РУБРИКИ

Оценка теплого периода для определения оптимальных условий ведения сельского хозяйства на территории юга Западной Сибири

   РЕКЛАМА

Главная

Зоология

Инвестиции

Информатика

Искусство и культура

Исторические личности

История

Кибернетика

Коммуникации и связь

Косметология

Криптология

Кулинария

Культурология

Логика

Логистика

Банковское дело

Безопасность жизнедеятельности

Бизнес-план

Биология

Бухучет управленчучет

Водоснабжение водоотведение

Военная кафедра

География экономическая география

Геодезия

Геология

Животные

Жилищное право

Законодательство и право

Здоровье

Земельное право

Иностранные языки лингвистика

ПОДПИСКА

Рассылка на E-mail

ПОИСК

Оценка теплого периода для определения оптимальных условий ведения сельского хозяйства на территории юга Западной Сибири

Оценка теплого периода для определения оптимальных условий ведения сельского хозяйства на территории юга Западной Сибири

Федеральное агентство по образованию

Томский государственный университет (ТГУ)

Геолого-географический факультет

Кафедра метеорологии и климатологии


УДК 551.585

Допустить к защите В ГАК

Зав. кафедрой метеорологии

и климатологии

д-р физ.-мат. наук, профессор

Г.О. Задде


Выпускная квалификационная работа бакалавра

Оценка теплого периода для определения оптимальных условий ведения сельского хозяйства на территории юга Западной Сибири

020600– Гидрометеорология



Поляков Денис Викторович

Руководитель

канд.геогр.наук, доцент

И.В. Кужевская






Томск 2010

Сокращения слов и словосочетаний, часто применяемые при оформлении работы


слово

сокращение

единица

ед.

Цельсий

ºС

год

г.

Всероссийский научно-исследовательский институт гидрометеорологической информации – Мировой центр данных

ВНИИГМИ-МЦД

 Национальное агентство по аэронавтике и исследованию космического пространства (National Aeronautics and Space Administration)

 NASA

 годы

 гг.

 миллиметр

 мм

 Гидротермический коэффициент

 ГТК

доктор физико-математических наук

 д-р физ.-мат. наук

 кандидат географических наук

канд. геогр. наук

 доцент

 доц.

микрометр

мкм


Сокращения слов, часто употребляемые в библиографическом описании произведений печати

 слово

сокращение

 Москва

М.

 Всероссийский научно-исследовательский институт сельскохозяйственной метеорологии

 ВНИИСХМ

 выпуск

 Вып.

 Томский Государственный Университет

 Том. гос.ун-т

 Научная библиотека

 Науч. б-ка

 Библиографический информационный центр

 Библиогрю инф.центр

 Введение

 Введ.

 Издательство

 Изд-во


Оглавление


Введение

1. Значение агрометеорологических факторов в жизни растений

1.1 Радиационный режим растительности

1.2 Температурные и тепловой режим растительности

1.3 Осадки, влажность воздуха и испарение

2. Опасные для сельскохозяйственного производства гидрометеорологические явления в теплый период

2.1 Заморозки

2.2 Сильные ливни и град

2.3 Засухи, суховеи и засушливые явления

3. Изменения температурно – влажностного режима по территории юга Западной Сибири

3.1 Данные исследовательской работы

3.2 Анализ температурно – влажностного режима по территории юга Западной Сибири

3.3 Анализ индекса ГТК по территории юга Западной Сибири

3.4 Пространственное изменение статистических характеристик индекса ГТК

3.5 Изучение изменения континентальности климата по территории юга Западной Сибири

Заключение

Список используемой литературы и источников

Приложение А Основные статистические характеристики индекса ГТК

Приложение Б Ранговые значения индекса ГТК и чисел Вольфа (W)

Приложение В Характеристики температурно-влажностного режима на территории юга Западной Сибири


Введение


Вопросы изменения температурно – влажностного режима территории Западной Сибири являются актуальными, ими занимаются многие институты и агрометеорологические научно - исследовательские учреждения страны, они получили широкое отражение в популярной и научной литературе, а также вызывают значительный интерес у многих отраслей народного хозяйства. Большой интерес, к изучению температурно-влажностного режима проявляет сельскохозяйственный сектор экономики страны.

Сельскохозяйственная деятельность человека является древнейшей формой использования им природных ресурсов. При постоянном росте численности населения планеты Земля и, следовательно, потребностей в продуктах питания необходимо ежегодное увеличение объемов сельскохозяйственного производства. Сельское хозяйство представляет собой сложную систему, связанную с биологическими особенностями сельскохозяйственных культур и животных, а также с конкретными природными условиями, в которых происходит их возделывание и выращивание.

Неустойчивость погодных условий, смена влажных лет засушливыми годами, суровых зим теплыми вызывают существенную межгодовую изменчивость размеров урожая сельскохозяйственных культур. Экстремальные условия погоды, широкое распространение заболеваний у растений и животных, массовое развитие вредителей, а также загрязнение окружающей среды наносят существенный урон аграрному сектору экономики и производству продовольствия. Большое разнообразие почвенно-климатических условий на территории России позволяет развивать многоотраслевое сельское хозяйство. Известно всем, что треть всех посевов расположена в зоне гарантированных урожаев. Тогда как на остальной территории возможны переувлажнения почвы, засушливые районы и суровые зимы.

