ∆Y'


ХА

Хp = ХА+ ∆Х

Х'p = ХА+ ∆Х'

Yp = YА+ ∆Y

Y'p = YА+ ∆Y'

Численные значения

8o18'36"

0,14453

0,98950

172,69

25,22

∆=00,00

∆=00,00

∆доп=25см

6327,46

6500,15

8o18'37"

0,14454

0,98950

172,69

25,22

12351,48

12376,70


Хp = ХА+ ∆Х,Yp = YА+ ∆Y,

Х'p = ХА+ ∆Х',Y'p = YА+ ∆Y'.

∆Х= DcosαD,∆Y= DsinαD,

∆Х'= Dcosα'D,∆Y'=Dsinα'D.


Расхождение координат не должно превышать величины õmß×p, где p=206265", mß – средняя квадратическая погрешность измерения угла.

Оценка точности определения положения пункта P.

Средняя квадратическая погрешность определения отдельного пункта вычисляется по формуле:


M2p = m2X +m2Y,M2p = m2D +(D×mα / P)2


где mD- определяется точностью линейных измерений, а m α – точностью угловых измерений.

Пример: mD =2см, mα= 5``, тогда


Mp =√ [(0,02) 2+(170×5/2×105)2] ≈ 2×10-2 = 0,02м.


4.3 Решение прямой и обратной засечки (по варианту задания)


Определение координат пункта прямой засечкой (формулы Юнга).

Для однократной засечки необходимо иметь два твёрдых пункта. Контроль определения осуществляется вторичной засечкой с третьего твёрдого пункта.

Исходные данные: твердые пункты А(ХАYА); B(ХBYB); С(ХСYС).

Полевые измерения: горизонтальные углы β1, β 2, β`1, β`2.

Определяется пункт P.

Формулы для решения задачи:


Хp -ХА=((ХB-ХА) ctg β 1+(YB-YА))/ (ctg β 1+ ctg β 2);

Хp= ХА+∆ХА;

Yp -YА=((YB-YА) ctg β 1+(ХB-ХА))/ (ctg β 1+ ctg β 2); Yp= YА+∆YА;

Оценка точности определения пункта P.

Вычисление СКП из 1-го и 2-го определения:


M1 =(mβ×√(S12+ S22))/p×sinγ1;

M2 =(mβ×√(S12+ S22))/p×sinγ2;


Значения величин, входящих в приведённые формулы следующие:

mβ =5``, p=206265``; γ=73˚15,9`; γ=62˚55,7`; S1=1686,77 м; S2=1639,80 м; S3=2096,62 м.

Стороны засечки найдены из решения обратных задач.


M1 = (5``×√2,86+2,69)/(2×105×0,958)=0,06м.

M2 = (5``×√2,69+4,41)/(2×105×0,890)=0,07м.

Mr = √ (M12 +M22); Mr =√ [(0,06) 2+(0,07) 2]=0,09м.


Расхождение между координатами из двух определений

r = √ [( Хp- Х`p) 2+( Yp- Y`p) 2] не должно превышать величины 3 Mr;

r =√ [(2833,82-2833,82) 2+(2116,38-2116,32) 2]=√0,0036=0,06м.

На основании неравенства r =0,06м 3×0,09м логично сделать вывод о качественном определении пункта P.

За окончательные значения координат принимают среднее из двух определений.

Решение числового примера

β1


β2

XB

XA

ctg β1

ctg β2

(XB- XA)ctg β1

YB

YA

∆ XA

XP = XA+∆XA

(YB-YA)ctgβ1


∆ YA

YP=YA+∆YA

XB- XA

YB-YA

ctg β1 + ctg β2

52˚16.7'


52˚27.4'

1630.16

1380.25

0.77349

0.71443

193.30

1.48792

3230.00

1260.50

1453.57

2833.82

1523.39

855.88

2116.38

+249.91

+1969.50


β'1


β'2

XC

XB

ctg β'1

ctg β'2

(XC- XB)ctg β'1

YC

YB

∆ XB

XP = XA+∆XA

(YC-YB)ctgβ'1


∆ YB

YP=YA+∆YA

XC- XB

YC-YB

ctg β'1 + ctg β'2

69˚48.5'


52˚27.4'

3401.04

1630.16

0.36777

0.92402

651.28

1.29175

4133.41

3230.00

1203.56

2833.82

332.24

-1113.68

2116.32

+1770.88

+903.41

 

                                                                          2833.82     2116.35


Определение координат пункта методом обратной засечки (аналитическое решение задачи Потенота).

