РУБРИКИ |
Гидродинамические методы исследования скважин на Приразломном месторождении |
РЕКЛАМА |
|
Гидродинамические методы исследования скважин на Приразломном месторожденииЗабойным давлением называется давление флюидов в действующих добывающих и нагнетательных скважинах на глубине середины интервала перфорации. В добывающих скважинах забойное давление меньше пластового на величину забойной депрессии давления, в нагнетательных скважинах превышает пластовое на величину забойной депрессии. Забойные давления определяются с целью гидродинамических исследований скважин и контроля работы скважин и скважинного оборудования путём прямого измерения глубинным манометром непосредственно на забое скважин. Забойное давление определяется по формуле: (3.1) Н=Н з. в. =ВНК+ амплитуда ротора + удлинение. j см. - уд. вес смеси в зависимости от% воды. Определение пластового давления. Под пластовым давлением в скважине понимается величина давления на её забое в период её остановки (режим q=0). Пластовое давление в скважинах определяется при их исследовании (методом установившихся отборов для) получения данных, используемых при построении карт изобар и для контроля работы скважин. Пластовое давление в скважине определяется путём прямого измерения глубинными манометрами непосредственно на забое скважины в период её остановки. Пластовое давление рассчитывается по формуле: (3.2) Н з. в. =ВНК+ амплитуда +удлинение Н зам. - глубина замера jсм. - уд. вес смеси Снятие индикаторных кривых методом установившихся режимов. При исследовании методов отборов непосредственно измеряется дебит добывающей скважины и соответствующее значение забойного давления последовательно на нескольких, достаточно близких к установившимся, режимах эксплуатации скважин. Методом установившихся отборов определяется коэффициент продуктивности добывающей скважины. (3.3) Q - дебит скважины Р - разность между пластовым и забойным давлениями. 4. исследование методом восстановления давления (неустановившийся режим). Метод восстановления давления используется для изучения гидродинамических характеристик скважин и фильтрационных свойств пластов в их районе. В результате обработки материалов исследований скважин методом восстановления давления определяются комплексные параметры: гидропроводность пласта, коэффициенты проницаемости, пьезопроводности. Обработка результатов осуществляется в следующем порядке: По данным промысловых исследований строится график зависимости изменения забойного давления р от lg t: р =P (t) - Pзаб., где P (t) - текущее забойное давление скважины, t - время, отсчитываемое с момента остановки или изменения дебита скважины, секундах. 2. На полученном графике выделяется конечный прямолинейный участок. 3. На оси абсцисс произвольно выбираются две точки lg t и lg t по графику определяются соответствующие значения р и р и расчитывается уклон прямолинейного участка по формуле: 4. Определяется коэффициент гидропроводности пласта по формуле: (3.4) Q-дебит жидкости до остановки скважины в пластовых условиях, м/сут. k-коэффициент проницаемости, Дарси. h-эффективная работающая толщина пласта, определяется по геофизическим данным вязкость нефти в пластовых условиях. b - объёмный коэффициент. j - уд. вес жидкости в поверхностных условиях. h - эффективная работающая толщина пласта. Определяется К (коэффициент проницаемости) из формулы: 3.2.2 Исследование скважин, оборудованных ЭЦН, ШГНОпределение пластового давления для построения карт изобар. а) Для безводной нефти: (3.5) где j пл. - уд. вес нефти в пласте Н з. в. = ВНК+ амплитуда стола ротора Н ст. - статический уровень, замеренный при остановке скважины в затрубном пространстве б). Для скважин с обводнённостью < 30%: (3.6) где j см. - уд. вес смеси в зависимости от% воды Р затр. - затрубное давление при остановке скважин в). Для скважин с обводнённостью 30%: (3.7) Где L-глубина спуска насоса (м), jв - уд. вес воды, Н ст. - статический уровень, j см. - уд. вес жидкости (смеси), Н з. в. - зеркало воды (ВНК + амплитуда стола ротора), Р затр. - затрубное давление при остановке скважины 3.2.3 Исследование нагнетательных скважин. Снятие и обработка кривой восстановления (падения) давления(метод неустановившихся режимов). Кривые восстановления (падения) давления в нагнетательных скважинах снимаются глубинными манометрами. 1. На основании данных, сведённых в таблицу №1, строим кривую восстановления давления в полулогарифмических координатах р, lg t. 2. На прямолинейном участке кривой произвольно выбираем две точки с координатами р; lg t и р; lg t. Определяем тангенс угла наклона этого участка по формуле: 3. Находим коэффициент гидропроводности: (3.8) Q - приёмистость (м3/сут) В - объёмный коэффициент жидкости, характеризующий отношение объёма жидкости в пластовых условиях к объёму в поверхностных условиях (после дегазации), для воды = 1,0, j - уд. вес жидкости в поверхностных условиях. Определяем коэффициент пьезопроводности: (см2/сек), где (3.9) h - эффективная мощность пласта, определяемая по геофизическим данным Вж и Вс - коэффициенты сжимаемости жидкости и среды Определяем приведённый радиус скважины: (3.10) где А - отрезок отсекаемый КПД на оси ординат Определяем радиус призабойной зоны: (3.11) t - время перехода во II зону. 3.2.4 Определение коэффициента продуктивности методом прослеживания уровня (по механизированному фонду скважин)При установившемся режиме работы скважины фильтрация жидкости в однородном пласте при линейном законе определяется формулой Дюпии: (3.12) где