В России температурно - влажностные условия имеют огромное значение для сельского хозяйства. Основная масса сельскохозяйственной продукции производится в естественных природных условиях. Влияние современного изменения климата на агрометеорологические ресурсы и продуктивность сельскохозяйственного производства актуальна не только для России, но и для всего мира, особенно для Северного полушария. Росгидромет считает, что продовольственная безопасность России в ближайшие десятилетия будет зависеть от темпов и направленности усиливающегося процесса глобального потепления климата.

Целью данной выпускной квалификационной работой бакалавра является рассмотрение температурно – влажностного режима территории юга Западной Сибири, засух и изменение климата на территории Западной Сибири по критерию амплитуд температур и среднемесячной температуры. Расчет и исследование проводились по данным международного обмена для шести станций Западной Сибири: Омск, Барабинск, Барнаул, Рубцовск, Красноярск и Минусинск. Для достижения поставленной цели были сформулированы следующие задачи:

1) Составить базу данных среднесуточных значение температуры воздуха и сумм осадков за 45-летний (с 1960 по 2005 гг.) период наблюдений по станциям;

2) Рассмотреть температурно – влажностный режим территории;

3) Изучить возможности индекса ГТК, как критерия температурно – влажностного режима;

4) Подобрать критерии, влияющие на изменение континентальности климата, входящие в сверхдолгосрочный агрометерологический прогноз.


1. Значение агрометеорологических факторов в жизни растений


1.1 Радиационный режим растительности


Солнечная энергия – практически единственный источник тепла, определяющий все процессы, происходящие в атмосфере, в водах Мирового океана и на поверхности Земли. Благодаря этой энергии стало возможным образование и существование биосферы со всем многообразием живого вещества. Солнечная радиация, это лучистая энергия, состоящая из электромагнитных волн, которые распространяются с огромной скоростью.

Атмосфера Земли прозрачна лишь для небольшой части электромагнитного излучения Солнца. Она пропускает часть ультрафиолета и инфракрасное излучение и весь видимый свет. От высоты Солнца, прежде всего, зависит мощность светового потока. Этот поток в северных широтах менее интенсивен, но растянут по времени [2]. На растения влияют: продолжительность солнечного освещения, интенсивность солнечной радиации, спектральный состав света [1].

Освещенность – отношение светового потока к площади освещаемой территории. (измеряется в люксах) [2]. Реакция растений на продолжительность освещения называется фотопериодизмом. По этому понятию растения условно делят на три группы. Растения длинного дня, так как пшеница, рожь, ячмень и другие. Растения короткого дня представляются кукуруза, рисом, редисом и другими. Нейтральные растения представляются гречихой и многими бобовыми [1]. Недостаточная освещенность в посевах обуславливает полегание растений, замедления образования плодов, торможение биосинтетических процессов и замедление поглощения питательных веществ.

Фотосинтетическая активная радиация - это коротковолновая радиации в интервале от 0,38 до 0,71 мкм, которая оказывает решающее значение для жизни растений. Это важнейший фактор продуктивности растений, в том числе сельскохозяйственных культур. Её интенсивность измеряют инструментально.

От количества солнечной радиации зависит интенсивность многих процессов, протекающих в растениях, в частности фотосинтез. Суммарная радиация, падающая на различные поверхности растений, поглощается, отражается, рассеивается, создавая радиационный режим растительного покрова. Плотность потока радиации и спектральный состав постоянно меняется, в первую очередь зависящий от высоты Солнца и структуры посева. В плотных посевах около 25% поступающей радиации отражается, и больше половины поглощается верхним ярусом растений [1].

Формирование оптимального радиационного режима в растительном покрове осуществляется своевременным применением разнообразия агротехнических приемов и селекционной работой по созданию сельскохозяйственных культур, адаптированных к условиям их возделывания [1].


1.2 Температурный и тепловой режим растительности


Лучистая энергия Солнца, поглощенная поверхностью суши, океана, преобразуется в тепло. Теплообмен между атмосферным воздухом и окружающей средой осуществляется радиационным путем, путем теплопроводности, испарения с последующей конденсацией или кристаллизацией водяного пара и турбулентности. Часть тепла затрачивается на нагревание приземного слоя атмосферы, почвы, растений, на испарение с поверхности почвы и растений (транспирация), часть передается в нижележащие слои почвы. Локальные изменения температуры в какой-либо точке происходят в зависимости от адвекции

Температурный режим почвы зависит от прихода солнечной радиации на подстилающую поверхность и в глубину почвы. Дневное нагревание и ночное охлаждение вызывает суточные колебания температуры подстилающей поверхности. Температура почвы зависит от механического состава и степени увлажненности.

Наибольшая разность температур в течении суток наблюдается на поверхности почвы. Минимум температуры приходится на предрассветные часы, а максимум в полуденные часы. Это представляет собой суточный ход температуры почвы. При влиянии облачности, осадков или адвекции суточный ход нарушается. Разность между максимумом и минимумом называется амплитудой.

Амплитуда суточного хода температуры почвы выше, чем поверхности с густой растительностью или снегом. Растительность в теплое время понижает температуру поверхности почвы. Холодная, малоснежная зима способствует глубокому промерзанию почвы. Напротив, высокий снежный покров, благодаря своим теплоизолирующим свойствам способствует сохранению тепла под снегом, и способствует уменьшению промерзания почвы. Тесно связаны с температурным режимом почвы жизненные циклы развития вредителей и болезней растений [1].

Температурный режим воздуха непрерывно меняется во времени и пространстве. В разных географических районах Земли в одно и то же время температура очень различна.

