РУБРИКИ

Обработка результатов по данным геофизических исследований скважин

   РЕКЛАМА

Главная

Зоология

Инвестиции

Информатика

Искусство и культура

Исторические личности

История

Кибернетика

Коммуникации и связь

Косметология

Криптология

Кулинария

Культурология

Логика

Логистика

Банковское дело

Безопасность жизнедеятельности

Бизнес-план

Биология

Бухучет управленчучет

Водоснабжение водоотведение

Военная кафедра

География экономическая география

Геодезия

Геология

Животные

Жилищное право

Законодательство и право

Здоровье

Земельное право

Иностранные языки лингвистика

ПОДПИСКА

Рассылка на E-mail

ПОИСК

Обработка результатов по данным геофизических исследований скважин

Задача метода КС состоит в выяснении связи между измеряемой разностью потенциалов и величиной ρ, установлении правил выделения пластов и определения их удельного электрического сопротивления.

Боковой каротаж наиболее выгоден для исследования разрезов скважин, сложенных породами высокого сопротивления, при сильной минерализации бурового раствора. С помощью БК в этих случаях можно лучше расчленить разрез и получить более точные данные об удельном сопротивлении пород, чем это удается сделать при проведении КС с любыми обычными зондами [13].

Боковое электрическое зондирование, или боковое каротажное зондирование, заключается в исследовании разрезов скважин комплектом однотипных зондов КС разной длины с целью определения удельного сопротивления неизменной части пласта и параметров промежуточной зоны- её диаметра и удельного сопротивления. Различают боковое электрическое потенциал-зондирование и боковое электрическое градиент-зондирование.

При изучении разрезов нефтяных и газовых скважин каротаж по методу ПС используется для выделения пластов пористых, проницаемых песчаных и карбонатных пород, насыщенных как пресной, так и минерализованной водой. Совместное применение методов КС и ПС повышает надежность расчленения осадочных пород и оценки их коллекторских свойств. При геологической документации скважин в осадочных толщах каротаж ПС играет роль одного из ведущих методов.

К ядерно-геофизическим относятся методы исследования разрезов скважин, основанные на ядерных явлениях и процессах взаимодействия ядерных излучений с веществом [14].

Комплекс ядерно-геофизических исследований скважин включает большую группу методов: от гамма-каротажа и методов, основанных на применении радиоизотопных источников, до импульсного нейтронного каротажа с управляемыми генераторами нейтронов и ядерного магнитного резонанса. Благодаря разнообразию методических возможностей и практических приложений ядерно-геофизические методы каротажа представляют большую и самостоятельную область геофизических исследований скважин.

Ядерно-геофизические методы каротажа в основном объединены в две большие группы: гамма-методы, к которым относятся также методы, основанные на поглощении и испускании рентгеновских лучей, и нейтронные методы. Методы, сочетающие использование нейтронов и гамма-лучей, частично включены во вторую группу.

Гамма-каротаж (ГК) широко используется при поисках и разведке месторождений урана и тория, калийсодержащего сырья, а также ряда полезных ископаемых с аномально низким содержанием радиоактивных элементов. Практическое применение ГК весьма разнообразно и он дает богатый фактический материал для суждения о литолого-петрографических свойствах и вещественном составе различных геологических образований.

Метод гамма-гамма-каротажа (ГГК) основан на облучении горных пород гамма-квантами средней энергии (до 1-2 МэВ) и измерении рассеянного гамма-излучения. Наиболее благоприятные объекты для гамма-гамма-каротажа – месторождения железных руд. Углей и горючих сланцев, на которых плотностной и селективный каротаж может быть использован при разведочном бурении в качестве ведущего метода геологической документации разрезов скважин и количественной оценки полезных ископаемых при подсчете запасов.

Нейтронные методы. При облучении горных пород нейтронами эти частицы, лишены электрических зарядов, свободно проникают сквозь электронные оболочки и взаимодействуют непосредственно с ядрами атомов. Взаимодействие нейтронов с ядром управляется ядерными силами, которые проявляются при каждом столкновении нейтрона с ядром. Действие ядерных сил может привести к рассеянию и поглощению нейтронов, причём поглощение сопровождается разнообразными ядерными реакциями. Исследуя рассеяние и поглощение нейтронов, можно идентифицировать химические элементы, на ядрах которых протекают эти процессы, что и используется в нейтронных методах каротажа [15].

В зависимости от регистрируемого детектором излучения нейтронные методы каротажа можно подразделить на собственно нейтронные методы, в которых измеряется плотность потока нейтронов в горных породах, и нейтрон-гамма-методы, основанные на регистрации вторичного гамма-излучения. К первой группе принадлежит нейтрон-нейтронный каротаж (ННК), с помощью которого определяют влажность горных пород и содержание в них элементов с аномально большими сечениями поглощения нейтронов. Ко второй группе относится нейтрон-гамма-каротаж (НГК). Задачи определения влажности и содержания нейтронопоглощающих элементов могут быть решены не только методом ННК, но и нейтрон-гамма-каротажем. НГК по сравнению с ННК обладает несколько большей глубинностью, что в ряде случаев имеет первостепенное значение.

К импульсным методам нейтронного каротажа (ИНК) относятся методы, основанные на исследовании временного распределения вторичного излучения, возникающего под действием пульсирующего источника нейтронов [16].

Существует несколько разновидностей ИНК. Наиболее широко применяется импульсный нейтрон-нейтронный каротаж (ИННК). Метод ИННК позволяет производить литологическое расчленение разрезов скважин с выделением разновидностей горных пород и определением их характеристик.

Акустическим каротажем (АК) называют совокупность методов, основанных на изучении кинематических и динамических характеристик упругих волн, возбуждаемых в скважинах импульсным акустическим излучателем и регистрируемых на небольших расстояниях от него.

Методы акустического каротажа применяются в нефтяной, угольной, рудной геологии, а также при инженерно-геологических изысканиях для :

1)литологического расчленения разрезов скважин, оценки пористости, трещиноватости и кавернозности пород, характера насыщения пластов флюидами;

2) оценки технического состояния обсаженных и необсаженных скважин;

3) определение физико-механических свойств пород [17].


5. МЕТОДИКА И АППАРАТУРА ГЕОФИЗИЧЕСКИХ ИССЛЕДОВАНИЙ В СКВАЖИНАХ


Для исследования в скважинах применялся комплекс ГИС, предусмотренный для соответствующих условий вскрытия продуктивных отложений. Комплекс включает следующие геофизические исследования: боковой(БК), микробоковой(МБК), акустический(АК), радиоактивный (ГК, НГК) каротажи, кавернометрию и инклинометрию [18].