Q - дебит скважины в пластовых условиях (см3/сек) к - проницаемость пласта (д) h - мощность пласта (см) вязкость жидкости в пластовых условиях (спз) Рк и Рс - соответственно давление на контуре пласта и на забое скважины (кг с/см) Rк и rс - соответственно радиус контура питания и радиус скважины Из уравнения (1) найдём коэффициент продуктивности скважины К: (3.13) Прослеживание уровня основано на методе последовательной смены стационарных состояний. Предлагается, что радиус влияния скважин постоянен, а также, что жидкость несжимаема и возмущение у стенки скважины мгновенно распространяется на расстояние постоянного радиуса, равного радиусу влияния скважины. Тогда, если предположить в каждый момент приток в скважину установившимся, то найдём: (3.14) где Рк - пластовое давление, Рс (t) - забойное давление. Если скважина не переливающая, то (3.15) Приравнивая (1) и (2) и выражая Р в (1) через уровень, получим: (3.16) где где Нк и Нс (t) - соответственно статический и динамический уровни жидкости в скважине q - плотность жидкости в пластовых условиях F - площадь поперечного сечения колонны Интегрируя (3), найдём (3.17) (3.17) - уравнение прямой в координатах: , или (3.18) где НСО - уровень жидкости в скважине при установившемся состоянии. По углу наклона этой прямой к оси абсцисс tg найдём: (3.19) Составляя (3.19) и (3.16), найдём коэффициент продуктивности: (3.20) 3.2.5 Обработка данных прослеживания уровня и построение графиковПо замерам динамического уровня жидкости в скважине строится график изменения уровня Н, t. После замера восстановления давления в скважине, на устье зафиксировано избыточное буферное давление РУ; Н= Н+НСТ. (3.21) (3.22) - удельный вес жидкости в пластовых условиях. Обрабатывая кривую прослеживания уровня, составляем таблицу (3.2): расчёт параметров
Строится график: ln H, t сек: (3.23) F - площадь поперечного сечения колонны, см (Д1-Д2) - толщина стенки колонны j - удельный вес жидкости в пластовых условиях d - внешний диаметр НКТ. Если дан внутренний диаметр НКТ, учитывать 2 толщины стенки НКТ (2-2,5 милиметров). Пример: (3.24) перевести в перевести в т/сут атм=1,27 т/сут атм. j-удельный вес жидкости в поверхностных условиях. 3.3 Гидродинамические исследования при вторичном вскрытие пластаВторичное вскрытие пласта и его влияния на К продуктивности скважины. Поскольку приразломное месторождение осваивается 1986 год то вторичное вскрытие пластов происходило с теми возможностями и разработкой, которые существовали на тот и последующие периоды. ЗПКСЛУ-80 Заряда перфорационные кумулятивные в стеклянной оболочке Ленточная установка - 80 месяцев. Их данные: 3.4 Приток жидкости к несовершенным скважинам при выполнении закон ДарсиПриток жидкости к несовершенной скважине даже в горизонтальном однородном пласте постоянной толщины перестаёт быть плоскорадиальным. Строгое математическое решение задачи о притоке жидкости к несовершенной скважине в пластах конечной толщины представляет большие (а в некоторых случаях непреодолимые) трудности. Приведём здесь без выводов и доказательств наиболее распространённые окончательные расчётные формулы притока жидкости к различного типа несовершенным скважинам. Прежде всего допустим, что скважина вскрыла кровлю пласта неограниченной толщины и при этом её забой имеет форму полусферы. (3.25) где и - приведённые давления. Если скважина вскрыла пласт неограниченной толщины на глубину b, то её дебит можно найти по формуле Н.К. Гиринского: (3.26) Задача о притоке жидкости к несовершенной по степени вскрытия пласта скважине в пласте конечной толщины h исследовалась М. Маскетом. Вдоль оси скважины на вскрытой части длиной b он располагал воображаемую линию, поглощающую жидкость, каждый элемент которой dz является стоком. Интенсивность расходов q, т.е. дебитов, приходящихся на единицу длины поглощающей линии, подбиралась различной в разных её точках для выполнения нужных граничных условий. Необходимо получить решение, удовлетворяющее следующим граничным условиям: кровля и подошва пласта непроницаемы; цилиндрическая поверхность радиусом r =R является эквипотенциалью Ф =Ф; поверхность забоя скважины также является эквипотенциалью Ф =Ф. Выполнение указанных граничных условий потребовало отображения элементарных стоков qdz относительно кровли и подошвы пласта бесчисленное множество раз. Подбирая интенсивность расходов q и используя метод суперпозиции действительных и отображённых стоков, М. Маскет получил следующую формулу для дебита гидродинамически несовершённой по степени вскрытия пласта скважины: (3.27) где (3.28) а функция имеет следующее аналитическое выражение: (3.29) Здесь - интеграл Эйлера второго рода, называемый гамма - функцией, для которой имеются таблицы в математических справочниках. Нетрудно заметить, что если , то есть пласт вскрыт на всю толщину, формула (3.28) переходит в формулу Дюпюи для плоскорадиального потока. Иногда для расчёта дебита несовершенной по степени вскрытия пласта скважины используется более простая формула, чем (3.28) М. Маскета, предложенная И. Козени: (3.30) Дебит несовершенной скважины удобно изучать, сравнивая её дебит Q с дебитом совершенной скважины Qсов, находящейся в тех же условиях, что и данная несовершенная скважина. Гидродинамическое несовершенство скважины характеризуется коэффициентом совершенства скважины . Широкое распространение получил метод расчёта дебитов несовершенных скважин, основанный на электрогидродинамической аналогии фильтрационных процессов. Электрическое моделирование