Тепловой режим воздуха определяется в основном процессами теплообмена с деятельной поверхностью и поглощением солнечной радиации. Нагревание слоя воздуха происходит при теплопередачи тепла от нагретой подстилающей поверхности. Т.е. подстилающая поверхность теплее, чем воздух. Ночью же воздух теплее поверхности [2].

Растительный покров также уменьшает амплитуду суточных колебаний температуры воздуха, поскольку днем он поглощает часть потока солнечной радиации, а ночью задерживает земное излучение.

Структура растительного покрова в значительной мере определяет его температурный режим. Потребность растений в тепле варьирует в широких пределах в зависимости от вида, фазы развития, от конкретных условий их произрастания или возделывания. Высокая температура почвы и воздуха в период формирования зерновых культур условиях недостатка почвенной влаги снижает урожай до 50%. Жаркая сухая погода в период налива зерна также значительно снижает урожай зерновых культур.

В процессе многолетних исследований агрометеорологами изучены потребности в тепле практически всех сельскохозяйственных культур. Потребность растений принято выражать в суммах активных температур и эффективных температур.

Активная температура – это количественный показатель тепла, выражающий сумму средних суточных температур воздуха или почвы, превышающие биологический минимум температуры [1]. Эффективные температуры – количественный показатель тепла, выражающий сумму средних суточных температур воздуха или почвы, не превышающие биологический минимум температуры. Однако такие суммы не являются константами, поскольку на эти величины оказывает влияние влаги растений, зимний период, виды растений и уровень биологического минимума.

Таким образом, температура воздуха является одним из основных факторов жизнедеятельности растений. Учет температурного режима на сельскохозяйственных полях, в среде растений, а так же в парниках и теплицах представляет собой важное условие для получения высоких и устойчивых урожаев. Более того, для размещения новых сортов и гибридов сельскохозяйственных культур необходимы сведения о потребностях растений в тепле (суммы активных и эффективных температур). Данные температурного режима необходимы для планирования сроков и норм посева, сроки уборки урожая [1].


1.3 Осадки, влажность воздуха и испарение


Часть атмосферных осадков используется растительным покровом, в процессе их жизни возвращаются в атмосферу через транспирацию и испарение. В агрометеорологии обычно используют суммы осадков, выпавших за декаду, месяц и вегетационный период. Cнег, выпадающий, при устойчивых отрицательных температурах воздуха и почвы, образует снежный покров. Состояние снежного покрова характеризуется его высотой, плотностью и характером залегания. Различное сочетание характеров залегания снега обуславливает его неравномерность [2].

Теплопроводность снега зависит от его плотности. Чем плотность снега выше, тем его теплопроводность увеличивается, а чем теплопроводность слабее, то благодаря этому почва защищается от резких колебаний температур на зимующие культуры. Снежный покров аккумулирует осадки холодного времени года, и весной в процессе таяния образуется много воды, часть которой накапливается в почве. Накопление и сохранение влаги на полях зависит от высоты и плотности снега, глубины и степени промерзания почвы. Чем выше снежный покров и больше его плотность, тем больше запас воды, содержащейся в нем.

Зимой температура почвы зависит от высоты снежного покрова, плотности и структуры снега. Под воздействием колебания температуры и интенсивности солнечной радиации выпавший снег уплотняется. При наступлении ранней весны снег начинает таить, насыщая влагой снег, оседает, замедляет прогревание почвы, это способствует раннему пробуждению зимующих растений. В защиту сельскохозяйственных культур от гибели большая роль принадлежит снегозадерживанию, снегоуплотнению и снегонакоплению. Для ускорения таяния снега проводят специальные работы по снегосносу - производство зачернения поверхности снега торфяной или угольной пылью [1].

Влажность воздуха имеет следующие величины: абсолютная влажность, парциальное давление водяного пара, давление насыщенного водяного пара, относительная влажность, дефицит насыщения, температура точки росы и удельная влажность. В растительном покрове относительная влажность распределяется неравномерно, в среде растений водяного пара больше, чем над оголенной почвой. Поскольку растения испаряют влагу и снижают скорость ветра, происходит ослабление турбулентной диффузии пара. Так в посевах пшеницы относительная влажность в ясные дни на 20-30% выше, чем над оголенной почвой. Следовательно, дефицит насыщения в посевах сельскохозяйственных культур значительно меньше, чем над оголенной почвой.

Относительная влажность воздуха применяется для оценки благоприятности условий произрастания растений. В период роста и цветения низкая влажность воздуха способствует быстрому высыханию пыльцы, отчего происходит неполноценное оплодотворение зерновых культур. Длительный период вегетации летом при относительной влажности менее 30% вызывает у растений недостаток влаги, вследствие чего происходит сокращение листовой поверхности, скручивание, усыхание и опадение листвы. В условиях длительного периода жаркой и сухой погоды растения могут полностью погибнут.

Повышенная относительная влажность воздуха более 80% обуславливает крупноклеточное строение механических тканей растений, снижающее устойчивость к полеганию наземных побегов зерновых, препятствует эффективному опылению растений в период их цветения. Кроме того, избыточная влажность воздуха создает благоприятные условия для развития грибковых болезней на примере фитофторы, белая гниль, ржавчина и другие [1]. Пониженный дефицит насыщения замедляет созревание пшеницы и просыхание зерна и соломы в скошенных валках. При дефиците насыщения более 8 гПа складываются благоприятные условия для работы уборочных работ, при дефиците менее 3 гПа условия плохие, так как влажная масса соломы забивает рабочие органы агрегатов, а зерно плохо отделяется от колоса.