При необходимости уточнения характера насыщения и засолонения пород в качестве дополнительного проводился импульсный нейтрон-нейтронный каротаж по тепловым нейтронам (ИННКт). В опытном порядке для более детального изучения геологического строения, литологии и коллекторских свойств продуктивных интервалов в отдельных скважинах были выполнены компенсационный нейтронный каротаж (КНК), плотностной гамма-гамма каротаж (ГГК), нейтрон-нейтронный каротаж по надтепловым (ННКнт) и тепловым (ННК-т) нейтронам.

Газовый каротаж, дефектометрия, термометрия, дебитометрия, профилеметрия, метод потенциалов собственной поляризации (ПС), индукционный каротаж (ИК) и отбор образцов проводился в ограниченном количестве скважин, контроль цементирования (АКЦ, ОЦК) – практически во всех скважинах [19].

Скважинные условия месторождения являются типичными для Припятского прогиба, поэтому геофизические исследования проводились по общепринятой для этой нефтеносной области методике.

В надсолевых отложениях исследования осуществляются перед спуском колонны обсадных труб методами БК, ГК, НГК, АК, кавернометрии и инклинометрии. Масштабы глубин 1:500.

Соленосные толщи исследуются вышеперечисленными методами в масштабе глубин 1:500 через 500-600 м проходки. В интервалах разреза с карбонатными пластами указанные исследования дублируются в масштабе глубин 1:200.

В межсолевых и подсолевых карбонатных отложениях, к которым приурочены основные продуктивные горизонты нефти в Припятском прогибе, исследования проводятся через 150-200 м проходки в масштабе глубин 1:500 методами БК, ГК, НГК, АК, кавернометрии. Детальные исследования в масштабе 1:200 включают БК, МБК, ГК, НГК, АК (по скорости и затуханию), кавернометрию.

В перспективных интервалах исследования в масштабе 1:200 включают БК, МБК, ГК, НГК, АК (по скорости и затуханию) и кавернометрию. Диаграммы ГК, НГК, АК выполняются единым замером с обязательным захватом пластов каменной соли или карбонатных образований для терригенных отложений, что позволяет контролировать качество диаграмм и достоверность градуировки измерительной аппаратуры [20].

В каждой скважине проводится замер кривизны инклинометром через 300 м проходки, точки замеров через 25 м.

Обязательный комплекс исследований в продуктивных интервалах осуществляется в минимальный срок после их вскрытия.

Стандартный каротаж зондом АО=4,25 м проводился в скважинах до 1979 г.

Замеры градиент-зондами АО=4,25 м (1:200) и АО=2,75 м (1:500) осуществлялись в скважинах Управления геологии.

Кривые сопротивлений (rк) регистрировались в масштабе от 1 до 25 Ом*м/см, при скорости записи до 2000 м/час.

В качестве измерительных приборов использовалась аппаратура КСП, Э-1, АБКТ [10].

Опыт работы показал, что в условиях разрезов с высокими удельными электрическими сопротивлениями, получаемые при проведении стандартного каротажа кажущиеся сопротивления искажены в результате экранного эффекта и не могут быть использованы не только для количественной, но и качественной интерпретации. Поэтому, начиная с 1979 года, этот вид исследований исключен из комплекса и в качестве стандартного каротажа принят трехэлектродный боковой каротаж.

Боковой каротаж в модификации трехэлектродного (БК–3) входит в обязательный комплекс ГИС при исследовании скважин, бурящихся на высокоминерализованном растворе, начиная с 1979 года. Этот вид исследований в условиях Припятского прогиба является основным методом определения удельного электрического сопротивления пород и связанного с ним параметра пласта – нефтенасыщенности [21].

Кривая сопротивлений (rк) регистрировалась в масштабе 1-625 Ом*м/см при скорости записи до 1800 м/час и в логарифмическом масштабе с модулем 4 см при скорости записи до 2500 м/час. Измерения осуществлялись аппаратурой К–3, АГАТ-ЭК_МК, АБКТ и Э –1.

Ограничения метода состоят в занижении сопротивления пластов каменных солей, ангидритов и плотных карбонатов, обусловленные конструктивными особенностями аппаратуры. Кроме этого, метод не позволяет определить удельное электрическое сопротивление пласта при глубоком (>4.5 м) проникновении в него фильтрата бурового раствора.

Боковой микрокаротаж производится при детальных исследованиях продуктивных горизонтов. Кривые сопротивлений регистрируются в масштабах 1– 25 Ом*м на 1см при скорости записи до 1000 м/час. Измерения осуществляются аппаратурой КМБК-3, МБК-1, Э-1, АГАТ, МБКУ [10].

Диаграммы бокового микрокаротажа используются в комплексе с диаграммами бокового каротажа при благоприятных условиях лишь для качественного выделения пластов-коллекторов. Что же касается количественных определений, то для этой цели данные бокового микрокаротажа не применяются, так как сопротивления плотных и нефтенасыщенных пластов значительно превышают верхний разрешающий предел (150–200 Ом*м) регистрирующей аппаратуры.

Индукционный каротаж (ИК) проводится, как правило, для детальных исследований продуктивных интервалов в скважинах, вскрытых на непроводящей электрический ток промывочной жидкости. Измерения выполнялись аппаратурой АИК. Диаграммы ИК в комплексе с другими методами используются для качественной интерпретации [23].

Для количественных определений сопротивления пластов в условиях Припятского прогиба метод неприменим, так как удельное электрическое сопротивление подавляющего большинства нефтенасыщенных пластов находится в пределах от нескольких сотен до тысяч Ом метров, а в диапазоне rк >50 Ом*м аппаратура обладает низкой разрешающей способностью.

Гамма-каротаж является одним из основных видов исследований. Кривые естественной радиоактивности регистрировались в масштабах 0,5 – 1,0 мкР/час на 1 см. Скорость записи от 300 м/час до 400 м/час. Индикаторами служат сцинтилляционные счетчики с кристаллами йодистого натрия, активированного таллием, с размером кристалла 30*30, 30*40, 30*70, 40*40 мм. Измерения проводились аппаратурой ДРСТ – 1, ДРСТ – 3, СРК.

Качество диаграмм и разрешающая способность метода позволяют использовать кривые ГК для корреляции и литологического расчленения разрезов, а также определения глинистости пластов.

Нейтронный гамма-каротаж является методом, используемым для определения пористости пород. Размер зонда 60 см. В скважинах ПО "Белоруснефть" кривые НГК регистрировались в масштабах: 0,1-0,2 ст. ед. на 1 см (1:200), 0,1 – 0,6 ст. ед. на 1 см (1:500). В скважинах Управления геологии кривые НГК регистрировались в масштабах 0,1-0,2 усл. ед. на 1 см (1:200) и 0,4 усл. ед. на 1 см (1:500). Скорость записи от 300 до 400 м/час. Измерения проводились аппаратурой ДРСТ – 1, ДРСТ – 3, СРК. Индикаторами служат сцинтилляционные счетчики NaJ(Tl), с размером кристалла 30*30, 30*40, 40*40 мм. В качестве излучателей использовались плутониево-бериллиевые источники мощностью 4,3–5,2*106 n/с [10].

