РУБРИКИ |
Контроль и регулирование процессов извлечения нефти |
РЕКЛАМА |
|
Контроль и регулирование процессов извлечения нефтиТолько так можно объяснить наличие нефти буквально у стенок нагнетательных скважин после прокачки огромных объемов воды и поступление сразу же нефти при самоизливе имеете с водой. Это наблюдалось также на многих месторождениях (Покровском, Кулешовском, Азнакаевской площади, Ромашкинского месторождения н др.). Подобное явление установлено и экспериментально на линейных гидрофильных моделях пласта. При нагнетании воды был обнаружен концевой эффект на входном сечении модели пласта - вода внедрялась только через часть входного сечения, а из другой части сечения вытекала нефть во входную камеру. Затем с увеличением: закачки встречное движение нефти прекращалось, но вода по-прежнему поступала только через первоначальную обводненную часть входного сечения модели пласта. 5. И, наконец, наибольший интерес представляют промысловые данные о проявлении капиллярных сил в процессе заводнения продуктивных пластов. Показательные данные в этом отношении получены при заводнении карбонатных трещиновато-пористых пластов. В Куйбышевской области заводнение карбонатных пластов осуществляется с 1947 г. на многих месторождениях (Калиновском, Мухановском, Яблоновом Овраге, Покровском, Якушкинском и др.). Роль капиллярных процессов в заводнении продуктивных карбонатных пластов всех этих месторождений отчетливо устанавливается сравнением скоростей движения первоначального фронта заводнения и воды с индикатором (флюоресцином) уже в заводненном пласте. Анализ результатов заводнения пластов и опытной закачки воды с различными индикаторами с целью определения направления и скорости движения воды проведен в работах. В качестве примера можно рассмотреть наиболее ранние результаты заводнения пласта I кунгурского яруса Мухаповского месторождения. Залежь разрабатывается с 1947 г. Проницаемость пласта по керну не более 30-50 мд, по промысловым данным 200 - 250 мд. Вязкость нефти 3-5 спз. Запасы нефти около 2 млн. т. На залежи пробурено более 50 скважин с плотностью сетки 2-6 га/скв. До начала 1949 г. из залежи было извлечено примерно 12% запасов нефти - давление снизилось от начального (44 ат) до 22-26 ат. Отмечалось внедрение в залежь контурных пластовых вод. Через 1-1,5 года эксплуатации появилась вода в приконтурных скважинах. В июне 1949 г. начата опытная закачка в приконтурную скв. 19, а затем в скв.41, 102, 63, 99 на восточном участке. В октябре 1950 г. в скв. 19 была закачана вода с раствором флюоресцина. К этому времени все скважины участка (39 скважин) были в разной степени обводнены от 5-6 до 90-95%. Средняя обводненность продукции с участка составляла 43%. Вода с индикатором от скв. 19 была получена в 11 эксплуатационных скважинах (скв.62, 39, 32, 31, 61 и др.), расположенных в первом, втором и третьем рядах от контура нефтеносности на расстоянии 200-850 м от нагнетательной скв. 19. В ближайших скважинах флюорсцен был отмечен через 21-24 ч, а в дальних скважинах - через 2,5 суток после закачки его в скв. 19. Средняя скорость движения воды с флюоресцином составила 12,6 м/ч или 300 м/сутки. Повторные исследования закачки флюоресцина в скв.68, расположенную на противоположном крыле залежи, в 1951г. показали среднюю скорость движения воды 13,6 - 15,2 м/ч, или 360 м/сутки. Скорость молекулярной диффузии флюоресцина (по лабораторным исследованиям) не превышает 0,35 - 0,5 м/ч. Кроме того, флюоресцин адсорбируется породой пласта. Отбор жидкости из залежи в пластовых условиях оставался постоянным и даже в период закачки флюоресцина был меньше, чем в предшествующий период заводнения. Аналогичные результаты были получены при исследовании скорости движения воды в заводненных пластах и всех других указанных месторождений Куйбышевской области. На Восточно-Степановском участке площадного заводнения Калиновского месторождения в 1948 г. скорость движения воды в заводненном пласте составляла 30-50 м/сутки. На месторождении Яблоновый Овраг 240 - 280 м/сутки, на Якушкинском и Покровском месторождениях 120-250 м/сутки и на месторождении Карабулак-Ачалуки 30 - 45 м/сутки. Такие скорости движения воды возможны, конечно, только в сильно трещиноватых пластах. Но скорость движения первоначального фронта заводнения на этих же месторождениях при той же трещиноватости пластов не превышала 250 - 500 м/год, или 0,65-1,5 м/сутки. Как видно, скорость движения воды (с флюоресцином) в заводненных пластах значительно (в 50-150 раз) выше, чем скорость движения первоначального фронта заводнения - фронта вытеснения нефти водой. Если учесть более высокие фильтрационные сопротивления пластов при первоначальном заводнении за счет вязкости нефти, то и тогда это отношение скоростей движения будет не менее чем в 10-20 раз больше. Без участия капиллярных сил в процессе заводнения продуктивных пластов невозможно объяснить столь огромную разницу в скоростях движения первоначального фронта воды и воды "меченой" флюоресцином после заводнения пластов. Очевидно, при первоначальном внедрении воды в нефтенасыщенную зону залежи происходило замедление, "торможение" движения фронта вытеснения нефти водой, которое обусловливалось капиллярной пропиткой. Вследствие трещиноватости и слоистой неоднородности пластов внедрение воды в нефтяные залежи было неравномерным с опережающим заводнением трещин и наиболее проницаемых слоев. Это можно назвать первичным охватом пластов заводнением. Между обводненными трещинами и нефтенасыщенными пористыми блоками создается скачок насыщенности и как следствие высокий капиллярный градиент давления, который направлен на выравнивание насыщенности разных сред. Под действием капиллярного градиента давления происходит пропитка пористых нефтенасыщенных блоков, т.