Учет влажности воздуха имеет большое значение при проведении многих хозяйственных мероприятий: уборке и закладке кормов на хранение, сушке зерна. Влажность учитывается также при стойловом содержании сельскохозяйственных животных [1]. На европейской территории России испаряемость увеличивается в направлении с северо-запада на юго-восток, так как в этом направлении возрастают ресурсы тепла и сухость воздуха [2].

Суммарное испарение с сельскохозяйственных полей зависит от характера погодных условий, от биологических свойств растений и фазы их развития, от мощности растительного покрова, от степени развитости его корневых систем и от применяемой агротехники возделывания культур [1].

В начале вегетации, когда испаряющая поверхность растений еще незначительна, испарение с поверхности почвы больше, чем с поверхности растений. Это сложный физический и физиологический процесс, зависящий от условий окружающей среды: освещенности, температуры и влажности воздуха, силы ветра, а так же от биологических особенностей называется транспирацией. Внутри органов растения вода испаряется с поверхности клеток.

Корневая система всасывает влагу из почвы и по проводящим сосудам снабжает все органы растения водой и элементами минерального питания, растворенными в ней. Транспирация происходит также и через покровные ткани стеблей и плодов. Расходы воды на транспирацию обычно выражают через показатель, называемый коэффициентом транспирации. Это отношение массы воды, расходуемой растением путем транспирации, к массе сухого вещества. Этот коэффициент очень различен, так например, для пшеницы он составляет 500 грамм воды [1].

Большую роль в формировании вегетации растений является выпадения осадков из атмосферы, а также их образование на подстилающей поверхности. Наземные осадки образуются в результате конденсации или сублимации водяного пара непосредственно на подстилающей поверхности. Роса – это мельчайшие капли воды, образовавшиеся на поверхности земли, растительного покрова в теплое время года. Образование происходит в результате радиационного охлаждения, когда температура поверхности и прилегающий к ней воздух опускается до точки росы выше 0 0С, и сконденсировавшийся пар выделяется на поверхности в виде мелких капель воды [2]. Роса имеет немалое значение для жизнедеятельности растений, особенно в засушливых регионах, где за теплый период ее суммарное выделение из воздуха достигает 10-30 мм [1].

В заморозкоопасных районах ночные росы оказывают полезные влияние, поскольку их образование связано с выделением скрытой теплоты парообразования, замедляющая процесс выхолаживания, благодаря которому возможно предотвращение слабого заморозка или снижение его интенсивности. Однако росы затрудняют работу комбайнов, так как пшеница влажная Изморозь – это рыхлое снегообразование, ледяные кристаллы, образующиеся в любое время суток. Изморозь практически не опасна для растений, так как не бывает большой интенсивности, но является небольшим дополнительным источником увлажнения поверхности почвы [1].


2. Опасные для сельскохозяйственного производства гидрометеорлогические явления в теплый период


Продуктивность сельскохозяйственных культур и качество продукции широко варьирует от года к году под влиянием складывающихся агрометеорологических условий, зависят от степени их благоприятности для возделываемых культур, особенно в критические периоды жизни растений. Неблагоприятные для сельского хозяйства гидрометеорологические явления приводят к неурожайным годам. В России теперь называют опасными природными явлениями (ОПЯ).

В агрометеорологии ОПЯ считаются такие, которые по своей интенсивности, продолжительности воздействия, площади распространения или времени возникновения могут нанести значительный ущерб сельскохозяйственным посевам. ОПЯ для сельскохозяйственного производства в теплый период относят: заморозки, засухи, суховеи, град, сильные ливни. В холодный период зимующие культуры подвергаются различными неблагоприятными воздействиями, которые могут вызвать частичную или полную гибель посевов, садов и виноградников. Степень повреждения зимующих культур бывает различной в разные годы и в разные периоды зимы. ОПЯ в холодный период относят: выдувание посевов или почвы, вымерзание посевов, вымокание растений и гололед [1].


2.1 Заморозки


Особенно опасны поздневесенние и ранносенние заморозки, совпадающие с периодами активной вегетации растений. Информация об интенсивности заморозков, о сроках их прекращения весной и возникновения осенью чрезвычайно важна. Эти информации используется также для оценки заморозкоопасности территории, для принятия решений о размещении теплолюбивых культур, выбора сроков сева и уборки культур, для выбора способов защиты с целью снижения возможного ущерба от этого опасного явления природы.

Адвективные заморозки возникают вследствие затока холодных арктических масс воздуха, во время перестройки сезонной циркуляции атмосферы. Этот тип заморозков, характерный обычно для ранней весны или поздней осени. Эти заморозки наименее опасны, поскольку озимые культуры еще не потеряли закалку холодного периода [1].

Радиационные заморозки возникают, в тихие ясные ночи при относительно низких средних суточных температурах воздуха вследствие интенсивного излучения земной поверхности и охлаждения прилегающего слоя воздуха до отрицательных температур. Интенсивность и продолжительность радиационных заморозков зависят от рельефа и характера подстилающей поверхности, влажности почвы и воздуха и других местных условий. Размеры ущерба зависят о интенсивности и продолжительности заморозка. В то же время на возвышенностях и на склонах снижение температуры до уровня заморозка обычно не наблюдается. Радиационные заморозки чрезвычайно опасны для сельскохозяйственных культур. Смешанные заморозки, возникают в результате вторжения холодных масс воздуха на конкретную территорию и последующего ночного выхолаживания приземного слоя воздуха до отрицательных температур вследствие излучения подстилающей поверхности. Такой тип заморозка наблюдается обычно в конце весны и даже в начале лета. Это так называемые скрытые заморозки, которые наблюдаются ночью и имеют малую интенсивность и продолжительность. Обычно наблюдаются на высоте травостоя, и повреждают теплолюбивые растения [1]. На территории России и сопредельных стран время прекращения заморозков весной и осенью от года к году весьма изменчиво. В основной зоне замедления продолжительность беззаморозкового периода изменяется от 90 до 270 дней. Знание продолжительности беззаморозкового периода необходимо при определении возможности выращивания теплолюбивых культур на конкретной территории.