Поскольку нейтронный гамма-каротаж является одним из основных методов, используемых для определения пористости, то к этому методу предъявляются высокие требования в отношении качества и стандартизации.

Значения НГК (в имп/мин), получаемые в результате эталонировки для конкретного прибора с определенным источником нейтронов, используются при установке масштабов диаграмм в стандартных единицах.

Качество диаграмм и разрешающая способность метода позволяют использовать кривые НГК для корреляции и литологического расчленения разрезов скважин [24].

Кроме того, в условиях Припятского прогиба НГК является основным методом, применяемым для определения пористости пластов и выделения эффективных толщин.

Импульсный нейтрон-нейтронный каротаж применяется с июля 1978 года. Измерения выполнены аппаратурой ИГН – 7 при скорости регистрации до 400 м/час. Размер зонда 30 см. Масштаб записи кривых 75–9600 имп/мин, Тзад.=600–900 мкс, То=300 мкс.

Однако для времени проведения исследований характерно отсутствие отработанной методики и несовершенство применяемой измерительной аппаратуры, поэтому в настоящее время количественная интерпретация, имеющихся в наличии, материалов ИННК (определение коэффициентов пористости и нефтенасыщенности) не дает положительных результатов.

Акустический каротаж по скорости и затуханию включен в комплекс с 1979 года и проводится во всех скважинах. Исследования выполняются посредством аппаратуры СПAК-2М, СПAК-4, УЗБА-21. Размеры зондов: И20,5И11,5П; И20,4И11,2П; И20,85 И11,05П; И20,51 И12,3П.

В процессе измерений регистрируется интервальное время прохождения волны от излучателей к приемнику (Т1 и Т2), интервальное время прохождения волн между излучателями (Δt), амплитуды первых вступлений волн от двух излучателей (α1 и α 2) и логарифмы отношений этих амплитуд (α). Масштаб записи кривых Т1 и Т2 —50 мкс/м на 1 см; Δt=10 мкс/м на 1 см; α 1, α 2 — 0,5; 1; 1,5; 2,5; 5 v на 1 см, α — 1,25; 1,5; 2,5 дб на 1 см. Скорость записи не превышает 1200 м/час.

Кривые акустического каротажа используются для литологического расчленения разреза, выделения пластов коллекторов и определения объема их емкостного пространства.

Кавернометрия в скважинах проводится с целью измерения диаметра скважин и контроля их технического состояния.

Кавернограммы регистрируются в масштабах 1:2.5 см/см. Скорость записи не превышает 2000 м/час. В качестве измерительных приборов используются каверномеры типов СКП - 1, СКО, АГАТ-ЭК [10].

Кавернограммы используются для контроля технического состояния стволов скважин, корреляции разрезов, литологического расчленения пород и при количественной интерпретации данных других геофизических методов.

Кроме этого, в процессе обработки материалов ГИС для определения подсчетных параметров проводилась повторная проверка качества геофизических материалов. Достоверность измерений, выполненных различными геофизическими методами, оценивалась, главным образом, путем сопоставления с данными повторных записей соответствующих кривых.

В результате проверок установлено, что диаграммы бокового каротажа хорошего качества. Расхождение в значениях сопротивлений (rк) не превышает 5%.

Для оценки качества материалов МБК надежных критериев нет. Но если руководствоваться лишь степенью сопоставимости повторных замеров, качество диаграмм МБК следует считать удовлетворительным. Однако это можно утверждать только в отношении участков разреза, характеризующихся удельным электрическим сопротивлением не более 150 – 200 Ом*м (верхний предел разрешающей способности измерительной аппаратуры). Поскольку электрические сопротивления плотных и нефтенасыщенных пластов превышают этот предел и кривая МБК напротив них не дифференцирована, то для оценки нефтенасыщенности пластов этот метод не применяется.

Кривые гамма-каротажа, в основном, хорошего качества, расхождение значений естественной радиоактивности не превышает 5%.

Качество диаграмм НГК оценивалось путем сравнения записей масштабов 1:200 и 1:500, а также данных повторных записей. Диаграммы, в основном, хорошего качества. Расхождение в показаниях не превышает 5%.

Кавернограммы преимущественно хорошего качества, погрешность измерения диаметров скважин не превышает 1,5 см [10].


6. ОБРАБОТКА И ИНТЕРПРЕТАЦИЯ ДАННЫХ ГЕОФИЗИЧЕСКИХ ИССЛЕДОВАНИЙ СКВАЖИН


Основными задачами при изучении геологического разреза нефтяных и газовых скважин является:

1)                расчленение разрезов на пласты различного литологического состава, определение мощностей и глубин залегания пластов;

2) выделение в разрезе коллекторов и оценка содержания в них нефти и газа [25].

Для решения этих задач широко применяют геофизические методы исследования скважин.

Литологическое расчленение производят по комплексу диаграмм различных геофизических методов. Литологический характер пород определяют по сумме геофизических признаков, установленных по диаграммам различных методов.

Для более точной характеристики литологического состава пород используют данные наиболее полного комплекса геофизических методов, объем которого определяется степенью изученности разреза, типом отложений и скважинными условиями измерений [26].

Для расчленения песчано-глинистого разреза необходимо дополнительно привлекать кривые гамма-метода и бокового метода.

Если вскрытый скважиной разрез представлен карбонатными породами, в комплекс измерений должен обязательно входить нейтронный или акустический методы, обеспечивающий выделение пористых карбонатных пород.

В продуктивных участках разреза, где есть или могут быть встречены нефтегазонасыщенные пласты, для детального изучения коллекторов нефти и газа необходимо дополнительно проводить боковые электрические зондирования, измерения микрозондами, каверномером и т.п.

Важной задачей геофизических исследований нефтяных и газовых скважин является выделение в их разрезах коллекторов и оценка характера их насыщения [26].

Коллекторы определяют, во-первых, по литологическому составу пород, слагающих разрезы. Если по геофизическим данным установлено, что пласты представлены песками, пористыми песчаниками или пористыми карбонатными породами, то такие пласты могут быть отнесены к коллекторам. Во-вторых, коллекторы выделяют по признаку фильтрации в них бурового раствора с образованием глинистой корки на стенки скважины и зоны проникновения в примыкающей скважине части пласта, в которой пластовые жидкости полностью или частично замещены фильтратом бурового раствора. Глинистая корка выявляется по сужению диаметра скважины на кавернограммах и по расхождению двух кривых кажущегося сопротивления на диаграммах микрозондов. Наличие в пласте зоны проникновения, удельное сопротивление которой отличается от удельного сопротивления пласта, устанавливают по данным бокового электрического зондирования, либо по замерам двумя зондами метода сопротивлений, один из которых имеет малый, а другой – большой радиусы исследования.