е. вторичный, дополнительный охват заводнением пластов, а следовательно, отток воды из трещин в блоки, что и является причиной "торможения" или замедленного движения первоначального фронта вытеснения нефти водой. После заводнения наиболее крупных трещин и капиллярной пропитки прилегающих к ним окрестностей пористых блоков закачиваемая вода без замедления проходит путь от нагнетательных скважин к эксплуатационным. Таким образом, изложенные результаты исследования скоростей движения воды в карбонатных трещиноватых пластах свидетельствуют о том, что заводнение их сопровождалось капиллярными процессами. Помимо основного заводнения, обусловленного гидростатическим перепадом давления, происходил дополнительный охвват заводнением плотных пористых блоков. При опережающем внедрении воды по трещинам даже при установившемся течении и μн > μв эпюра давлений между контуром питания и зоной отбора такова, что давление в заводненном слое или трещине выше, чем в смежном нефтенасыщенном пористом блоке. Следовательно, в течение всего периода продвижения фронта вытеснения нефти водой из трещин между ними и нефтенасыщенными менее проницаемыми пористыми блоками существует некоторый непостоянный перепад давления. Кроме того, во всех рассматриваемых залежах до закачки воды с индикатором искусственное заводнение осуществлялось при периодически изменяющемся объеме, что также создавало попеременный перепад давления. Однако пропитка пористых блоков за период продвижения фронта вытеснения нефти водой по трещинам полностью не завершена. Достаточно сказать, что по всем указанным месторождениям достигнутая нефтеотдача при заводнении составляет 30-43%. Очевидно, глубина капиллярной пропитки блоков была небольшая. По пласту Б2 месторождения Яблоновый Овраг межслойная капиллярная пропитка наблюдалась на конечной стадии разработки залежи в период консервации ее в 1957 г. При вводе после консервации в эксплуатацию всех скважин обводненность продукции их возросла и достигала даже 100%. Затем через 3-4 месяца обводненность стала снижаться, достигла 92% и в течение последующих 1,5-2 лет оставалась ниже, чем была до консервации. За этот период дополнительная добыча нефти составила более 12,5 тыс. т, что соответствует повышению нефтеотдачи на 0,6-0,75%. Столь значительное снижение обводненности добываемой продукции свидетельствовало о повышении содержания подвижной нефти в заводненных слоях и трещинах, т.е. о явлении "перемешивания" нефти и воды в послойно обводненном пласте. Эти результаты могли быть обусловлены, очевидно, только проявлением капиллярных сил, т.е. межслойной капиллярной пропиткой. В результате происходил переток нефти из менее проницаемых нефтенасыщенных слоев в высокопроницаемые заводненные, снижение фазовой проницаемости для воды и повышение ее для нефти. Таким образом, капиллярные процессы происходят в самых разнообразных условиях при заводнении продуктивных нефтеносных пластов. 3. О механизме капиллярной пропитки в реальных нефтеносных пластахТеория и механизм капиллярных процессов в пористых средах изучались в работах. На основе экспериментальных и промысловых исследований нами сделана попытка выяснить лишь элементы механизма - направление линий тока при капиллярной пропитке и условия преодоления прерывистости капиллярных сил в пористой среде. Для выяснения этих вопросов полезно отметить одно не имеющее удовлетворительного объяснения явление. Не вызывает сомнения, что пласты, занимаемые современными залежами нефти, первоначально были полностью водонасыщенными и гидрофильными. В период формирования нефтяных залежей, следовательно, происходило вытеснение воды нефтью, т.е. вытеснение более смачивающей поверхность пор жидкости менее смачивающей. Причем образование нефтяных залежей в структурных ловушках произошло при однократном замещении объема воды нефтью. И тем не менее нефтенасыщенность неоднородного по свойствам объема залежей или водоотдача их при вытеснении воды нефтью достигла 90-94%. Даже из наименее пористых и проницаемых слоев пласта нефть вытеснила более 70 - 80% воды, а слоев, линз и зон, не охваченных "занефтением" (противоположно заводнению), в объеме нефтяных залежей, как правило, не наблюдается, т.е. коэффициент охвата пласта "занефтением" равен единице. В процессе же разработки нефтяных месторождений при вытеснении менее смачивающей жидкости (нефти) более смачиваемой (водой) нефтеотдача в лучших физико-геологических условиях не превышает 0,0-0,65, в заводненных слоях коэффициент вытеснения не превышает 0,7-0,8, а коэффициент охвата заводнением значительно меньше единицы (0,6 - 0,85) даже при многократной промывке залежей водой. Чем же объясняется высокая эффективность вытеснения из гидрофильных неоднороднослоистых пластов воды нефтью и меньшая эффективность вытеснения нефти водой? Почему капиллярные силы не воспрепятствовали гравитационным силам в формировании единых нефтяных залежей в сильно неоднородных и расчлененных пластах? По-видимому, только в условиях нейтрализации или многократного нарушения равновесия капиллярных сил могло происходить заполнение объема заложи в полном соответствии с проявлением сил тяжести. Нейтрализация или нарушение равновесия поверхностно-молекулярных сил в процессе формирования нефтяных залежей могли обуславливаться различного рода колебаниями пласта и изменениями структуры пористой среды - тектоническими и колебательными процессами в земной коре, динамическим метаморфизмом пластов, пластической необратимой деформацией пористой среды и др. На основе многочисленных