Заморозки заканчиваются и начинаются в различных районах земледельческой зоны при разных уровнях средней суточной температуры воздуха. Для западных районов России заморозки прекращаются обычно до устойчивого перехода средней суточной температуры воздуха через 10 ºС. В континентальных районах (Западная Сибирь), заморозки отмечаются после установления средней суточной температуры воздуха выше 12 ºС.

Для защиты сеяных сельскохозяйственных культур от заморозков применяют различные методы, объединяемые понятием борьба с заморозками. Наиболее распространенным методом защиты растений от заморозков является дымление. Она образуется вследствие температурной инверсии в приземном слое воздуха. При адвективных заморозках, а так же в условиях холмистой местности, эффект дымления резко снижается из-за быстрого рассеивания тепловых потоков дыма и разрушения слоя инверсии [1]. Применяют так же полив или дождевой посев, под действием которого увеличивается теплопроводность почвы, приток тепла из более глубоких слоев к ее поверхности. Дождевой имеет ряд преимуществ перед методом поливов. Более выгодным является расположение полей на возвышенных территориях и склонах, где вероятность возникновения заморозков намного меньше. В последние годы учеными предложены методы активного воздействия на заморозки с использованием специальных вентиляционных установок, а так же внесения активных тепловыдающих химических веществ на поверхности почвы (соль гидрида кальция) [1].


2.2 Сильные ливни и град


В результате воздействия сильных ливневых осадков на сельскохозяйственные культуры, может вызвать полегание посевов. У полегающих зерновых культур налив зерна протекает с нарушением физиологических процессов, в результате чего зерно содержит меньше крахмала. Возможно, вызвать истекание зерна – процесс избытка воды в колосьях, возможность развития плесени и грибка.

Сильные ливни вымывают питательные вещества из верхних горизонтов почвы в нижележащие слои. Переувлажненная почва и полегшие растения значительно усложняют механизированную уборку зерновых культур. При наблюдениях используется визуальная оценка, интенсивность определяется в баллах.

Град является стихийным природным гидрометеорологическим явлением. Выпадение града на посевы сельскохозяйственных культур, плантаций плодовых деревьев, виноградников, которые может нанести значительный и даже непоправимый урон, под действием градобития. Ущерб, наносимый сельскохозяйственным посевом и плантациям, зависит не только от размера градин, но и от плотности их выпадения на единицу площади и продолжительности града [1].

В летние жаркие дни возникают мощные восходящие потоки за счет большой неравномерности в нагревании подстилающей поверхности. Основной причиной возникновения града является смещение фронтальных холодных масс. Так, например, в 1874 г. в Гиссарской долине в результате мощного северо-западного вторжения влажного воздуха и его последующей конвекции выпал очень крупный град. В течение нескольких минут градобития были полностью уничтожены хлопковые поля, виноградники и сады. Ежегодно градобитие наносит сельскохозяйственному производству огромный ущерб, около 2 млрд. долл. США. С целью уменьшения потерь, стали применяться активные воздействия на градовые облака. Их суть заключается в искусственном внесении в зону накопления переохлажденных капель в облаке большого количества мельчайших частиц льдообразующих реагентов, обычно твердой углекислоты, йодистого серебра или йодистого свинца [1].

2.3 Засухи, суховеи и засушливые явления


К стихийным явлениям природы, наносящим значительный экономический, экологический и социальный ущерб сельскохозяйственному производству, относятся засухи и суховеи. Общая площадь территории с засушливым климатом составляет около 42 % суши, но эпизодические засухи наблюдаются на большей части суши [1].

Для территории России актуально такое явление, как засуха. Засуха наносит значительный экономический, экологический и социальный ущерб сельскохозяйственному производству. Вероятность засушливых лет в России имеет широкие приделы. На европейской территории страны вероятность засух увеличивается с северо-запада на юго-восток, а в азиатской части России такой закономерности не прослеживается из-за географических особенностей и расположению гидрографической сети. Это одно из самых неблагоприятных явлений наносящее наибольший урон сельскохозяйственному производству. Особенно опасны интенсивные и продолжительные засухи, на больших территориях зернового клина страны.

Наиболее распространенными широкомасштабными последствиями экстремальных метеорологических явлений являются засухи, лесные пожары и экстремальные гидрологические явления наводнения. Они часто приводят к значительному материальному ущербу и в некоторых случаях сопровождаются увеличением заболеваемости и смертности населения [1].

Метеорологические предпосылки засух, это аномальная относительно местных климатических условий и времени года жаркая и засушливая погода. Засуха считается биогидрометеорологическим явлением, заключающимся в резком нарушении соответствия между притоком влаги к растениям и ее расходом. Засуха — явление природы, обусловленное циркуляционными процессами в атмосфере и характеризующееся длительным отсутствием осадков (или значительным их сокращением по сравнению со среднемноголетними нормами), повышенной температурой воздуха и сильными ветрами. Формирование засух на территории России связано с циркуляцией атмосферы, приводящей к установлению длительного периода антициклонической погоды [3].