По данным геофизических методов уверенно выделяются неглинистые коллекторы с межзерновой пористостью (пески, песчаники, высокопористые карбонатные породы). В песчано-глинистых отложениях коллекторы выделяют по диаграммам естественных потенциалов. В условиях, обычно встречающихся на практике, когда минерализация пластовой воды больше минерализации бурового раствора, пласты неглинистых песков и песчаников, являющихся коллекторами, выделяются минимальными, а глины (непроницаемые пласты) – максимальными показаниями на диаграммах естественных потенциалов. Если буровой раствор в скважине сильно минерализован, коллекторы выделяются по диаграммам гамма-метода. На диаграммах гамма-метода глины отмечаются максимальными, песчаные пласты – минимальными показаниями [26].

В песчано-глинистых разрезах встречаются малопористые непроницаемые пласты сцементированных песчаников и плотных карбонатных пород, которые часто не отличаются от проницаемых песчаных пластов по диаграммам естественных потенциалов и гамма-метода.

Для выделения карбонатных коллекторов высокой пористости используют диаграммы гамма-метода, с помощью которых выявляют интервалы неглинистых пород, и диаграммы микрозондов, нейтронного либо акустического методов, по которым среди неглинистых карбонатных пород находят пористые и проницаемые породы.

Значительно более сложным является выделение глинистых и особенно трещиноватых коллекторов. Наличие таких коллекторов в разрезе скважины устанавливают путем сопоставления и количественного анализа данных различных геофизических методов. В гамма-методе изучают естественную радиоактивность горных пород по данным измерений интенсивности естественного гамма-излучения вдоль ствола скважин [27]. Радиоактивность осадочных горных пород обусловлена присутствием в них радиоактивных элементов – урана, тория, актиния, продуктов их распада, а также изотопа калия К40. Определение литологического состава пород по диаграммам гамма-метода основано на различии в естественной радиоактивности пород. Среди осадочных пород наиболее радиоактивными являются глины и калийные соли. Поэтому на диаграммах максимальные показания (отклонения кривой вправо) соответствует глинам и калийным слоям, минимальные (отклонения кривой влево) – пескам, песчаникам, карбонатным породам и гидрогеохимическим осадкам, не содержащим калийных солей. Глинистые пески, песчаники, известняки характеризуются промежуточными показаниями, величины которых тем больше, чем выше содержание глин в породе [27]. Результаты измерений нейтронными методами в основном определяются водородосодержанием пород. Чем больше последнее, тем меньшими показаниями отмечаются породы на диаграммах нейтронных методов.

Среди горных пород в наибольшем количестве водород находится в глинистых породах (глинах, аргиллитах, мергелях), содержащих значительное количество как поровой, так и химически связанной воды. Поэтому глинистые осадки отмечаются минимальными показаниями на диаграммах нейтронных методов [28].

Плотные породы (малопористые известняки и доломиты, ангидриты, плотные сцементированные песчаники), содержащие мало воды вследствие низкой пористости этих пород, отмечаются максимальными показаниями на диаграммах нейтронных методов.

Промежуточные показания наблюдаются против песков, песчаников, алевролитов, пористых разностей карбонатных пород [30].

Содержание водорода в нефти и воде примерно одинаково. Поэтому нефтеносные и водоносные пласты с одинаковым литологическим составом и пористостью не различаются по данным нейтронных методов.

Боковой метод является разновидностью метода сопротивлений. Он применяется при изучении карбонатных разрезов в скважинах с минерализованными буровыми растворами, т.к. в этих условиях на величину кажущегося сопротивления, измеренного обычным зондом, большое влияние оказывает скважина [35].

В данной дипломной работе интерпретация кривых ГИС и расчет подсчетных параметров пласта производится самостоятельно, на примере Дубровского месторождения елецкого горизонта скважины 7s2.

Основная методика обработки ГИС основана на применении петрофизических зависимостей – известных комплексных палеток для определения суммарного водородосодержания и глинистости, построенных в свое время тематическими партиями треста "Западнефтегеофизика" и ПО "Белоруснефть" по результатам 2144 определений полной пористости, выполненных на образцах керна для месторождений Припятского прогиба. Однако, учитывая такую разнородность информации, возникла необходимость в применении различных методик интерпретации ГИС для определения различных подсчётных параметров [37].

Глинистость не используется непосредственно для подсчета запасов нефти. Но без знания глинистости невозможно правильно рассчитать пористость и нефтенасыщенность коллекторов. Основным методом определения глинистости в продуктивных карбонатных породах Припятского прогиба является ГК. Многочисленными исследованиями показано существование достаточно тесной линейной зависимости показаний ГК от глинистости для пород Припятского прогиба[38].

Глинистость определялась по данным радиометрии (ГН, НГК) и акустического каротажа. В основу метода положено наличие корреляционных связей между суммарным водородосодержанием (W) карбонатных пород-коллекторов и показаниями геофизических методов.

Глинистость пород продуктивных отложений Дубровского месторождения определена по данным радиоактивного каротажа (НГК, ГК) с привлечением материалов акустического каротажа (Т). Снимаем значения Ij на диаграмме ГК. Затем, по палетке для определения объемной глинистости определяем Сгл. [40].

Коэффициент глинистости (Кгл) определяется по формуле:


Кгл.=Сгл.*0,42 (1),


где 0,42 – поправка за глинистость, вводимая с учетом принятого значения водородосодержания в глинистой фракции.

Сгл. - содержание глинистости.

Пористость пород продуктивных межсолевых отложений Дубровского месторождения определена по данным радиоактивного каротажа (НГК, ГК) с привлечением материалов акустического каротажа (Т).

На диаграмме НГК снимаем значения I(nj), затем, по палетке для определения коэффициента полной пористости для диаметра скважины Dc=0,14см, находим этот коэффициент[42].

Открытая пористость продуктивных пластов (Ко.п) по данным ГИС рассчитывается по формуле:


Ко.п=Кп.п-Кгл. (2)


Коэффициент нефтенасыщенности пород-коллекторов продуктивных отложений елецкого горизонта Дубровского месторождения определяется по коэффициентам увеличения сопротивления и балансу пористости. Рассчитывается относительное сопротивление (Р). С диаграммы БК снимаем показания сопротивления Sп (Ом*м). После этого высчитываются две поправки: поправка за диаметр скважины (для Dc=0,14, поправка=1,15) и поправка за пластовую воду Sв=0,03, где 0,03 – удельный вес пластовой воды по Припятской впадине.