и разнообразных исследований капиллярных процессов от отдельных поровых каналов до реальных продуктивных пластов можно констатировать, что механизм движения воды и нефти в пористой среде под действием внутренней энергии весьма сложен и описать все его признаки для разнообразных реальных условий, по-видимому, невозможно. Вместе с тем доказано, что движение нефти и воды в пористой среде обуславливается не только природными физико-геологическими свойствами системы нефть - вода - порода, но и внешними факторами: величиной давления, скоростью фильтрации, температурой и др. Следовательно, и механизм и активность капиллярных процессов при заводнении нефтеносных пластов не являются неизменными и нерегулируемыми. Наиболее доступно для воздействия на капиллярные процессы в реальных условиях, очевидно, изменение давления и скорости фильтрации, которые поддаются регулированию при разработке нефтяных залежей. Можно определить, какое состояние этих внешних факторов - установившееся или неустановившееся - благоприятствует проявлению капиллярных процессов при заводнении. Микроскопическими исследованиями процесса заводнения гидрофильных пород установлено, что вытеснение нефти водой за счет поверхностно-молекулярных сил может происходить в двух формах (видах): 1) вытеснение нефти, вызванное течением воды по пленке, находящейся на гидрофильной поверхности пор, - пленочное внедрение воды в нефтенасыщенную зону пласта; 2) вытеснение нефти из мелких поровых каналов, соединенных с крупными порами, движущимися менисками, - менисковое вне- дрение воды в нефтенасыщенную зону пласта. В послойно заводненном пласте капиллярное движение нефти и воды обоих этих видов обусловливает выравнивание насыщенности заводненных и нефтенасыщенных слоев вследствие взаимного обмена жидкостями и межслойных противотоков нефти и воды. При пленочном внедрении воды встречное движение происходит в пределах отдельных поровых каналов. По поверхности каналов вода внедряется в нефтенасыщенную зону, а по центральной части их нефть движется во встречном направлении в водонасыщенную зону. Менисковое внедрение воды в нефтенасыщенную зону происходит по каналам меньшего диаметра (сечения), нефть из них вытесняется в более крупные каналы, а по ним - в заводненную зону. В реальных условиях нефтеносных пластов, т.е. с четочной структурой и неоднородной внутренней энергетической характеристикой (изменчивой смачиваемостью) поровых каналов, этот процесс капиллярного движения жидкостей значительно усложняется. Рис.4 Капиллярное движение жидкости в канале переменного сечения (по М.М. Кусакову и Д.Н. Некрасову). Наличие гидрофобных участков на поверхности пор и изменяющийся диаметр поровых каналов обусловливают так называемый капиллярный гистерезис и прерывистый характер капиллярного движения нефти и воды. На гидрофобных участках пор и расширениях поровых каналов самопроизвольное пленочное и менисковое движение воды прекращается вследствие изменения формы менисков и величины контактных углов смачивания. Движение жидкости в каналах переменного сечения (рис.4) под давлением, возникающим на мениске, изучалось М.М. Кусаковым и Д.Н. Некрасовым. Было установлено, что самопроизвольное перемещение границы раздела жидкостей продолжается до тех пор, пока приращение потенциальной энергии по высоте (длине) канала не становится равным нулю (dU/dh=0), т.е. до отметки, на которой достигается равенство капиллярного давления гравитационному перепаду его. Эти отметки в каналах авторами названы "равновесными высотами". На рис.4 равновесные высоты фиксируются пересечением эпюр капиллярного давления и гравитационного перепада по длине канала. В послойно заводненных пластах капиллярная пропитка происходит вследствие менискового внедрения воды в нефтенасыщенные слои или пористые блоки из заводненных слоев или трещин по бесчисленному множеству сообщающихся неточных поровых каналов. Причем четочный характер каналов, по которым происходит капиллярное внедрение воды, обусловливается пересечением их каналами в направлении, не совпадающем с капиллярной пропиткой. Поэтому даже при избирательной фильтрации жидкости в поровых каналах в процессе пропитки на пути движения менисков будут встречаться расширения каналов случайных размеров. Капиллярное давление по высоте каждого канала является обратной функцией среднего радиуса канала в каждом сечении. Если ограничить радиус сечения на перекрестке каналов суммой радиусов пересекающихся каналов, то распределение капиллярного давления по высоте каналов над плоскостью водо-нефтяного контакта будет отображаться эпюрой, показанной на рис.5. Как видно, в любой плоскости, параллельной водо-нефтяному контакту, капиллярное давление в каналах различно. Разница внутренних давлений по высоте каналов будет еще большей при наложении на эпюру капиллярных давлений энергетической неоднородности поровых каналов. Поэтому при наличии сообщаемости между каналами существует перепад капиллярных давлений. За счет этого перепада давления и возможен капиллярный противоток нефти и воды, т.е. менисковое внедрение воды в нефтенасыщенную зону по мелким каналам с вытеснением нефти по наиболее крупным каналам в заводненные слои. Причем в один крупный поровый канал нефть может вытесняться из нескольких каналов меньшего сечения одновременно или поочередно в соответствии с балансом расхода нефти и воды и замедлением движения менисков в расширениях каналов. Глубина проникновения или высота подъема менисков в каналах меньшего диаметра будет определяться "равновесными высотами". На рис.5 эти высоты отмечены штриховкой. Теоретически равновесных высот может быть бесконечно много. Для каждого канала высота капиллярного подъема границы раздела нефть - вода (мениска) согласно работе определяется из соотношений: Hpg = 2σ *cosθ/ r, r = f (h) (6)Исходя из энергетической неоднородности пористой среды, т.