Необходимо иметь три твёрдых пункта, для решения задачи с контролем используют четвёртый твердый пункт.

Исходные данные: А(ХАYА); B(ХBYB); С(ХСYС), D(XDYD).

Полевые измерения: горизонтальные углы γ1, γ2, γ3.

Определяемый пункт P.

Формулы для вычисления:


1.ctgγ1=а; ctgγ2=b

2.k1 =a(YB- YA)-( ХB- ХA);

3.k2 =a( ХB- ХA)+(YB- YA);

4.k3 =b(YС- YA)-( ХC- ХA);

5.k4 =b( ХC- ХA)-(YC- YA);

6.c=( k2 - k4)/( k1 - k3)=ctgaAP;

7.контроль: k2 - с k1= k1- с k3;

8.∆Y=( k2 - с k1)/( 1 - с2);

9.∆Х= с AY;

10.Хp = ХА+ ∆Х, Yp = YА+∆Y.


Решение численного примера

1

γ1

γ2

a=ctg γ1

b=ctg γ2

109˚48'42"

224˚15'21"

-0.360252

+1.026320

2

XB

XC

XA

5653.41

8143.61

6393.71


X'B = XB- XA

X'C = XC- XA

-740.30

1749.90


X'C- X'B = XC- XB

2490.20


YB

YC

YA

1264.09

1277.59

3624.69


Y'B = YB- YA

Y'C = YC- YA

-2360.60

-2347.16


Y'C- Y'B = YC- YB

13.5

3

k1

k3

+1590.71

-4158.78


k1- k3

+5749.49


k2

k4

-2093.91

-551.14


k2- k4

-1542.77


c = ctg α

c2 + 1

k2-ck1

k4-ck3

-0.268332

1.072002

-1667.07

-1667.07

4

∆Y

YA

Y

∆X

XA

X

-1555.0

3624.65

+2069.56

+417.28

6393.71

+6810.99


Координаты из первого определения получились Хp=6810,99м, Yp =2069,56 м.

 Для контроля задача решается вторично с твердым пунктом D, т.е. пунктом А, B, C.

Исходными данными являются: γ1=109o48`42``; γ3=151o26`24``; Хd=6524,81м, Yd=893,64м.

Контроль осуществляется следующим образом: определить


ctgαPD =( ХD- ХP)/( YD- YP), αPD=256 o27`38``;


Из схемы первого решения имеем: С=ctgα PA=-0,26833;

αPD=105o01`13``.

Контроль определяется пунктом P:


r=√ [( ХP - Х`P) 2+( YP - Y`P) 2] ≤ 3 Mr;


где r, как и в случае прямой засечки,


Mr=1/2×√ [M12 +M22]

5. Уравнивание системы ходов съемочной сети

5.1 Общее понятие о системах ходов и их уравнивании


Координаты пунктов могут быть определены положением через них теодолитных ходов, опирающихся в начале и в конце хода на пункты с известными координатами и стороны с известными дирекционными углами. При математической обработке результатов таких измерений координаты определяемых пунктов получают однозначно, а их точность зависит от точности полевых измерений, точности исходных данных и принятого метода обработки измерений.

На практике возможно появление ситуаций, когда в геодезических построениях возникает неоднозначность получения определяемых величин, например координат пунктов.

С этой точки зрения рассмотрим геодезическое построение в виде системы трех теодолитных ходов с одной узловой точкой. Практическая необходимость построения такой системы обусловлена невозможностью определения положения пунктов путем проложения через них одного теодолитного хода (например, из-за отсутствия на местности необходимых видимостей). Ограничивающим фактором может быть превышение допустимой длины одиночного теодолитного хода или нарушением каких-либо других нормативных требований.

Страницы: 1, 2, 3


© 2000
При полном или частичном использовании материалов
гиперссылка обязательна.