осуществляется следующим образом. Ванна заполняется электролитом. В электролит погружается один кольцевой электрод, моделирующий контур питания. В центре ванны погружается электрод на заданную глубину, соответствующую степени вскрытия пласта скважиной. К обоим электродам подводится разность потенциалов, являющаяся аналогом перепада давления, сила тока служит аналогом дебита скважины. Дебит гидродинамически несовершенной скважины подсчитываются по формуле (3.31) где С=С1 +С2 - дополнительное фильтрационное сопротивление, вызванное несовершенством скважины по степени вскрытия пласта (С1) и характеру вскрытия (С2). Измеряя разность потенциалов и силу тока, можно подсчитать сопротивление по закону Ома, сделать пересчёт на фильтрационное сопротивление и определить дополнительное фильтрационное сопротивление. Такие экспериментальные исследования были проведены В.И. Щуровым. Им определены дополнительные фильтрационные сопротивления С и С для различных видов несовершенства скважин и построены графики зависимости С от параметров и (Рис.6.2) (см. Приложение), а также С от трёх параметров и (Рис.6.3) (см. Приложение), где n - число перфорационных отверстий на 1 м вскрытия толщины пласта; - диаметр скважины; - глубина проникновения пуль в породу; - диаметр отверстий. Выражение дополнительного фильтрационного сопротивления получено И.А. Чарным с использованием формулы Маскета (3.28) в виде (3.32) где определяется по формуле (3.30) или по графику А.М. Пирвердян получил для коэффициента следующее выражение: (3.33) Сравнив дебиты совершенной скважины (формула Дюпюи) и несовершенной скважины (3.31), получим выражение коэффициента совершенной скважины в следующем виде: (3.34) Иногда бывает удобно ввести понятие о приведённом радиусе скважин , т.е. радиусе такой совершенной скважины, дебит которой равен дебиту данной несовершенной скважины: (3.35) Тогда (3.31) можно заменить следующей формулой: (3.36) И.А. Чарный предложил следующий способ определения дебита скважины, несовершенной по степени вскрытия, если величина вскрытия пласта b мала . Область движения условно разбивается на две зоны (Рис.6.4). Первая - между контуром питания и радиусом , равным или большим толщины пласта , в этой зоне движение можно считать плоскорадиальным. Вторая - между стенкой скважины и цилиндрической поверхностью , где движение будет существенно пространственным. Обозначим потенциал при r =R через Ф. Тогда для зоны можно записать формулу Дюпюи: (3.37) Для зоны , считая здесь приближённо движение радиально - сферическим между полусферами радиусами r и R, имеем: (3.38) Из формул (3.31) и (3.33) по правилу производных пропорций получается формула для дебита скважины: (3.39) Приняв R =1,5h, получим окончательно формулу для дебита несовершенной скважины, вскрывшей пласт на малую глубину: (3.40) Задачи притока жидкости к скважинам, гидродинамически несовершенным по характеру вскрытия пласта, и к скважинам с двойным видом несовершенства, ещё более сложны для исследования, чем приток к несовершенным по степени вскрытия пласта скважинам. Такого рода задачи решались теоретически М.М. Глоговским, А.Л. Хейном, М. Маскетом и другими исследователями. Все полученные ими решения весьма сложны. Наибольшее распространение в практике расчётов дебитов несовершенных скважин по характеру вскрытия пласта и с двойным несовершенством получили результаты теоретических и экспериментальных исследований, проведённых В.И. Щуровым, Г.Г. Поляковым, М.Н. Тиховым и М.С. Ватсоном. 3.5 Лабораторные исследованияВсе образцы керна, пробы нефти, воды и газа, отобранные в процессе бурения и испытания скважин, должны подвергаться лабораторным исследованиям. По образцам керна, взятым из интервалов залегания продуктивных пластов, определяются следующие параметры: общая и открытая пористость, проницаемость остаточная водонасыщенность, нефтенасыщенность, карбонатность, глинистость. Образцы керна также подвергаются изучению на определение флоры, фауны и микрофауны, споропыльцевому анализу. Производится также минералогический и гранулометрический анализы, как коллекторов, так и пород-покрышек. Порядок отбора керна на лабораторные исследования таков - из одного, в смысле литологической изменчивости, слоя - через 0.25-0.30 м, из неоднородного слоя образцы отбираются через0.2 м и чаще. По отборным пробам пластовых жидкостей и газа должны быть определены: а) для нефти - фракционный и групповой составы, содержание селикагеливых смол, масел, асфальтенов, парафина, серы, а также вязкость и плотность (как в поверхностных - при температуре 20 градусов по Цельсию и давлении 0.1 Мпа, так и в пластов условиях), величина давления насыщения нефти газом, изменение объема и вязкости нефти при различных давлениях в пластовых и поверхностных условиях, коэффициенты упругости, при отборе глубинных проб-забойные давления и температуры, газовый фактор. б) для пластовой воды - полный химический состав, включая определение ценных попутных компонентов (йода, брома, бора, лития и других элементов), количество и состав растворенного в воде газа, измерение температуры и электрического сопротивления вод. в) для газа, растворенного в нефти, и свободного газа - плотность по воздуху, теплота сгорания, химический состав (объемные доли метана. Этана, пропана, бутанов, пентанов, гексанов и более тяжелых углеводородов в%, а также гели, сероводорода в граммах на 100 м3 газа, углекислоты и азота). Таблица 3.3 - Перечень лабораторных исследований