Р=Sп*поправка за Dс/Sв (3)


Зная значения относительного сопротивления Р и коэффициента открытой пористости Ко.п., по графику оценки нефтенасыщенности, определяем коэффициент водонасыщенности пород (Кв).

Коэффициент нефтенасыщенности (Кн) определяется по формуле:


Кн = 1-Кв (4),


где 1- 100% - постоянная.

Кн измеряется в %. По организации УПГР считается, что ниже 50 % - вода; выше 50 % - нефть [10].


7. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ИХ ГЕОЛОГИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ


Исходя из вышеизложенного материала, по данным ГИС на примере скважины 7s2 Дубровского месторождения рассмотрим методику определения коэффициентов пористости, глинистости, водо- и нефтенасыщенности.

Для этого берем пласт мощностью 1,20 м., кровля 2963,8 м , подошва 2965,0 м. Сначала, напротив рассматриваемого пласта с диаграммы НГК I(nj) и акустического каротажа (T) снимаем показания. На диаграмме НГК среднее значение I(nj)=2,58 ст. ед., а на диаграмме АК ∆T=190 мксек/м [43].

Затем, по палетке для определения коэффициента полной пористости Кп.п для диаметра скважины Dc=0,14 м, находим этот коэффициент: Кп.п=14,2.

Теперь, снимаем значения Ij на диаграмме ГК. Ij=1,6 ст.ед. Затем, по палетке для определения объемной глинистости определяем содержание глинистости Сгл. и рассчитываем коэффициент глинистости (Кгл.) по формуле (1):


Кгл.=33,6*0,42=14,14


Далее по формуле (2) находим коэффициент открытой пористости пласта:


Ко.п=14,2-14,14=0,06


Теперь, с диаграммы БК снимаем показания Sп=70 Ом*м. После этого высчитываем 2 поправки: поправка за диаметр скважины (для Dc=0,14, поправка=1,15 ) и поправка за пластовую воду Sв=0,03.

Зная Sп можно высчитать относительное сопротивление Р, по формуле (3):


Р=70*1,15/0,03=2700.


Затем, зная значения относительного сопротивления Р и коэффициента открытой пористости Ко.п по графику оценки нефтенасыщенности определяем коэффициент водонасыщенности Кв. пород:


Кв.=43%.


После этого, подставляя коэффициент водонасыщенности в выражение (4) находим коэффициент нефтенасыщенности:


Кн.=100-43=57%.


Таким образом, из приведенных выше расчетов коэффициентов пористости, глинистости, водо- и нефтенасыщенности по данным ГИС, можно с уверенностью сказать, что исследуемый интервал относится к нефтенасыщенному пласту-коллектору, литологически сложенному из известняка [43].

По этой же методике рассчитаны остальные пласты-коллекторы Дубровского месторождения скважины 7s2 в интервале от 2928,2 м до 2973 м. В результате проведенной обработки данных выделено 8 пластов-коллекторов. Породы-коллекторы представлены известняками пористо-кавернозными до ситчатых, в разной степени трещиноватыми. Тип коллектора порово-каверново-трещинный [45].

Первые три пласта литологически сложены из известняка и являются нефтенасыщенными. Четвертый пласт также представлен известняком, но является слабонефтяным. Пятый и шестой пласт относятся к нефтенасыщенному коллектору, литологически сложенному из известняка. Седьмой пласт представлен известняком, но является слабонефтяным. Восьмой пласт сложен из известняка и является водонасыщенным.

Таким образом, по результатам проведенной работы, можно сделать вывод о том, что рассматриваемая скважина 7s2 Дубровского месторождения может являться эксплуатационной, а полученные подсчетные параметры могут использоваться для оценки запасов нефти [48].


8. ТЕХНИКА БЕЗОПАСНОСТИ ПРИ ПРОВЕДЕНИИ ПРОМЫСЛОВО-ГЕОФИЗИЧЕСКИХ РАБОТ


8.1 Общие требования


1. Геофизические работы в скважинах выполняются специализированными геофизическими организациями, подразделениями (далее – подрядчик).

2. Геофизические работы должны проводиться в присутствии представителя геологоразведочной организации (далее – заказчик). К геофизическим работам могут привлекаться работники заказчика и его оборудование, если это необходимо для осуществления технологии исследования [49].

3. Общее руководство геофизическими работами при привлечении работников заказчика к производству геофизических работ возлагается на представителя геофизической организации (начальника отряда, партии).

4. Геофизические работы разрешается проводить после специальной подготовки территории и ствола скважины, обеспечивающей удобную и безопасную эксплуатацию наземного оборудования, беспрепятственный спуск (подъем) скважинных приборов и аппаратов на кабеле до интервала исследований или до забоя на весь период проведенных работ. Готовность территории и скважины для проведения геофизических работ подтверждается двусторонним актом, подписанным заказчиком и подрядчиком.

5. Площадка для размещения геофизического оборудования должна обеспечивать ширину прохода между оборудованием не менее 3 м, но быть не менее 10 x 10 м и возможность установки каротажного подъемника в горизонтальном положении с видимостью с места мостков и устья скважины; иметь твердое покрытие в заболоченных районах; иметь подъездные пути, обеспечивающие беспрепятственную эвакуацию в аварийных ситуациях своим ходом или буксировкой другими транспортными средствами; располагаться так, чтобы исключить скопление отработанных газов при работе двигателей внутреннего сгорания (далее – ДВС), подъемника; не располагаться в понижениях рельефа, в траншеях и тому подобном; освещаться в темное время суток в соответствии с требованиями раздела XI настоящих Правил [49].

6. Электрооборудование буровой установки перед проведением геофизических работ должно быть проверено на соответствие требованиям ТНПА и отвечать следующим дополнительным требованиям:

для подключения геофизического оборудования и аппаратуры к силовой или осветительной сети у края площадки, предназначенной для размещения оборудования, должна быть установлена электрическая точка-щит с отключающим устройством и унифицированной четырехполюсной розеткой на напряжение 380 В и двумя трехполюсными розетками на 220 В с заземляющими контактами;

должно быть обозначено место для подсоединения к контакту заземления буровой у края мостков отдельных заземляющих проводников геофизического оборудования; подсоединение их должно выполняться болтами или струбцинами, многожильными медными проводами [49].

7. Устье скважины должно обеспечивать удобство спуска и извлечения скважинных приборов. С этой целью при превышении фланца обсадной колонны относительно пола более 1,5 м на устье должна сооружаться рабочая площадка и к устью скважин, бурящихся с глинистым раствором, с помощью гибкого шланга подводиться техническая вода (горячая вода или пар при работе в условиях отрицательных температур).