е. разнород-ности смачиваемости поверхности пор, к этим соотношениям следует добавить еще одно:cosθ = φ (h) (7)где φ (h) - некоторая зависимость смачиваемости поверхности канала от высоты над водонефтяным контактом; f (h) - зависимость радиуса r канала от высоты над плоскостью контакта заводненных и нефтенасыщенных слоев. Расчеты, проведенные по рассмотренной схеме (рис.5) и реальные размеры поровых каналов смачиваемости и плотности нефти и воды, показывают, что средняя минимальная равновесная высота подъема менисков в микронеоднородной пористой среде при статических условиях, т.е. за счет лишь внутренней энергии, не превышает 10-15см. Следовательно, самопроизвольная капиллярная пропитка нефтенасыщенных пористых сред и, в частности, в послойно заводненном пласте происходить может, но глубина ее незначительна. Очевидно, для преодоления менисками в четочных поровых каналах равновесных высот и увеличения глубины капиллярной пропитки необходима некоторая дополнительная внешняя энергия. Затемненные площади рис.5, образованные пересечением эпюр капиллярного давления и гравитационного перепада по высоте каналов, эквивалентны дополнительной внешней энергии (работе), необходимой для преодоления мениском равновесных высот. Видимо, глубокая капиллярная пропитка нефтенасыщенных пористых сред будет происходить при условии, когда равновесные высоты будут преодолеваться мениском при помощи внешних сил. В условиях прерывистой и разнородной смачиваемости поверхности пор пленочное движение воды также возможно, только оно не обеспечивает существенной пропитки водой нефтенасыщенных слоев. Однако смачиваемость поверхности пор переменна. Под действием внешних факторов может происходить усиление или даже инверсия смачиваемости пористой среды, для чего, очевидно, также требуется дополнительная внешняя энергия. Как показано, капиллярная пропитка нефтеносных пластов происходит в самых разнообразных условиях заводнения и может быть довольно существенной и глубокой. Но всем наблюдаемым в реальных условиях заводнения пластов капиллярным явлениям свойственна общая аналогия - капиллярные процессы происходили при наличии избыточного или неустановившегося (переменного по знаку) давления в водонасыщенной среде. По-видимому, именно эти условия в пласте являются благоприятными для активной капиллярной пропитки. Неустановившееся состояние в пласте или избыточное давление в водонасыщенной среде, созданное искусственно при заводнении, очевидно, и представляет ту дополнительную внешнюю энергию, необходимую для преодоления менисками равновесных высот и инверсии смачиваемости гидрофобных участков поверхности пор. Следовательно, капиллярные процессы при заводнении неоднородных нефтеносных пластов регулируемы и воздействовать на ход этих процессов можно обычными технологическими средствами. Это подтверждается многочисленными экспериментальными исследованиями. Установлено, что с повышением гидрофильности пород уменьшается остаточная нефтенасыщенность, т.е. увеличивается полнота вытеснения нефти. Поэтому для повышения степени заводнения нефтенасыщешшх слоев и более полной отмывки нефти в послойно обводненных пластах, обладающих разнородной смачиваемостью, следует стремиться к увеличению гидрофилизации пластов. Ряд исследований указывает на то, что гидрофильность пород можно увеличивать искусственно путем повышения давления, температуры и скорости фильтрации. В работах показано, что с повышением давления увеличивается поверхностное натяжение на границе нефти с водой, происходят уменьшение избирательного угла смачивания водой поверхности пор и увеличение капиллярного вытеснения. Интересное явление установлено в работе. Пористая среда, обладающая разнородной смачиваемостью, не имеет на поверхности пор непрерывного слоя воды, который разорван проникшей нефтью, и на отдельных участках нефть контактирует непосредственно с поверхностью пор. При малых скоростях движения жидкости в пористой среде такая прерывистая пленка воды на поверхности пор сохраняется, однако с увеличением скорости фильтрации происходят отрыв капель нефти от поверхности пор и восстановление сплошного слоя воды. Иными словами, пористая среда, обладающая смешанной смачиваемостью, при высоких скоростях движения жидкости становится гидрофильной. Инверсия смачиваемости обусловливается искусственно созданными градиентами давления. По-видимому, повышением гидрофилизации пласта, а следовательно, и усилением капиллярной пропитки неоднородной пористой среды при высоких скоростях вытеснения объясняются результаты работ, в которых получено, что с увеличением скорости вытеснения повышается нефтеотдача неоднородной системы за счет более полного заводнения менее проницаемых и застойных зон. Причем в работе отмечается "разрушение" застойных зон, капиллярная пропитка их при высоких скоростях движения жидкости. Наличие же внешнего перепада давления между водонасыщенной и нефтенасыщенной средами способствует преодолению менисками расширений поровых каналов при четочном строении их. Таким образом, в реальных нефтеносных пластах, обладающих слоистой макронеоднородностыо и неоднородностью внутренней структуры пористой среды, происходят капиллярные процессы, направленные на повышении водонасыщенности нефтенасыщенных слоев и увеличение нефтенасыщенности заводненных слоев. Эти процессы сопровождаются встречным движением (противотоками) нефти и воды под действием внутренней энергии пластов. Однако при стационарных