3.6 Расчёт гидродинамических параметровРасчет параметров выполняют по различным методикам используя данные изменения давления, зарегистрированные основным (фильтровым-регистрирует изменение давления непосредственно в интервале испытания) и дополнительным (трубным) манометрам. Все существующие методики обработки диаграмм давлений делятся на 2 группы: методики обработки кривых восстановления давления, методики обработки кривых давления притока. Многолетняя практика обработки материалов испытаний показала, что наиболее достоверные данные о гидродинамических характеристиках пласта получают при обработке кривых восстановления давления (КВД). Качественные кривые давления в период притока служат дополнением к информации, получаемой по кривым восстановления давления. Определение средних дебитов притока и компонентов флюида. Процентный покомпонентный состав флюидов определяют после подъема пробонакопителя и замера объема компонентов флюида. Извлеченного из пласта. В зависимости от процентного состава рассчитывают удельный вес флюида (y, г/см3). В дальнейшем y используют для расчета среднего дебита. Точность определения среднего дебита имеет перврстепенное значение, т.к во все формулы расчета гидропроводности и проницаемости пласта входит дебит. Дебит рассчитывается по формуле. Q= V/T, (3.41) где V - объем отобранного флюида; Т - время притока об объеме поступившего флюида можно судить по изменению уровня жидкости, залитой в НКТ, на которых спускают КИИ. V = (Нкп-Ннп) * S, (3.42) Где Нкп, Нпп - уровень жидкости в трубах соответственно в конце и начале притока; S-площадь внутреннего сечения труб; и по величине изменения давления, зарегистрированного глубинными манометрами при притоке V= (Ркп-Рнп) *S/g, (3.43) Где Ркп, Рнп - давление жидкости на забое скважины соответственно в конце и начале притока; g - удельный вес поступившего флюида. Обработка кривых восстановления давления (КВД) При интерпретации КВД чаще всего используют метод, известный в литературе как метод Д.Р. Хорнера. В основе методики лежит дифференциальное уравнение, описывающее характер изменения давления в пласте после пуска скважины в работу и при всех последующих изменениях условий жидкости к скважине (в т. ч. и при остановке скважины): dýр+1 dр - mmb dр, drý r dr k dt (3.44) где р-давление в пласте на расстоянии r от скважины; m-пористость, к-проницаемость, t-время, mb произведение динамической вязкости на коэффициент упругости. Сущность метода Хорнера заключается в том, что закрытие скважины после работы с постоянным дебитом Q рассматривается как результат продолжающегося отбора с тем же дебитом, который начинается с момента фактического закрытия скважины и длится в течение всего закрытого периода с тем же дебитом. Для случая Q=const на внутренней границе пласта (r = rс) решение уравнения (1) примет вид (3.45) Где h - эффективная мощность пласта; E1-интегральная эксоненциальная функция; Рпл - пластовое давление; b - объемный коэффициент упругого расширения жидкости притока (для воды b=1). После соответствующих преобразований уравнение (3.45) принимает вид Р (t) = Р пл - (Qm. b/4pkh) * lh (2,25kt/mmb) (3.46) Разницу между начальным пластовым давлением Р пл и давлением на забое закрытой скважины Рс можно представить как сумму падений давления вследствие работы скважины с дебитом +Q в течение времениT + t и с дебитом - Q в течение времени t, где T - продолжительность работы скважины до фактического ее закрытия; t - продолжительность закрытого периода к рассматриваемому моменту времени. Таким образом получаем Рпл = Рс + Qpb ln 2,25 (T + t) + - Qm. b ln 2,25k t (3.47) 4pkh mmbr2 4пpkh mmbr2 или Рс -Рпл = 0,183 Qm. b lg T + t, (3.48) Kh t Хорнер впервые предложил применять формулу (3.47) для интерпритации КВД, записанных после непродолжительной работы эксплуатационных скважин. Порядок расчета параметров пласта с использованием формулы (3.48) заключается в следующем. Полученную при испытании КВД разбивают на участки с n - м числом точек. Для каждой точки " i" на кривой отсчитываются значения Рi и находится величина lg (T +t) / ti. После этого строится график в координатах: ось абсцисс lg (T+ ti) /ti, ось ординат Рi. Согласно уравнения (4), эти точки должны лечь на некоторую прямую под углом, тангенс которого ("наклон") I = 0,183Qmb/kh (3.49) Эта прямая пересекает ось ординат в точке Рс = Рпл, т. к при этом lg (T +t) /t=0, что эквивалентно t~, т.е. бесконечно длительному периоду восстановления давления. Таким образом, получаем первый параметр = начальное пластовое давление Рпл. Определив значения пластового давления, дебита при испытании (Qф), начального и конечного давлений притока (Рнп, Ркп) рассчитывают депрессию (DР) и фактический коэффициент продуктивности (hф) по формулам DРср = Рпл - (Рнп + Ркп) /2 (3.50) hф = Qф (3.51) D Рср Если график выпуклый, то проницаемость ОЗП снижена. Если вогнутый - ОЗП с повышенной проницаемостью. В случае двухслойных КВД при расчете гидропроводности для каждой зоны берут свойственное им значение " наклона" i. Потенциальные продуктивность (h n) и дебит (Qn) расчитывают исходя из гидропроводности удаленной зоны пласта, определенной по прямой hn = 0,0864 kh/mуз (3.52) Qn = Рпл hn, (3.53) где hn - [м3/сут/ат] ; kh/mуз - гидропроводность удаленной зоны пласта [Д*см/спз] ; Qп - [м3/сут] ; Рпл - [ат]. Следует отметить, что в понятие потенциальный дебит вкладывается возможность работы незагрязненного пласта при депрессии равной пластовому давлению. Характер получаемых кривых давления существенно зависит от условий испытания и влияния разных