8. Допуск к работе работников геофизических организаций должен осуществляться в соответствии с Правилами обучения.

9. Буровое оборудование скважины должно быть исправно для обеспечения возможности использования его во время проведения всех геофизических работ. В процессе их выполнения на скважине должна находиться вахта буровой бригады, которая по согласованию может привлекаться к выполнению вспомогательных работ [49].

10. При производстве геофизических работ проведение других работ буровой бригадой (ремонт бурового оборудования, включение буровой лебедки и различных силовых агрегатов, передвижение по полу буровой и приемным мосткам тяжелого оборудования, выполнение сварочных работ) может осуществляться только по согласованию с руководителем работ подрядчика. При этом работники буровой бригады должны быть проинструктированы о размерах опасных зон (взрывных, радиационно опасных работ, вблизи движущегося кабеля, токонесущих коммуникаций), нахождение в пределах которых не допускается. Ответственность за допуск людей в опасную зону несет руководитель работ подрядчика.

11. При работе буровых агрегатов по обеспечению проведения геофизических работ (дополнительная проработка ствола скважины, подъем оставленных в скважине приборов, кабеля с помощью бурильных труб) персонал геофизического отряда может находиться на буровой установке только с согласия руководителя буровых работ.

12. Перед проведением геофизических работ буровой инструмент и инвентарь должны быть размещены и закреплены так, чтобы не мешать работе геофизического отряда. Между каротажной лабораторией и подъемником и устьем скважины не должны находиться предметы, препятствующие движению кабеля и переходу работников. Площадка у устья и приемные мостки должны быть исправны, очищены от бурового раствора, нефти, смазочных материалов, снега, льда и тому подобного [49].

13. Переноска скважинных приборов массой более 30 кг допускается с помощью специальных приспособлений. Спуск таких приборов и приборов длиннее 2 м в скважину проводится механизированным способом.

8.2 Требования к оборудованию, аппаратуре и техническим средствам


1. Геофизические работы в скважинах должны проводиться с применением оборудования, кабеля и аппаратуры, технические характеристики которых соответствуют геолого-техническим условиям в бурящихся скважинах [49].

2. Каротажные подъемники должны быть укомплектованы:

подвесными и направляющими блоками, упорными башмаками и приспособлениями для рубки кабеля;

средствами визуального контроля за глубиной спуска-подъема кабеля, скоростью его продвижения и натяжения;

соединительными кабелями с прочным электроизоляционным покрытием;

автоматизированным кабелеукладчиком;

заземляющим многожильным медным проводом со струбциной для заземления к контуру буровой.

3. К геофизическим работам допускаются сертифицированное оборудование, кабель и аппаратура.

4. Опытные и экспериментальные образцы геофизической техники допускаются к применению только при наличии разрешения организации, в ведении которой находится скважина, и по согласованию с территориальным органом Проматомнадзора.

5. Конструкции приборных головок должны обеспечивать присоединение приборов к унифицированным кабельным наконечникам и сборку компоновок комплексной или комбинированной многопараметровой аппаратуры. Кабельный наконечник должен иметь конструкцию, обеспечивающую его захват ловильным инструментом. Ловильный инструмент под все виды применяемых головок и кабеля должен входить в комплект геофизической аппаратуры.

6. Прочность крепления приборов к кабелю с помощью кабельных наконечников должна быть ниже на 1/3 разрывного усилия соответствующего типа кабеля.

7. При геофизических работах должен применяться кабель, не имеющий повреждений броневого покрытия. Сохранность брони должна периодически проверяться, а после работ в агрессивной среде кабель должен испытываться на разрывное усилие [49].

8. Направляющий блок (оттяжной ролик) или наземный блок-баланс жестко (болтами, хомутами) крепится у устья скважины. Не допускается крепить их канатными укрутками, прижатием тяжелыми предметами.

9. Подвесной блок (ролик) должен подвешиваться к вертлюгу через штропы или непосредственно на крюк талевого блока через накидное кольцо. Не допускается использовать подвесные блоки без предохранительного кожуха (скобы).


8.3 геофизические исследования в скважинах


1. Кабель, соединяющий геофизическое оборудование с электросетью, должен подвешиваться на высоте не менее 2 м или прокладываться на козлах, подставках высотой не менее 0,5 м от земли в стороне от проходов, дорог и тропинок. Подключать геофизическое оборудование к источнику питания необходимо по окончании сборки и проверки электросхемы станции.

2. При производстве промыслово-геофизических работ на скважине подъемник и лаборатория должны устанавливаться так, чтобы обеспечивать хороший обзор устья, свободный проход работников на мостках буровой, сигнализационную связь между ними и устьем скважины.

3. Начальник геофизического отряда и геофизик каротажной станции обязаны оперативно информировать бурового мастера (бурильщика) и фиксировать в буровом журнале возможность возникновения осложнения или аварийной ситуации (затяжки скважинных приборов при подъеме кабеля или записи геофизических параметров, наличие желобов и уступов в открытом пробуренном стволе скважины, резкое повышение газопоказаний).

4. Перед началом геофизических работ должна быть проверена исправность тормозной системы каротажного подъемника, кабелеукладчика, защитных ограждений лебедки, целостность заземляющего провода и соединительных проводов [49].

5. Подвесной ролик должен быть надежно закреплен на талевой системе буровой установки и поднят над устьем скважины на высоту, обеспечивающую спуск кабеля с прибором в скважину по ее оси.

6. Спуск и подъем кабеля должны проводиться с контролем глубины, натяжения и со скоростями, рекомендуемыми для соответствующих типов аппаратуры и аппаратов.

7. Длина кабеля должна быть такой, чтобы при спуске скважинного прибора на максимальную глубину на барабане лебедки оставалось не менее половины последнего ряда витков кабеля.

8. Во избежание затаскивания скважинных приборов на подвесной или стационарный блок на кабеле должна быть установлена одна хорошо видимая метка примерно на 10 или 25 м от кабельной головки. Скорость подъема кабеля при подходе скважинного прибора к башмаку обсадной колонны и после появления последней предупредительной метки должна быть снижена до 250 м/ч.

9. В процессе выполнения работ после подачи предупредительного сигнала не допускается нахождение людей в пределах опасных зон:

при производстве прострелочно-взрывных и радиационно опасных работ;

не менее расстояния от подъемника до устья скважины – от трассы кабеля, освобождаемого от прихватов;

не менее 2 м от устья скважины и движущегося кабеля.

10. Усилие натяжения кабеля при освобождении от прихвата не должно превышать 50 % его разрывного усилия. При необходимости обрыва кабеля должны быть приняты дополнительные меры предосторожности.