условиях в пласте возможности самопроизвольной капиллярной пропитки в послойно заводненных слоях весьма ограничены. Чтобы капиллярные процессы при заводнении пластов имели практическое значение и способствовали повышению охвата пластов заводнением, требуются определенные технологические условия разработки и мероприятия по регулированию их. Для повышения гидрофильности пластов, усиления капиллярного вытеснения нефти водой из слабопроницаемых слоев и зон в заводненные высокопроницаемые, для повышения коэффициента вытеснения и коэффициента охвата заводнением неоднородных пластов необходимо увеличивать скорости движения жидкости и создавать неустановившееся состояние давления в пластах или избыточное давление в водонасыщенных слоях. На практике это осуществимо при импульсном воздействии на пласты или цикличной закачке воды. 4. Характеристика капиллярных противотоков в микронеоднородной пористой средеНа основе экспериментальных и промысловых исследований было показано, что капиллярные процессы при заводнении нефтеносных пластов сопровождаются встречными движениями, противотоками нефти и воды. В работе получены экспериментальные зависимости для расхода, скорости и глубины капиллярной пропитки. Рис.6 Схема микронеоднородной пористой среды, мсжслойных и капиллярных противотоков нефти и воды и вытеснения остаточной нефти при pk - pc ≠ const Аналогичные зависимости можно получить и аналитическим путем. Как уже отмечалось, исследованиями установлено, что микронеоднородность пористой среды может выражаться некоторой функцией распределения пор по размеру F (δ). Для песчаника, например, распределение пор по размеру подчиняется нормальному или логарифмически нормальному закону с диапазоном изменения размеров пор от нуля до 500 мк и более. В этих условиях, исходя из классической зависимости между капиллярным давлением и размером поровых каналов, очевидно, что при капиллярном межслойном противотоке внедрение воды в нефтенасыщенные слои происходит по наиболее мелким, а переток нефти по более крупным поровым каналам (рис.6). Расход жидкости и скорость внедрения воды при капиллярной пропитке можно выразить через функцию распределения размеров пор. Плотность вероятности распределения размеров пор при логарифмически нормальном законе описывается выражением f (δ) = (8) где δ - размер, или сечение, поровых каналов; σ - стандартное отклонение; lnε - среднее значение ln δ. Функция распределения размеров пор F (δ) = f (δ) d (δ) (9) Связь между средней проницаемостью среды kср и размерами поровых каналов устанавливается в виде (10) где Г0 = χ / l - коэффициент извилистости, т.е. отношение длины пути χ, пройденного жидкостью, к геометрической длине l пористой среды. Фактически коэффициент извилистости Г0 отображает избирательный характер фильтрации жидкости в микронеоднородной пористой среде и, следовательно, может выражаться через плотности вероятности распределения размеров пор, т.е. Гo = f (δ) max / f (δ) i (11) Можно полагать, что в процессе капиллярной пропитки фильтрация жидкости происходит избирательно, как и при движении за счет внешнего перепада давления. Тогда в любом сечении пласта, нормальном направлению капиллярной пропитки, поры с размерами 0 ≤ δ ≤δi,. будут затоплены водой, а с размерами δ ≤ δi ≤ δшах нефтенасыщенны (рис.7). Причем суммарный расход жидкости через любую такую плоскость равен нулю, т.е. qв = - qн = [S kгар (∆pk ± h∆γ)] / μcphcpГ0 (12) где kгар - средняя гармоническая проницаемость по линии тока жидкости, определяемая по формуле: kгар = 2/ (1/kср. в + 1/ kср. н) (13) Рис.7 Распределение размеров пор в песчанике, k = 1д, m = 18,4% (по В.Н. Николаевскому и А.Ф. Богомоловой) 1 - размеры пор, в которые внедряется вода; 2 - размеры пор, из которых вытесняется нефть. kcp. в, kcp. н - средняя проницаемость поровых каналов, соответственно заполненных водой и нефтью; ∆рк-разность средних капиллярных давлений в водонасыщенных поровых каналах и нефтенасыщенных: ∆рк = рк. в (0÷ δi) - рк. н (δi ÷ δmax) (14) δср. в, δср. н - средние значения размеров водонасыщенных и нефтенасы-щенных каналов, определяемые соотношениями (15)
δi - размер самого крупного порового канала, затопленного водой; h - глубина (высота) капиллярного внедрения воды в нефтенасыщенный слой; ∆γ - разность удельных весов воды и нефти; тв и тн - пористость заводненных и нефтенасыщенных поровых каналов соответственно; μср= (μн+ μв) /2 - средняя вязкость жидкости по пути фильтрации; S - площадь поверхности фильтрации. В формулах (13) и (15) kcp. в и kcp. н определяются из соотношения (10) при замене пределов интегрирования в числителе от 0 до δi и от δi до δmax соответственно. Капиллярный перепад давления при капиллярном противотоке значительно проще можно определить другим путем. По распределению размером пор можно получить распределение капиллярного давления, которое ввиду обратной зависимости капиллярного давления от размера пор будет выражаться в виде: F (pk) = 1 - F (δ) (16) Статистическое среднее значение капиллярного давления в микронеоднородной пористой среде можно определить через функцию распределения: (17) где рк0 - капиллярное давление в самых мелких поровых каналах; ркт - капиллярное давление в самых крупных каналах (трещинах). Для определения перепада капиллярных давлений при противотоке необходимы средние значения их для заводненных ркв, нефтенасыщенных ркн каналов, которые равны: (18) (19) где α=4σcosθ; рк, ркi и ркт капиллярные давления соответственно в поровых каналах с размером δmin, δi и δmах. Теперь можно определить глубину капиллярного внедрения воды в нефтенасыщенные слои, застойные зоны и линзы. Из условия материального баланса qвt = Shcp