технологических и геологических факторов. К основным факторам при обработке КВД можно отнести: емкостной эффект подпакерной зоны (послеприточный эффект), замедляющий процесс восстановления давления после остановки скважины; загрязнение пласта (скин-эффект), связанное с влиянием промывочной жидкости на фильтрационные свойства призабойной зоны. Приведенный выше метод обработки КВД разработан в предположении, что сразу после закрытия скважины движение жидкости прекращается и дебит равен нулю, т. е "послеприток" отсутствует. Практически это выполнимо только в условиях интенсивных, высокодебитных притоков, когда количество поступающего флюида в скважину в период ее работы в единицу времени значительно (в 10 -100 раз) превышает поступление жидкости в подпакерную зону в единицу времени после остановки скважины за счет упругих свойств подпакерной жидкости. В то же время при испытаниях часто приходится иметь дело с очень низкими дебитами при притоке, связанными либо с низкими коллекторскими свойствами пласта, либо со значительным загрязнение пласта, либо с большими значениями объема подпакерного пространства, что характерно для скважин Приобского месторождения. Поэтому для надежной оценки величин истинных проницаемостей пласта необходимо учитывать "послеприток". Прежде чем проводить прямую на графике, рассчитывают время послеприточного эффекта (продолжительностью искаженного участка КВД) tи По формуле tи = 4Vп/hф (3.54) На графике прямая проводится по точкам спустя время tи Если время послеприточного эффекта больше времени восстановления давления (tи > t), то КВД считается незавершенной, параметры пласта определять не следует. Степень загрязнения пласта, определяемая показателем скин-эффекта, может быть определена как дополнительное снижение давления, которе следует приложить, чтобы преодолеть сопротивление зоны пониженной проницаемости. Численно скин-эффект выражается безразмерным числом, обозначается S и находится из равенства DРскин = S Qm355 2pkh С учетом скин-эффекта формула (3.28) принимает следующий вид: Рс = Рил - Qm[ln 2,25kt + 2S] (3.56) 4pkh mmbr На практике порядок величины скин-эффекта можно установить по разнице давлений до и после закрытия скважин. Вычитая из равенства (3.50) равенство (3.49) и решая полученное выражение относительно S при условии, что (T =t) /t -l, т.е. Рс=Рпл, получаем следующее выражение для подсчета величины скин-эффекта: S = 1,151 { [ (Рпл - Ркп) /i (конечного участка] - lg (2,25kt/mbmrý} (3.57) Поскольку при испытании скважин многие характеристики пластовой системы (пористость m и проницаемость k пласта, вязкость m и сжимаемость b пластовой жидкости) неизвестны, расчетную формулу (13) упрощают, заменив конкретные значения указанных параметров их среднестатистическими значениями. Анализ показывает, что для практических определений величину скин-эффекта можно рассчитать по формуле S = 1, 151{ [ (Рпл -Ркп) i коп. уч] - lgT - 2,63} (3.58) Если "скиновая" зона имеет проницаемость пониженную по сравнению с проницаемостью пласта, скин-эффект положительный (S>0); если "скиновая" зона имеет проницаемость повышенную по отношению к проницаемости удаленной части пласта, то скин-эффект отрицательный (S< 0); при S = 0 скин-эффект отсутствует, т.е. проницаемость в удаленной и призабойной зонах пласта равны. Для качественной оценки состояния околоствольной зоны пласта (ОЗП) используют еще, так называемый, коэффициент состояния прискваженной зоны (Кс), который рассчитывают по формуле Кс = 0,183 DРф/iкоп. уч (3.59) Если Кс > 2 - степень закупорки ОЗП большая; Кс = 0,8 +2 -ОЗП чистая; Кс < 0,8 - проницаемость ОЗП повышенная. Коэффициент снижения проницаемости определяют исходя из значений гидропроводности околоствольной и удаленной зон пласта: Кз = kh/mуз (3.60) kh/mозп kh/mозп - гидропроводность ОЗП. Для определения возможности фонтанирования скважины при ее освоении необходимо проверить условие DР = (Рпл - gпл. ж Нпл/10) > 0, (3.61) где gпл. ж - удельный вес пластовой жидкости, г/см3; Н - глубина залегания продуктивного пласта, м; Рпл - пластовое давление, атм. Если вышеприведенное неравенство не выполняется, то фонтанировать скважина не будет и необходимо предусмотреть иные способы ее эксплуатации. Если неравенство выполняется, то на момент испытания дебит скважины при фонтанировании был бы: Qф = hф (Рпл - gпл. жН/10) (3.62) А потенциальный дебит Qп = hп (Рпл - gпл. жН/10) (3.63) Следовательно приведенное уравнения дают возможность по результатам испытания принять правильное решение относительно выбора того или иного варианта скважины (с фонтанной арматурой или без нее, с обработкой призабойной зоны или нет и т.п.) В качестве примера проведения гидродинамических исследований при помощи КИИ-95 на месторождении приводятся скважина №1269 П. Произведено испытание 2-х объектов и получены следующие результаты: 1-объект: пласт ЮС2 испытан в интервале 2900-2906м, 2907-2912м. с помощью пластоиспытателя КИИ-95 и получен непромышленный приток, дебитом 0,58м3/сут. при средней депрессии 174 атм. Кпрод. = 0,0033м3/сут. /атм. Рпл = 324 атм. 2-объект: пласт ЮС1, испытан в итервале 2824-2827м. на трёх режимах: d 2мм - дебит 4,2м3/сут., Рзаб = 254 атм. d 4мм - дебит 9,6м3/сут., Рзаб = 238атм. d 6мм - дебит 13,6м3/сут., Рзаб = 226атм. Кпрод = 0,2м3/сут/атм. Рпл =290атм. Т - 910С. Других объектов, интересных с точки зрения нефтенасыщенности, в разрезе скважины нет. В связи с тем, что расстояние до нефтесборной сети более 5км., скважина подлежит консервации. Пример проведения