11. Выполнение геофизических работ должно быть приостановлено в случаях:

сильного поглощения бурового раствора (с понижением уровня более 15 м/ч);

возникновения затяжек кабеля, неоднократных, не менее двух, остановок скважинных приборов при спуске (за исключением случаев остановки приборов на известных уступах или кавернах);

ухудшений метеоусловий: при снижении видимости до 20 м и менее, усилении ветра до штормового (более 20 м/с), сильном обледенении, приближении грозы.

12. При возникновении на скважине аварийных ситуаций, угрожающих жизни и здоровью людей (пожар, выброс токсических веществ, термальных вод), работники, выполняющие геофизические исследования, должны немедленно эвакуироваться в безопасное место.

13. Подавать напряжение в питающую цепь измерительной схемы можно только после спуска скважинного прибора и зонда в скважину. При необходимости включения тока в питающую цепь на поверхности для проверки исправности (градуировка, эталонировка) приборов следует предупредить об этом всех работников.

14. По окончании измерений и при вынужденном прекращении подъема кабеля напряжение в кабельной линии должно быть отключено. Защитное заземление можно снимать только после отключения от источника тока лаборатории и подъемника [49].

15. Ремонт и проверка электрических схем скважинных приборов, включающих узлы, генерирующие опасные по электронапряжению токи или использующие их для питания, на местах работ могут выполняться только при снятом напряжении. Ремонт (измерение, настройки, проверки), требующий выполнения работ без снятия напряжения, необходимо проводить в специальной мастерской при принятии дополнительных мер безопасности.


8.4 Геофизические работы в скважинах с применением радиоактивных веществ и источников ионизирующих излучений


1. К работе с источниками ионизирующего излучения (далее – ИИИ) допускаются лица не моложе 18 лет, признанные годными к выполнению этих работ по результатам медицинского освидетельствования, прошедшие в установленном порядке обучение безопасным методам и приемам работы, инструктаж, стажировку и проверку знаний по вопросам охраны труда [49].

2. Руководство организации, использующей ИИИ для проведения геофизических работ на скважинах, осуществляет обеспечение условий выполнения требований НРБ-2000, ОСП-2002 и СанПиН 2.6.1.13-12-2005.

3. Поступившие в организацию ИИИ принимаются назначенным приказом руководителя организации лицом, ответственным за получение, учет, хранение и выдачу ИИИ.

Выдача ИИИ из мест хранения на рабочее место производится лицом, ответственным за их учет и хранение, только по требованию, подписанному руководителем организации или его заместителем.

4. Поступившие в организацию ИИИ хранятся в хранилище радиоактивных материалов, имеющем санитарный паспорт.

Активность ИИИ, находящихся в хранилище радиоактивных материалов, не должна превышать значений, указанных в санитарном паспорте.

5. Транспортирование ИИИ осуществляется в специальных защитных, транспортных контейнерах на специальной автомашине, имеющей санитарный паспорт для постоянных перевозок радиоактивных веществ. Транспортные контейнеры должны снаружи иметь знак радиационной опасности [49].

6. Персонал, работающий с ИИИ, должен быть обеспечен индивидуальными дозиметрами для измерения эффективных доз облучения. Годовые индивидуальные дозы облучения фиксируются в карточке учета индивидуальных доз внешнего облучения, карточки хранятся в течение 50 лет после увольнения работника.


8.5 Требования безопасности по окончании работы


1. После окончания работ на скважине оборудование, аппаратура и приборы должны быть подготовлены для перевозки на базу; скважинные приборы укладывают и закрепляют в стеллажах для транспортировки, предварительно обмыв и смазав резьбовые соединения [50].

2. По окончанию всех работ на скважине площадки, где были установлены лаборатория и подъемник, убирается от мусора и посторонних предметов.

3. Переезд партии /отряда/со скважины на базу должен осуществляться с соблюдением правил и требований охраны труда и техники безопасности. Руководителю партии /отряда/ следует учитывать усталость работников, особенно машинистов подъемника и лаборатории, и предоставить им возможность отдохнуть и восстановить силы перед дорогой.

4. По возвращению на базу предприятия работники партии /отряда/ выполняют необходимый комплекс заключительных работ. Доделывают необходимые отчетные документы и сдают их сменному диспетчеру, отмечают о работе, замечаниях по работе скважинных приборов в журнале выдачи аппаратуры. Начальник партии лично сдает источник РВ в хранилище с отметкой в журнале выдачи [50].


ЗАКЛЮЧЕНИЕ


В ходе написания дипломной работы освоена методика интерпретации ГИС, выполнены необходимые расчеты, построена геологическая карта и графические приложения, написана текстовая часть.

Использование различных методических приемов позволило успешно выполнить интерпретацию разнородных данных ГИС. Вручную были высчитаны коэффициенты пористости, глинистости, водонасыщенности и нефтенасыщенности, характеризующие емкостные свойства коллекторов горных пород.

Таким образом, по результатам проведенной работы, можно сделать вывод о том, что рассматриваемая скважина 7s2 Дубровского месторождения может являться эксплуатационной, а полученные подсчетные параметры могут использоваться для оценки запасов нефти.

Вместе с тем полученный опыт показывает необходимость уточнения петрофизических зависимостей, используемых для интерпретации данных ГИС. Используемые в настоящее время зависимости были получены в 1980-х годах на основании лабораторных исследований керна. С тех пор получен довольно обширный керновый материал. Сопоставление данных ГИС, лабораторных исследований керна и промысловой информации может дать качественно новый результат.



СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ


1 Трацевская, Е.Ю. Закономерности формирования геологических опасностей Беларуси [Текст] : монография ∕ Трацевская Е.Ю. – Гомельский государственный университет имени Ф. Скорины, 2008. – с.

2 Агеев, М.З. Поверхностные воды Гомельской области [Текст] : краткий справочно-информационный материал ∕ М.З.Агеев – Гомель, 1999. – 52 с.

3 Трацевская, Е.Ю. Геология Беларуси и Ближнего Зарубежья [Текст] : конспект лекций / Недовизин А.А., Гомель, 2005.

4 Гарецкий, Р.Г. Тектоника Белоруссии [Текст] : Наука и техника, 1976. – 200 с.

5 Тектоническая карта Беларуси, масштаб 1: 500000, 1974.

6 Махнач, А.С. Геология Беларуси [Текст] : институт геологических наук НАН Беларуси / Гарецкий, Р.Г., Матвеев А.В. – Минск, 2001. – 815 с.

7 Геологическая карта четвертичных отложений Белорусской ССР, масштаб 1: 500000, главн. Редактор Горецкий Г.И., 1983.

8 Айзберг, Р.Е. Гидрогеология и нефтегазоносность [Текст] : Наука и техника, 1982 – 190 с.

9 Отчет по производственной практике 2008.

10 Материалы из фонда РУП ПО Белоруснефть.