Существуют три типа засух: атмосферная, почвенная и атмосферно-почвенная (общая). Атмосферно-почвенная засуха представляет наибольшую опасность для сельскохозяйственных культур. Основным признаком атмосферной засухи считают устойчивую антициклоническую погоду с длительными засушливыми периодами, высокой температурой и большой сухостью воздуха. Почвенная засуха возникает как следствие атмосферной засухи, когда при усиленном испарении запасы влаги в почве быстро уменьшаются и становятся недостаточными для нормального роста и развития растений [3].

Атмосферно-почвенная засуха — это сочетание условий, характеризующих атмосферную и почвенную засуху. По интенсивности и охвату территории они делятся на сильные, средние и слабые. По времени наступления засух выделены весенние, летние, осенние и зимние. Весенняя засуха характеризуется невысокой температурой и малой влажностью воздуха, малыми запасами продуктивной влаги в почве, сухими ветрами. Летняя засуха обычно отличается высокой температурой, горячими сухими ветрами (суховеями), вызывающими повышенное испарение воды из почвы и интенсивную транспирацию растений. Осенняя засуха характеризуется невысокой температурой воздуха и малыми запасами продуктивной влаги в корнеобитаемых горизонтах почвы. Зимняя засуха наступает в условиях снежного покрова при недостатке влаги в корнеобитаемых горизонтах почвы и при температуре воздуха выше 0 °С, когда возобновляется транспирация некоторых растений (в частности, озимых культур), усиливающаяся при солнечной и ветреной погоде. Считается, что почвенная засуха является следствием атмосферной. Зависимость возникновения почвенных засух разной интенсивности от атмосферных засух также разной интенсивности с учетом периодов вегетации растений исследована в работе. Программа агрометеорологического мониторинга на станциях наблюдательной сети Росгидромета включает измерения комплекса метеорологических показателей в сочетании с измерением параметров состояния почвы, роста и развития сельскохозяйственных культур, трав и древесной растительности. Эта работа выполняется в соответствии с Наставлением гидрометеорологическим станциям и постам, а также со специальными инструкциями [3].

Как метеорологическое явление засуха присуща тем областям России, которые характеризуются превышением испарения над естественным увлажнением. В России в отдельные годы засухи и суховеи охватывают большие площади зернопроизводства и порождали страшные бедствия: голод, нищету и смерть людей [1].

Вследствие засухи происходит снижение урожайности сельскохозяйственных культур. При длительных и интенсивных засухах урожайность культур оказывается очень низкой, а при экстремальных засухах гибель растений может наступать еще до формирования урожая. В отличие от засух суховеи, как правило, непродолжительны (от нескольких часов до нескольких суток). Под действием суховеев происходит интенсивное испарение с поверхности почвы, обезвоживание тканей растений в результате транспирации, вследствие чего нарушается водный баланс растений и весь комплекс физиологических процессов: фотосинтез, дыхание, углеводный и белковый обмен. Снижается функции роста, увеличивается число бесплодных цветков, уменьшение числа колосков и зерен в колосе. Существуют также засушливые явления, они отличаются от засух и суховеев тем, что эти явления обуславливают временное угнетение растений. Например, отсутствие осадков при жаркой ветреной погоде.

Многочисленные исследования происхождения засух и суховеев показали, что их образование на территории России связано с циркуляцией атмосферы, приводящей к установлению длительного периода антициклонической погоды. Примерно в 70 % случаев обширный антициклон, приходящий из Арктики, формируется над Западной Сибирью. Из всех неблагоприятных гидрометеорологических явлений наибольший урон сельскохозяйственному производству наносят интенсивные и длительные засухи, охватывающие значительную часть зернового клина страны.

Система борьбы с засухами и суховеями приводится по трем основным направлениям: селекционно-генетическому, агротехническому и мелиоративному. Селекционно-генетическое направление связано с выведением новых засухоустойчивых сортов растений. К ним относят: способность регулировать транспирацию, сокращать площадь испарения культур. Агротехническое направление работ связано с устранением несоответствия между потребностью растений во влаге в период их развития. Мелиоративное направление борьбы с засухами и суховеями является наиболее дорогостоящим; строительство ирригационных сооружений (каналы, водохранилища) [1].



3. Изменение температурно-влажностного режима на юге Западной Сибири


В последнее десятилетие значительно возросло внимание, как будет изменяться климат Земли. Существует два основных сценария изменения климата - по сценарию увеличения гумидности или по сценарию увеличения аридности климата материков. Таким образом, можно отметить, что гумидный процесс несет за собой увеличения влажности, а аридный сценарий увеличения температурных показателей, т.е. увеличения сухости. Индекс тепловлагообеспеченности ГТК, гидротермический коэффициент Селянинова объективно и доступно оценивает изменение климата. В качестве показателя аридности климата вегетационного сезона удобно использовать гидротермический индекс ГТК. Разумное научное обоснование и простота вычисления ГТК, стали причинами его включения в стандартный перечень индексов климатического изменения. В развитии процесса климатического опустынивания велика роль опасных (катастрофических) засух, как атмосферных, так и почвенных. По последним результатам [7] региональной оценки изменений климата указывают на то, что в весенне - летний период тепло-влагообеспеченность формирует засушливые условия (аридность) на большей территории России. Для определения оптимальных условий ведения сельского хозяйства (определение тепло-влагообеспеченности растений, продуктивности растений, оценка влагообеспеченности, оптимизация площадей земледельческой зоны) актуально и доступно производить оценку изменения климата для регионов России по ГТК. В последнее время уделяется серьезное внимание последствиям экстремальных гидрометеорологических явлений. На территории России отмечается более 30 видов опасных экстремальных гидрометеорологических (метеорологических, агрометеорологических, гидрологических, морских гидрометеорологических) явлений. Опасные гидрометеорологические явления, которые характерны для территории России в теплый период, отмечаются сильные ливни, сопровождаемые грозами, градом и шквалистым усилением ветра. Весенние половодья, дождевые паводки и наводнения сопровождаются затоплением населенных пунктов, сельхозугодий. Для южных районов характерны сильные засухи, приводящие к резкому снижению урожайности сельскохозяйственных культур.