гидродинамических исследований Скважина № 1478 Приразломного месторождение Интервал испытания: 2716-2753,6 м Дата испытания: 17 ноября 1995 г Пласт БС16-18 Условия испытания: Испытание проведено в обсаженном стволе с помощью КИИ-95. Искусственный забой скважины - 2770,0 м; глубина установки пакера 2700,0 м; глубина залегания пласта по вертикали - 2612,0 м; внутренний диаметр обсадной колонны D - 126,0 мм; внешний диаметр НКТ (бурильных труб) dl - 73,00 мм; внутренний диаметр НКТ (бурильных труб) d - 62,00 мм; площадь внутреннего поперечного сечения труб - 30,175 см2; удельный вес раствора - 1,16 г/см3 Определение гидростатического давления - Рг. с МСУ-1-40 номер 4928 К1=-2,594 К2=8,788 Рг. с до пакеровки 33,50 мм 29,18 МПа Рг. с после пакеровки 33,32 29,022Мпа Обработка кривой притока Исходные данные МСУ - 1-40 № 4928 К1=-2,594 К2=8,788 По данным акта в пробоотборнике получено: нефть 25% вода 75% начальное давления притока после пакеровки 8,06мм 6,824Мра конечное давление на кривой притока 16,17мм 13,951Мпа начальное давление притока для расчета Q 8,06мм 6,824 Мпа конечное давление притока для Q 16,17мм 13,951Мпа продолжительность притока для расчета дебита 122,00мин=7320с общая продолжительность притока 122,00мин=7320с удельный вес поступившего флюида 880кг/м3 tи=1,598мин=95,9 сек Изменеие забойного давления в процессе регистрации КВД Маномеир МСУ № 4982 К1=-2,594 К2=8,788
Пластовое давление по КВД 239,00атм Р1у. з=239,00 lg1у. з= 0,000 Р2у. з = 224,00 Lg2у. з=0,260 I у. л=57,692 Р1зоп-217,00 Lg1озп=0,410 Р2озп=211,00 lg2озп=0,930 iозп=11,538 Результаты данных КИИ гидростатическое давление по пакеровки 291,8атм. гидростатическое давление после пакеровки 290,2атм пластовое давление 239атм репрессия на пласт 52,8атм депрессия на пласт: максимальная 170,8атм средняя 135,1атм 6. объем жидкости, поступившей в трубы 2,44м3 в т. ч. из пласта 2,22м3 7. объем подпакерного пространства 0,87м3 8. дебит общий при средней депрессии 28,8м3/сут в том числе: за счет притока из пласта 28,8м3/сут за счет негерметичности 0,0м3/сут 9. потенциальный дебит (придепрессии равной Рпл) 23,0м3/сут 10. возможность фонтанирования - не исключается 9,1 11. дебит свободного фонтанирования на дату испытания 2,0м3/сут 12. потенциальный дебит фонтанирования 0,88м3/сут 13. продуктивность: фактическая 0,213м3, сут/ат 14. коэффициент состояния околоствольной зоны пласта 0,4 15. скин-эффект - 3,44 16. коэффициент снижения проницаемости 0,2 17. коэффициент гидропроводности: ОЗП 5,576Д*см/спз удаленной зоны - 1,115Д*см/спз ЗаключениеПри проверке испытания величина максимальной депрессии в начальный момент притока равнялась 170,8 ат. При средней депрессии 135,1ат из пласта получен приток флюида дебитом 28Ю8м3/сут, продуктивность -0,213м3/сут/ат. По данным акта в пробонакопителе 25% нефти и 75% воды. Проба нефти для анализа отобрана. Возможность фонтанирования на исключается. По результатам обработки КВД пластовое давление-239 атм., проницаемость околоствольной зоны пласта повышена. Величина потенциальных гидродинамических ниже фактических. Полный анализ нефти Место отбора: интервал 2716-2735,4 2742-2753,6 Дата отбора: 17.11.95 Хлористые соли 172,0 Кинематическая вязкость: при 20%С 14,88ммсек При 50%С 6,178ммсек Плотность пикнометром 0,8586г/см3 Механические примеси 0,038% Сера 0,84% Начальная температура кипения 74 градусов по цельсию 4. Техническая часть4.1 Обоснование типовой конструкции скважинКонструкция скважины принимается в зависимости от ожидаемых геологических условий разбуриваемых участков месторождения, глубины залегания продуктивных отложений, а так же продуктивных характеристик пластов, подлежащих вскрытию. Кроме того, выбранная конструкция должна обеспечивать надежную охрану недр, возможность применения выбранного способа бурения, возможность достижения запланированных скоростей проводки и проведения намеченных промыслово-исследовательских работ как в открытом стволе, так и в обсаженной скважине. Количество обсадных колонн, необходимых для обеспечения перечисленных требований, проектируется исходя из несовместимости условий бурения отдельных интервалов скважин. Для этого строится совмещённый график изменения пластового давления, давления гидроразрыва пород, и гидростатического давления столба промывочной жидкости. В таблице 4.1 приводятся данные для построения графика. Таблица 4.1 Градиенты пластового давления и давления гидроразрыва пород
При разработке конструкции скважин приняты во внимание следующие горно-геологические особенности разреза: Проектная глубина скважин: 2900 - 3060м. Многолентнемёрзлых пород в разрезе нет. Люлинворская свита залегает в интервале 470 - 690м. Газонасыщенных интервалов в разрезе нет. Нефтенасыщенные интервалы залегают в интервале глубин 2350 - 3010м. Пластовые давления по всему разрезу близки к гидростатическому. Максимальная забойная температура - 940. Для крепления верхнего интервала, сложенного неустойчивыми четвертичными отложениями, для предотвращения размыва устья скважины и соединения с циркуляционной системой спускается направление. Кроме того, установка направления является дополнительной мерой защиты пресных вод от загрязнения в случае недоподъёма цементного раствора до устья за кондуктором. Глубина спуска направления - 30 м. Направление цементируется до устья. Для крепления верхних неустойчивых интервалов разреза, изоляции водоносных горизонтов от загрязнения, для установки на устье противовыбросового оборудования, а так же для подвески технической колонны в скважину спускается кондуктор. Неустойчивые пески с прослоями глин, склонные к обвалу, залегают в интервале 0-560 м. Но глубина спуска кондуктора с перекрытием этого интервала, как показывает опыт эксплуатации скважин в регионе, является недостаточной. В случаях аварий с обсадными колоннами в нагнетательных скважинах и, как результат аварий, прорыва в интервал люлинворских глин нагнетаемых вод, глины разбухают, плывут и сминают обсадные колонны близрасположенных скважин. Таблица4.2 - Cовмещённый график давлений при строительстве разведочных скважин на Приразломном месторождении