11 Добрынин, В.М. Промысловая геофизика [Текст] : - Москва, Недра, 1986. – 470 с.

12 Пермяков, И.Г. Геологические основы поисков, разведки и разработки нефтяных и газовых месторождений [Текст] : –Москва, Недра, 1971. – 256 с.

13 Кривко Н.Н. Промыслово-геофизическая аппаратура и оборудование [Текст] : учебное пособие для вузов / Шароварин, В.Д., Широков В.Н. – Москва, Недра, 1981. – 290 с.

14 Знаменский, В.В. Геофизические методы разведки и исследования скважин [Текст] : – Москва, Недра, 1981. – 280 с.

15 Масюков, В.В. Оценка параметров нефтенасыщенных пластов по каротажу [Текст] : - Москва, Недра, 1974. – 420 с.

16 Пермяков, И.Г. Геологические основы поисков, разведки и разработки нефтяных и газовых месторождений [Текст] : –Москва, Недра, 1986. – 375 с.

17 Дахнов, В.Н. Интерпретация результатов геофизических исследований разрезов скважин [Текст] : - Москва, Недра, 1972. – 431 с.

18 Латышева, М.Г. Обработка и интерпретация материалов геофизических исследований скважин [Текст] : - Москва, Недра, 1975.– 272 с.

19 Кобранова, В.Н. Физические свойства горных пород [Текст] : - Москва, Гостоптехиздат, 1962. – 340 с.

20 Добрынин, В.М. Интерпретация результатов геофизических нефтяных и газовых скважин [Текст] : - Москва, Недра, 1987. – 460 с.

21 Мейер, В.Л. Геофизические исследования скважин [Текст] : -Ленинград, ЛГУ, 1981. – 464 с.

22 Дьяконов Д.И. Общий курс геофизических исследований скважин [Текст] : - Москва, Недра, 1977. – 432 с.

23 Овнатанов, С.Т. Вопросы полноты извлечения нефти при разработке нефтяных месторождений [Текст] : – Баку, Азербайджанское Государственное Издательство, 1965. – 188 с.

24 Чоловский, И.П. Методы геолого-промыслового анализа при разработке крупных нефтяных месторождений [Текст] : - Москва, Недра, 1966. – 180 с.

25 Сургучев, М.Л. Методы извлечения остаточной нефти [Текст] : - Москва, Недра, 1991. – 348 с.

26 Еременко, Н.А. Геология нефти и газа [Текст] : - Москва, Недра, 1968. – 239 с.

27 Проблемы разработки нефтяных месторождений на поздней стадии / Сборник научных трудов. – Куйбышев: ГИПРОВостокнефть, 1985. – 166 с.

28 Проблемы освоения ресурсов нефти и газа Беларуси и пути их решения / Материалы научно-практической конференции. Гомель, 22-24 мая 2002 г. РУП "ПО "Белоруснефть". – 2003.

29 Брагин, Ю.И. Нефтегазопромысловая геология и гидрогеология залежей углеводородов [Текст] : - Москва, Недра, 2004. – 400 с.

30 Айзберг, Р.Е. Тектоника нефтеносных комплексов Припятского палеорифта и ее связь с глубинным строением земной коры / Р.Е. Айзберг, Р.Г. Гарецкий, С.В. Клушин / Советская геология – 1988 - №12.

31 Гришин, Ф.А. Промышленная оценка месторождений нефти и газа [Текст] : - Москва, Недра, 1975. – 304 с.

32 Жданов, М.А. Нефтегазопромысловая геология и подсчет запасов нефти и газа [Текст] : - Москва, Недра, 1981. – 453 с.

33 Крылов, А.П. Проектирование разработки нефтяных месторождений [Текст] : – Москва, Гостоптехиздат, 1962. – 225 с.

34 Пирсон, С.Д. Учение о нефтяном пласте [Текст] : – Москва, Гостоптехизлат, 1961. – 570 с.

35 Майдебор, В.Н. Разработка нефтяных месторождений с трещиноватыми коллекторами [Текст] : - Москва, Недра, 1971. – 231 с.

36 Максимов, М.И. Геологические основы разработки нефтяных месторождений [Текст] : - Москва, Недра, 1975. – 185 с.

37 Порошин, В.Д. Районирование нефтегазоносных комплексов Припятского прогиба по геотермическим данным / В.Д. Порошин, В.А. Коровкин // Геология, методы поисков и разведки месторождений нефти и газа. – Москва, 1987. – Вып. 12.

38 Порошин, В.Д. Методы обработки и интерпретации гидрохимических данных при контроле разработки нефтяных месторождений [Текст] : - Москва, Недра-Бизнесцентра, 2004. – 220 с.

39 Гиматудинов, Ш.К. Физика нефтяного пласта [Текст] : - Москва, Недра, 1971. - 312 с.

40 Масюков, В.В. Припятская впадина. Оценка параметров нефтенасыщенных пластов по каротажу [Текст] : - Москва, Недра, 1974. – 257 с.

41 Каналин, В.Г. Нефтегазопромысловая геология и гидрогеология [Текст] : - Москва, Недра, 1985. – 128 с.

42 Жданов, М.А. Нефтепромысловая геология и подсчёт запасов нефти и газа [Текст] : - Москва, Недра, 1981. - 54 с.

43 Цалко, П.Б. Карбонатные коллекторы нефтяных залежей Припятского прогиба [Текст] : - Минск, Наука и техника, 1986.- 180 с.

44 Иванова, М.М. Нефтепромысловая геология и геологические основы разработки месторождений нефти и газа [Текст] : - Москва, Недра, 1985. - 422 с.

45 Габриэлянц, Г.А. Геология нефтяных и газовых месторождений [Текст] : - Москва, Недра, 1984. - 285 с.

46 Мухер А. А., Шакиров А. Ф. Геофизические и прямые методы исследования скважин [Текст] : - Москва, Недра, 1981.- 385 с.

47 Техническая инструкция по проведению геофизических исследований в скважинах [Текст] : - Москва, Недра, 1985.- 183 с.

48 Никитина, В.Н. Руководство по применению промыслово-геофизических методов для контроля за разработкой нефтяных месторождений [Текст] : - Ленинград, Недра, 1978. – 256 с.

49 Правила безопасности и охраны труда при геолого – разведочных работах : [утв. Постановлением Министерства природных ресурсов и охраны окружающей среды Республики Беларусь и Министерства по чрезвычайным ситуациям Республики Беларусь 05.07.2008]. – 2008. – 209 с.

50 Панов, Г.Е. Охрана труда при разработке нефтяных и газовых месторождений [Текст] : - Москва, Недра, 1982. – 273 с.

Размещено на


Страницы: 1, 2


© 2000
При полном или частичном использовании материалов
гиперссылка обязательна.