ηв δср. в/δср = V ηв ηo (20) Из соотношений (12) и (20) можно получить зависимость для глубины пропитки пористой среды при капиллярном противотоке без учета гравитационных сил: (21) ηв - коэффициент вытеснения нефти водой в заводненных каналах; η0= δср. в/δср - коэффициент охвата заводнением нефтенасыщенных слоев при капиллярном противотоке. Остальные параметры кгар, Г0, δср и ∆рк определяются по соотношениям (13), (11), (15), (18) и (19). Подставив их в (21) и приняв mв = mн = m/2, что следует из равенства суммарного расхода жидкости при противотоке нулю, получим выражение для глубины капиллярной пропитки: (22) которое аналогично ранее полученному экспериментально в работе [11]. По соотношениям (21) или (22) можно определить не только среднюю глубину, но и скорость капиллярной пропитки. Приняв следующие значения параметров, входящих в формулу (22): σ = 30 дин/см2, соsθ = 0,6, ηв = 0,9, μср=2 спз, Г0 = 2, а значения т = 18%, кср= 1д, кср. н=1,6 д, кср. в=0,4 д, в соответствии с распределением размера пор реального песчаника из работы получим: средняя глубина капиллярной пропитки в течение 1сек с начала пропитки составит 0,05 см, через 1 ч достигнет 3 см, через 1 сутки 14,7 см, через 1 месяц 80,5 см, через 1 год 2,8 м и т.д. Как видно, скорость капиллярной пропитки затухает во времени, а глубина пропитки даже в идеализированных условиях пористой среды - постоянного сечепия каналов и смачиваемости - в течение длительного периода не превышает минимальной мощности нефтенасыщенных слоев при послойном заводнении реальных пластов. Если же учесть, что капиллярная пропитка в реальных условиях должна происходить в пористой среде с неточными поровыми каналами и переменной смачиваемостью, то значения глубины капиллярного внедрения воды во времени будут значительно меньшими. 5. Влияние капиллярной пропитки на показатели заводнения неоднородных пластовОпыт разработки нефтяных месторождений свидетельствует о том, что вследствие слоистой неоднородности продуктивных пластов происходит их послойное обводнение, в результате чего на контакте заводненных и нефтенасыщенных слоев создается резкий скачок насыщенности. Капиллярные силы образуют некоторую "размытую" зону, где насыщенность меняется от начальной до насыщенности в заводненном слое, подобно "стабилизированной зоне" на фронте вытеснения. Исходя из этого, процесс заводнения неоднородных пластов можно представить в следующем виде (рис.6). При фронтальном вытеснении происходит послойный охват заводнением, а под действием капиллярных сил - дополнительно межслойный охват заводнением смежных менее проницаемых нефтенасыщенных слоев. Следовательно, полный коэффициент охвата неоднородного пласта наводнением: βохв. полн= βохв. посл + βохв. кап (23) где βохв. посл - коэффициент охвата при послойном заводнении; βохв. кап - дбполнительный коэффициент охвата вследствие капиллярной пропитки. Для определения охвата неоднородных пластов при фронтальном послойном заводнении βохв. посл в настоящее время имеется уже много методов, которые не учитывают капиллярной пропитки и предполагают существование статического скачка насыщенности между заводненными и пефтенасыщенными слоями. Поэтому представляет интерес метод оценки дополнительного охвата заводнением пластов за счет капиллярной пропитки. Рассмотрим пласт, состоящий из слоев различной проницаемости. Изменение проницаемости от слоя к слою описывается некоторой функцией распределения F (к), соотношение вязкостей нефти и воды µ0= 1. Пусть на момент tа полностью заводнились слои с проницаемостью k ≥ kа. Слои с проницаемостью k ≤ kа заводнились лишь частично. Текущий дополнительный коэффициент охвата заводнением пласта за счет капиллярной пропитки в общем виде равен: βохв. кап = S h (24) где S - текущая поверхность контакта нефти и воды; h - текущая высота (глубина) капиллярной пропитки или "размытой зоны". Вследствие бессистемного случайного характера расположения заводненных слоев и объеме залежи с ними могут оказаться в контакте нефтенасыщенные слои любой проницаемости k < kа. Из этого следует, что плотность вероятности поверхности контакта отдельных заводненных слоев f (S) адэкватна плотности вероятности распределения проницаемости в пласте f (k), т.е. f (S) = f (k). Безразмерная поверхность всех полностью заводненных слоев равна 1-f (ka). Суммарная поверхность обводнения слоев, которые затоплены водой лишь частично, равна отношению (kи. ср/ kа) L F (kа). Вероятность того, что все обводненные слои будут по всей их поверхности контактировать с нефтенасыщенными, равна 1 - βохв. посл. С увеличением коэффициента охвата пласта заводнением повышается вероятность слияния обводненных трубок тока, вследствие чего уменьшается и поверхность контакта нефти с водой. Следовательно, текущая безразмерная поверхность контакта нефти с водой может быть выражена следующим соотношением: S = [1 - F (ka) + (kн. ср/ ka) L F (ka)] (1 - βохв. посл) (25) где F (ka) - интегральная функция распределения для проницаемости ka, или доля объема пласта проницаемостью ka от общего объема; kн. ср - средняя проницаемость нефтенасыщенной части пласта; βохв. посл - текущий коэффициент охвата заводнением пласта (на момент прорыва воды по слою с проницаемостью ka); L - длина от контура залежи до линии отбора жидкости, которая принимается равной единице. Для глубины капиллярной пропитки можно написать: dh = υпропdt (26) где υпроп - скорость капиллярной пропитки; t-продолжительность пропитки. В работе показано, что при капиллярном противотоке сохраняется закон Дарси, поэтому: υпроп = (∆pкапkcp) / hμ (27) Перепад капиллярного давления при противотоке с учетом гравитационных сил равен: ∆pкап = (2σ cosθ) / c √ (kcpm) (28) где σ - поверхностное натяжение на контакте нефти с водой; θ-угол смачивания; т - пористость; с = 2/7*103 порометрический коэффициент; kcp= χ2 kн - средняя проницаемость нефтенасыщенных зон пласта для капиллярной пропитки (по нормали к поверхности контакта нефти и воды); χ - коэффициент анизотропии, учитывающий уменьшение проницаемости в вертикальном направлении. Имея в виду, что путь, проходимый контуром при фронтальном вытеснении по какому-либо слою к моменту прорыва воды по слою с проницаемостью ka, равен x = k L / ka, приращение времени капиллярной пропитки dt можно заменить и представить в виде: dt = (m μ L dx) / k ∆p = (L2 m kcp) / ∆p ka k (29) Подставив (27), (28) и (29) в (26), получим соотношение: (30) Решение этого уравнения дает зависимость для глубины капиллярной пропитки в неявном виде. Если же учесть, что в послойно обводненном пласте она одновременно может происходить и вверх и вниз, а суммарное действие гравитационных сил при этом будет весьма малым, то, пренебрегая вторым слагаемым в скобках выражения (30) и проинтегрировав его, получим зависимость для глубины капиллярной пропитки. (31) Теперь, подставив вместо S и h соотношения (25) и (31) в (24), найдем зависимость дополнительного коэффициента охвата заводнением за счет капиллярной пропитки от поверхностно-капиллярной характеристики пласта, темпа разработки и степени заводнения залежи. Прямым следствием капиллярной пропитки (противотоков) послойно обводненных пластов будет "перемешивание" нефти и воды - повышение нефтенасыщенности заводненных слоев и водонасыщенности нефтенасыщенных слоев, т.е. выравнивание насыщенности фаз в объеме залежи. В результате этого в заводненных слоях будет появляться подвижная нефть, а в нефтенасыщенных - подвижная вода, что в свою очередь будет обусловливать изменение соотношения расходов нефти и воды, т.е. обводненности добываемой продукции. При наличии капиллярных противотоков в послойно обводненном пласте содержание нефти в добываемой продукции на момент прорыва воды по слою с проницаемостью kа будет определяться выражением: (33) Здесь hн = F (kа) - мощность нефтенасыщенных слоев; hв = 1-F (kа) - мощность заводненных слоев; k'н (s), k'в (s) - фазовые проницаемости для нефти и воды в заводненных слоях; k'н, k'в - фазовые проницаемости для нефти и воды в зоне капиллярной пропитки. Проницаемость для нефти и воды в заводненных слоях и зоне капиллярной пропитки является функцией насыщенности соответствующей фазой. Согласно исследованиям в зоне капиллярной пропитки можно принимать насыщенность нефтью и водой одинаковой sн = sв = 0,5, хотя это условие, по-видимому, необязательно для всех случаев пропитки. Нефтенасыщенность для заводненных слоев будет равна: Sн = Sо. н + (βохв. кап 0,5/βохв.) (34) где Sо. н - остаточная нефтенасыщешшсть заводненных слоев. Зная насыщенности различных зон пласта на разных этапах заводнения, по графикам относительных проницаемостей можно определить фазовые проницаемости для нефти и воды и содержание нефти в добываемой продукции с учетом капиллярной пропитки. Для определения kв`, kв`, kн`, kн`, можно использовать аппроксимационные зависимости фазовых проницаемостей работы. Тогда содержание нефти в добываемой продукции будет выражаться отношением. Относительный объем жидкости, прокачанной через пласт при заводнении с капиллярной пропиткой, выражается отношением: τ = kcp / ka kор - средняя проницаемость всего пласта. Выше рассмотрен метод определения дополнительного охвата заводнением вследствие капиллярной пропитки для неоднородно-слоистого пласта, когда изменение проницаемости слоев описывается некоторой функцией распределения F (k). Для условий трещиноватого пласта, т.е. при заводнении пласта, состоящего из системы слабопроницаемых блоков и высокопроницаемых трещин, характеристика капиллярной пропитки будет, очевидно, иной. В экспериментальных работах на основе изучения капиллярной пропитки водой пористых блоков показано, что функция пропитки достаточно хорошо для практических целей аппроксимируется зависимостью: t=tα (36) где т - пористость блоков; Sа - насыщенность блоков водой к моменту времени tа; S - осредненная удельная поверхность блоков; А - постоянный коэффициент; μн - вязкость нефти. Расход воды, поступающей в блоки породы через поверхность F (χ1 χ2 χ3, ν) (где χ - координаты; v - некоторый момент времени), ограничивающую объем пласта V (v), охваченного заводнением к моменту времени v ≤ t, определяется: ∫ φ [t-ν (χ1 χ2 χ3,)] dν = q (t) (37) Если в выражении (36) время заменить интегралом (29), то оно будет идентично (31). Это дает возможность при расчетах дополнительного охвата капиллярной пропиткой трещиновато-пористых пластов глубину капиллярного внедрения воды в (24) приближенно определять как длину стабилизированной зоны, полагая, что x ≈ λ: h = λ = ξ* - ξ/* = T*a / aa (38) где q - расход воды, отнесенный к единице мощности h, ширине пласта b и осредненному размеру блока l*; ξ* = (χ + λ) / l* координата фронта пропитки; ξ/* = χ / l* - координата фронта вытеснения за счет внешнего перепада давления; T*a - время образования стабилизированной зоны в пористой среде со средней проницаемостью; T* - время пропитки каждого элемента пористой среды с проницаемостью kcp*, определяемое из опыта (практически постоянно). Распределение насыщенности в каждый момент времени, необходимое для определения относительных проницаемостей kв`, kв``, kн`, kн``, при расчете изменения содержания нефти в добываемой продукции можно находить из формулы: Ф (S) = kв` (s) / [kв` (s) + kн` (s)], μ0 = 1 (39), (40) При принятых допущениях q (Т) = соnst, когда τ (ξ) = T - T*, Уравнение (40) принимает вид: Ф (s) = 1 - [φ (T) λ / q (T)] (41) Таким образом, зависимости (25), (31), (38) позволяют определять в процессе заводнения пластов наиболее интересные элементы возможной капиллярной пропитки - поверхность контакта заводненных и нефтенасыщенных слоев S и глубину межслойного проникновения воды или в пористые блоки h. На основе этих элементов зависимости (32), (35), (38) и (41) дают возможность оценивать влияние капиллярной пропитки на коэффициент охвата заводнением неоднороднослоистых и трещиноватых пластов и содержание нефти в добываемой продукции. Как видно из рис.8, дополнительный коэффициент охвата заводнением за счет капиллярной пропитки при принятых условиях составляет в среднем βохв. кап = 0,08 - 0,085. Если реальный пласт при заводнении будет представлять собой бессистемное расположение заводненных трубок тока ("шнурков") в объеме залежи или сильно трещиноватую систему, то дополнительный коэффициент охвата может достигать 0,16 - 0,20 и более. Однако указанные значения коэффициента охвата заводнением пласта за счет капиллярной пропитки нельзя рассматривать как обязательный "прибавочный коэффициент охвата" независимо от условий эксплуатации. При определении глубины капиллярной пропитки (31) было принято допущение, что пористая среда состоит из непрерывных каналов постоянного сечения, обладающих постоянной и одинаковой смачиваемостью поверхности, В реальных пластах эти условия не соблюдаются. Поэтому, как показано выше, вода самопроизвольно проникать из заводненных слоев в нефтенасыщенные под действием капиллярных сил не может глубоко. Чтобы дополнительный охват заводнением пластов под действием капиллярных сил был достаточно высоким, необходимо создать определенные технологические условия. Способствовать увеличению глубины капиллярной пропитки, а следовательно, и дополнительному охвату пластов заводнением можно только созданием неустановившегося давления в пластах или многократным переменным гидростатическим перепадом давления между водонасыщенной и нефтенасыщенной зонами, что практически возможно осуществить цикличной закачкой воды или цикличным отбором жидкости. ВыводыКапиллярные процессы в заводнении нефтеносных пластов, имеют большое значение вследствие послойного их обводнения и неоднородности внутренней структуры пористой среды. Четочное строение поровых каналов и переменная смачиваемость их поверхности обусловливают прерывистый характер капиллярных сил и ухудшают условия для самопроизвольной капиллярной пропитки. Промысловыми исследованиями устанавливаются капиллярные процессы в самых разнообразных условиях заводнения: при вскрытии продуктивных пластов и выносе керна, при простое обводненных эксплуатационных скважин и закачке воды в нагнетательные, при цикличном отборе жидкости из обводненных залежей и заводнении трещиновато-пористых пластов. Во всех этих условиях капиллярные процессы сопровождались встречным движением воды в нефти (противотоком) - вода внедряется по мелким поровым каналам в нефтенасыщенные зоны, а нефть - по крупным каналам в заводненные зоны. Самопроизвольная капиллярная пропитка в реальных условиях микронеоднородных пластов протекает медленно и на небольшую глубину. Все наблюдаемые на практике капиллярные процессы протекают или при неустановившемся попеременно изменяющемся давлении в пластах, или при избыточном давлении в водонасыщенной среде. Капиллярные процессы в нефтеносных пластах поддаются внешнему воздействию и регулированию обычными технологическими средствами. Благоприятные условия для глубокого капиллярного внедрения воды в нефтенасыщенные слои, блоки и зоны возникают при переменном давлении в пласте, что обусловливает нарушение равновесия капиллярных сил и способствует преодолению менисками равновесных высот. Такие условия могут быть созданы при цикличной закачке воды в пласт или цикличном отборе жидкости из пластов. Получена характеристика капиллярных противотоков нефти и воды в пластах на основе отображения микронеоднородности пористой среды функцией распределения размеров пор и поровых каналов при избирательной фильтрации. Эта характеристика позволяет определять глубину и скорость межслойной капиллярной пропитки. Скорость капиллярного внедрения воды в нефтенасыщенные слои из обводненных уменьшается во времени. Рассмотрен метод прогноза показателен заводнения неоднородных пластов с учетом межслойной капиллярной пропитки в заводненных зонах пластов. Получены зависимости для определения динамики коэффициента охвата заводнением пластов и содержания нефти в добываемой продукции при условии межслойных капиллярных противотоков нефти и воды. Дополнительный коэффициент охвата заводнением пластов вследствие капиллярных процессов может достигать 8-16% и более в зависимости от состояния заводнения пластов, а также физико-геологических и поверхностно-молекулярных свойств системы. Список использованных источников1. Асадов А.Ш. Влияние температуры на капиллярное вытеснение нефти водой Азерб. нефт. хоз., № 7, 1963. 2. Бабалян Г.А. Механизм нефтеотдачи пласта. Азнефтеиздат, 1956 3. Бабалян Г.А., Кравченко И.И., Мархасин И.Л. Физико-химические основы применения поверхностно-активных веществ при разработке нефтяных пластов Гостоптехиздат, 1962. 4. Баренблатт Г.И., Желто в Ю.П. Об основных уравнениях фильтрации однородных жидкостей в трещиноватых породах. ДАН СССР, т.132, № 3, 1960. 5. Везиров Д.Ш., Кочешков А.А. Экспериментальное исследование нефтеотдачи трещиновато-пористых коллекторов при заводнении. Изв. АП СССР. Механика и машиностроение, № 6, 1963. 6. Гиматудинов Ш.К. Физика нефтяного пласта. Гостоптехиздат, 1963. Страницы: 1, 2 |
|
© 2000 |
|