1-линия граничных значений пластовых давлений 2-линия плотности буровых растворов 3 - линия граничных значений давлений гидроразрыва пород Достаточно часто повторяющиеся осложнения подобного рода привели к решению изменения типовой конструкции скважин. Приказом Гостехнадзора Тюменского округа Российской Федерации №31 от 04.11.92г. предписано во всех скважинах, независимо от назначения (кроме сеноманских) кондуктором перекрывать люлинворские глины. Настоящим проектом предусматривается спуск кондуктора на глубину 20 м. ниже подошвы люлинворской свиты. Глубина спуска кондуктора определяется для каждой конкретной скважины индивидуально. Высота подъёма цемента за кондуктором - до устья. Ввиду отсутствия факторов, осложняющих процесс бурения, конструкция скважин принимается одноколонной. Эксплуатационная колонна спускается на проектную глубину и цементируется до устья. Проектная глубина спуска колонн - на 50м. глубже подошвы последнего нефтеносного горизонта. Таблица 4.3 Сводные данные по типовой конструкции скважин
4.2 Выбор конструкции скважинКонструкция скважин определяется диаметром эксплутационной колонны, гидрогеологическими условиями месторождения минимальным расходом материала. Под конструкцией обсадной колоны следует понимать: подбор труб который должен обеспечить безаварийную эксплуатацию скважин, при минимальных капитальных вложениях. При этом следует иметь в виду, что конструкция скважин должна обладать высокой герметичностью и плотностью обсадных колонн и иметь надёжное цементное кольцо за колоннами. При проектировании конструкций скважин, необходимо учитывать следующие основные условия: 1. Для предупреждения возможного гидроразрыва пород давлением флюида, обсадная колонна должна полностью перекрывать незакреплённую часть высоконапорного пласта. 2. С целью проведения возможных аварийных работ в скважине обсадные трубы должны обладать такой прочностью, при которой обеспечиваются достаточное сопротивление сминающим усилием при повышении давления в колонне. 3. Для предупреждения поглощений в скважинах месторождениях с аномально высоким давлением и большим этажом газоносности, следует цементировать поглощающие пласты, или перекрывать их обсадными колоннами до вскрытия продуктивного горизонта. При проектировании оптимальных конструкций скважин наряду со сказанным, необходимо определить р нагнетания промывочной скважины в нефтеносные пласты по методике М.И. Потюкаева (в Дюкове-68). Сущность этой методики заключается в следующем. После обвязки устья в скважину закачивают промывочную жидкость с заданными парамитрами до тех пор пока не нагреется ее поглощение в исследуемый пласт. В это время определяют р при котором начинается поглощение, и подачу насосов. Отношение величины гидростатического р к пластовому позволяет определить критическую величину давления нагнетания. Конструкции скважин предлагается также проектированию также с учетом того чтобы в процессе бурения давление на продуктивные пласты не превышало определенной критической величины. Повышенный перепад давления создает условия для засорения продуктивных горизонтов промывочной жидкостью и тампонажными материалами, в результате чего снижается дебит скважин, могут возникнуть нефтегазопроявления. В связи с этим следует особое внимание уделять качественному вскрытию продуктивных горизонтов. Допустимое углубление скважины в продуктивную. часть разреза (5) определяют по формуле: (4.1) L-максимально допустимый интервал углубления в массовую залежь без перекрытия продуктивных пластов промежуточными колонами Kkp - коэффициент характеризует критическую величину отношения гидростатического p промывочной жидкости к пластиковому давлению, Выше который начинается поглощение; K-коэффициент характеризующий превышение гидростат P промывочной жидкости Над пластиковым в кровле газового пласта; H-глубина кровли пласта в точке вскрытия h - толщина пласта в точке вскрытия; pb и pr - плотности соответственно пластовой воды и газа, кг/м³ Плотность бурового р-ра для вскрытия нефтяных пласта можно опр-ть по Ф-ле (3.1) П. о проектирования конструкций газ. скважин с учетом p нагнетания бурового р-ра дает возможность определить max допустимую глубину вскрытия пласта и значительно сократить расходы на ликвидацию возможных осложнений. Для нефтяных месторождений, имеющих высокие забойные температуры (на Приразломном месторождении температура пласта БС4-5 достигает 115 град. С) проектировании конструкций скважин необходимо использовать спец. Цементные растворы, способные при твердении обеспечивать целостность Кольца в затрубном пространстве. При расчете конструкций высокотемпературных скважин с резким колебанием температур следует Учитывать склонность цементного камня к деформациям усадки и ползучести. При проектировании конструкций скважин необходимо запланировать и диаметр эксплутационной колоны. 