Формула для расчета ГТК имеет вид (по [5]):


 (1)


ΣR - сумма осадков за месяцы;

ΣT- сумма среднесуточных значений температуры воздуха больше 10 °С.

Индекс ГТК является безразмерным коэффициентом. В этом случае суммирование в формуле для вычисления ГТК производится для летних месяцев, т. е. для периода июнь – август.


3.1 Данные исследовательской работы


Для настоящего исследования была создана база данных за 45-летний период с 1960 по 2005 г., из среднесуточной температуры воздуха и среднесуточной суммы осадков за теплый период. Общий объем за 45 летних (теплых) периодов составил 203130 значений. Расчет выполнялся на основе рядов значений гидрометеорологических величин по станциям Красноярск, Минусинск, Рубцовск, Барнаул, Барабинск и Омск. А также число Вольфа за исследуемый период.

Данные были взяты из электронного каталога метеорологических данных международного обмена [9] . Данные представлены в виде выборки летних месяцев с учетом среднесуточной температура >10 ºС. таблицы А1, А2, А3 из приложения А, в которых размещены полученные статистические характеристики индекса ГТК по территории юга Западной Сибири по месяцам и общие за период исследования, а также значение ГТК по станциям. В целях сравнения осредненного индекса ГТК по югу Западной Сибири был предложен показатель солнечной активности (число Вольфа). Данные показателя были взяты из электронной базы данных Национального агентства по аэронавтике и исследованию космического пространства (National Aeronautics and Space Administration) NASA. Число Вольфа представляется в виде осредненных значений за летние месяцы в период с 1960 по 2005 год. Таблица Б1 показывает сравнение ранжированных рядов данных индекса ГТК и числа Вольфа из приложения Б. Данные сумм среднесуточных температур >10ºС и сумм осадков представлены в таблицах В1 и В2 из приложения В, в которых размещены статистические характеристики температуры воздуха и осадков по территории юга Западной Сибири.


3.2 Анализ температурно–влажностного режима по территории юга Западной Сибири


Исследования температурно – влажностного режима территорий очень важен для многих отраслей экономики страны, особо важной отраслью является сельское хозяйство. Сельскохозяйственные культуры полностью зависят от температурного и влажностного режима, особенно в период роста и созревания. Западная Сибирь является зоной рискованного земледелия, потому что, возможны заморозки в любой летний месяц, за исключением самых южных районов Западной Сибири. Так же возможны сильнейшие атмосферно – почвенные засухи и суховеи. Все эти проблемы сказываются на урожайности сельскохозяйственной продукции, а это в свою очередь влияет на социально – экономическую сферу Российской Федерации, приводящие к росту цен на основные продукты питания. Таким образом, оценка температурно – влажностного режима территории Западной Сибири очень важна.

На рисунке 1 приводится временной ход сумм температур за период >10 ºС, осредненных по исследуемой территории, а также линия осреднения полиномом второй степени, которая аппроксимирует изменение сумм температур во времени.


Рисунок 1 – Изменение сумм температур воздуха по территории юга Западной Сибири


При анализе рисунка 1 за последние 30 лет происходит увеличение сумм температур. В целом для территории юга Западной Сибири среднее значение суммы активных температур равняется 1661,9 ºС. Это говорит о том, что территория юга Западной Сибири получает большое количество тепла, что, следовательно, приводит к благоприятным условиям ведения сельского хозяйства в летнее время. Линия тренда нам показывает, что за 45 летний промежуток времени происходит увеличение суммарной температуры. Как видно из таблицы 5, больший рост суммарной температуры приходятся на Красноярск, Барнаул и Рубцовск. Максимальные суммы 2076,6 ºС наблюдаются в Рубцовске, а минимальные 1380,2 ºС в Барабинске, это говорит о том, что прослеживается зональность распределения температур на земном шаре, и следовательно более северные территории южной части Западной Сибири получают меньшее количество тепла.

На рисунке 2 приводится временной ход сумм осадков, осредненных по исследуемой территории, а также линия осреднения также полиномом 2й степени, которая показывает изменение сумм температур во времени.


Рисунок 2 - Изменение сумм осадков по территории юга Западной Сибири


При анализе рисунка 2, за период 45 лет происходит незначительное увеличение сумм осадков. В целом для территории юга Западной Сибири среднее значение суммарных осадков равняется 164,4 мм. Это говорит о том, что территория юга Западной Сибири получает оптимальное количество осадков в теплый период. Линия осреднения нам показывает, что за 45 летний промежуток времени происходит некая эпизодичность изменения сумм осадков. Как видно из таблицы В2 (приложение В), небольшой рост сумм осадков приходится на район станции Барнаул. Максимальные суммы 382 мм наблюдаются в Красноярск, а минимальные 30,9 мм в Рубцовске.

Таким образом, территория Западной Сибири находится в сравнительно оптимальных условиях тепло-влагообеспеченности в летний период. Большое количество выпадающих осадков, около половины годовой нормы (400 мм), компенсируются большим количеством поступающего тепла, что в свою очередь приводит к высокому уровню испарения, а также транспирации растений, что в свою же очередь является благоприятным условием произрастания сельскохозяйственных культур на территории Западной Сибири. В свою очередь, соотношение сумм температур и осадков явно описывает индекс тепловлагообеспеченности ГТК.


3.3 Анализ индекса ГТК по территории юга Западной Сибири


По станциям, выбранным для настоящего исследования по выше описанной методике был проведен расчет индекса ГТК. На рисунке 3 приводится временной ход индекса ГТК, осредненный по исследуемым станциям, а также линия полиномиального тренда, которая показывает изменение индекса во времени.


Рисунок 3 – Индекс ГТК, осредненный по станциям юга Западной Сибири


При анализе рисунка 3, использовалась шкала классификации уровней тепловлагообеспеченности по ГТК [5]. Согласно шкале, оптимальные условия тепло-влагообеспеченности по индексу ГТК в пределах от 1,1 до 1,4 являются наиболее благоприятными для ведения сельского хозяйства, а так же развития биогенных процессов в летние месяцы. Низкое значение индекса ГТК<1, говорит о том, что для летних месяцев было характерно увеличение доли сумм температур по сравнению с долей осадков.

За последние 30 лет происходит увеличение повторяемости экстремальных высоких температур и экстремально малого количества выпавших осадков. Такие значения ГТК могут привести к опасным гидрометеорологическим явлениям, таким как суховеи и атмосферная засуха, переходящая в почвенную засуху. В результате происходит увеличения числа пожаров, а так же наносится большой ущерб сельскому хозяйству, связанный с увеличением транспирации растений, которое приводит к ссыханию культурной растительности.

В целом для территории юга Западной Сибири среднее значение коэффициента ГТК равняется 1,01. Это говорит о том, что для территории юга Западной Сибири складываются оптимальные условия для разведения кукурузы, подсолнечников, картофеля, рапса, а также сои. Следовательно, приводит к благоприятным условиям ведения сельского хозяйства в летнее время. Линия осреднения нам показывает, что за 45 летний промежуток времени происходит незначительное уменьшение индекса ГТК. В Западной Сибири, наблюдается уменьшение значений индекса ГТК, по критерию "сухости" (ГТК< 0.76) [5] в Омской и Новосибирской областях; и некоторое увеличение в южных районах Алтайского края.

Данные авторов Ю.А Израэль, О.Д Сиротенко [4], распределения трендов ГТК за период 30 лет свидетельствуют о том, что увлажненность летнего периода за последние 30 лет уменьшалась на большей части ЕТР и в южных районах Западной Сибири. Уменьшение увлажненности летнего периода, наблюдалось также в южных районах Восточной Сибири. Было замечено, что с уменьшением индекса ГТК связано увеличение числа неблагоприятных агрометеорологических явлений, такие как самые сильные засухи в Омской области, на юге Красноярского края, Хакасии и Алтайском крае в 1975, 1982 и 1991 годах. В результате этих катастрофических засухах недоборы урожая составили по югу Западной Сибири 30%.

При анализе изменения ГТК во времени, можно заметить, что выявляются некоторые периодичности хода индекса. По произведенному спектральному анализу можно сказать, что индекс ГТК имеет 11-летний цикл, и менее выражены 6 и 9-летние циклы. Этот вывод наводит на мысль о том, что, вероятно, существует связь периодичности ГТК с солнечной активностью. В качестве характеристики, которая дает представление о солнечной активности наиболее часто используют числа Вольфа. Данная ранжированная зависимость представленная на рисунке 4.


Рисунок 4 – Сравнение ранжированных рядов среднегодовых значений ГТК и чисел Вольфа


При построении рисунка 4, были использованы ранжированные ряды данных по индексу ГТК и числа Вольфа за соответствующий период времени. Было замечено, что прослеживается некое сходство экстремумов значений в ходе ГТК и чисел Вольфа. Возрастание солнечной активности приводит к увеличению влагосодержания. Это может заключаться в увеличении выпадения осадков, а так же уменьшению суммарных температур летом. В минимумы солнечной активности мы видим, что ранги индекса ГТК также имеют минимальные значения, а, следовательно, низкое влагосодержание почвы. Можно отметить, что на это время приходится большее количество засух на территории Западной Сибири в 1982 и 1975 годах. В период спада и роста солнечной активности можно проследить, что наблюдаются второстепенные всплески индекса ГТК. Можно пронаблюдать, что существует некая связь между ранговыми значениями ГТК и числа Вольфа по ранговому коэффициенту Спирмана. Формула для расчета имеет вид (по [6]):


 (2)


Rx – значения по массиву данных х

Ry – значения по массиву данных y

n – объем выборки

Коэффициент Спирмана равный 0,27 показывает, что в целом влияние солнечной активности в 30% случаев оказывает влияние на индекс ГТК. В других случаях наблюдаются отдельные аномалии года, т.е. выбивания из совместного ритма. Так же немало важным аспектом является, что в период обработки данного массива данных попадает на 3 циркуляционные эпохи до 1968 меридиональная (С), 1969-1981 форма восточной циркуляции (Е), а с 1991 началась эпоха западного переноса (W) [7].

Страницы: 1, 2, 3


© 2000
При полном или частичном использовании материалов
гиперссылка обязательна.