4.3 Техника для гидродинамических исследованийВ настоящие время для комплексного непрерывного контроля за разработкой Приразломного месторождения применяется широкий спектр приборов, которую условно можно подразделить: 1 приборы наземных комплексов исследований (замерное устройство "Спутник", манометры различного предела измерений и класса точности, динамографы (микон), акустические скважинные эхолоты "Сонолог", и т.д.) приборы дистанционные, спускаемые на геофизическом кабиле, комплексные (расходомеры-дебитомеры, глубинные: РГД-4, РГД-5М; Поток-4, Поток-5, имеющая комплексы термокондуктивной дебитометрия, влагомера, термометра, локатора муфт, гамма-каротажа, гамма-гамма-каратожа, резистивиметра, манометра) приборы автономного действия включающие в себя: пластоиспытатели: комплексный испытательный инструмент КИИ-146, КИИ-95, и другие; пробоотборники; автономные приборы спускаемые на проволоке: ПЛАСТ-4, ПЛАСТ-5, позволяющих вести регистрацию температуры и давления; автономные приборы спускаемые на НКТ. Данные приборы имеют размеры соответствующие диаметрам скважин, колонн учитывают особенности оборудования. Позволяют вести исследования в интервале пласта по колонне НКТ и межколонному пространству, прослеживать гидродинамические характеристики до места установки ЭЦН через насосно компрессорные трубы (НКТ), по межтрубному пространству исследовать работу ШГН, а при соответствующем оборудовании ШГН проходить на забой. В настоящее время на Приразломном месторождении используются установки ЭЦН - REDA, которая имеет в компоновке датчики давлений с базой накопления данных в течение работы установки по определению давления на приёме насосов. Поскольку на работу насосной установки оказывает влияние затрубное давление попутного газа, расчётный дебит получается завышенным, поэтому для оптимизации работы насоса необходимы данные по определению давления на приёме насоса, что обеспечивает накопленная база данных датчиком давления. В настоящее время точность приборов манометра и термометра за счёт применения пьезо-термодатчиков повысилось в десятки и сотни раз, габариты приборов и их вес соответственно уменьшились до размеров, требовавших использования грузов. Прибор ПЛАСТ-5М имеет следующие технические характеристики: рабочий диапазон температур от минус 50град. С до плюс 120град. С; время работы в автономном режиме - 3 месяца; ёмкость памяти-120 тысяч точек; точность определения температуры - 0,01град. С; точность определения давления - 0,0003атм=300Па; НИИПИ УФАНЕФТЬ предлагает к тому же расширить комплекс прибора высокоточным влагомером. Подъёмники для работы с автономными и дистанционными приборами не претерпели существенного изменения. Используются подъёмники каратажные: ПК-2, ПК-5, подъёмники "Аист". 5. Специальная частьВторичное вскрытие пластов и его влияние на коэффициент продуктивности скважины и разработку месторождения 5.1 Состояния вскрытия пластовПроцесс вскрытия пласта является важнейшим этапом разработки нефтегазовых месторождений. Высококачественное вскрытие горизонтов обуславливает повышение эффективности геологоразведочных работ и производительности скважин, улучшает приток нефти и газа из мало пронизываемых пропластов, что в конечном итоге способствует росту нефтегазоотдачи пластов. Одним из основных условий повышения эффективности геологоразведочных работ является применение таких методов вскрытия и опробования, которые обеспечили бы сохранения естественного состояния коллектора, и следовательно, остаточную надежность результатов опробования на промышленную нефтегазоносность. Очевидно, что только такие данные, которые отражают фактическое состояние коллектора, могут явиться основой для оценки общих и извлекаемых запасов нефти и газа. В нефтегазопромысловой практике встречается немало случаев, когда скважины, которые при бурении показывали хорошие признаки нефтеносности и бурно проявляли себя после ввода их в эксплуатацию или вовсе не показывали признаков нефтегазоносности, или работали с малой производительностью. Следовательно, возникает необходимость создания высоких депрессий при освоении и эксплуатации скважин, что отрицательно сказывается на эксплуатации залежей, коллекторы которых сложены несцементированными или слабосцементированы песками, а так же при наличии пластовых вод. Повышение депрессии при неустойчивых коллекторах приводят к нарушению ПЗ, что может вызвать слом эксплуатационной колоны и преждевременный выход скважины из строя; при наличии же подошвенных вод происходит преждевременное обводнение скважины. Практика применения промывочной жесткости на водной основе показала, что проникновение в пласт фильтрата и твердой фазы промысловой жесткости в период вскрытия является основной причиной ухудшения коллекторских свойств пласта. Лабораторными исследованиями установлено, что вода снижает естественную проницаемость коллектора на 50% и более. Глинистый раствор относительно в меньшей мере ухудшает фильтрационную характеристику коллектора, чем вода. Отрицательное влияние низкого качества вскрытия пласта наиболее значительно сказывается в случаях, когда пластовое давление ниже гидростатического. Аномально низкое пластовое давление встречается в процессе доразработки. Проницаемость ПЗ в немалой степени снижается также и в процессе вскрытия пласта перфораций. Это объясняется тем, что качество жесткости, заполняющей ствол скважины перед перфорацией обычно бывает низким и не обеспечивает сохранения естественной проницаемости коллектора после перфорации. Так обычно, продуктивный пласт в процессе его вскрытия многократно подвергается воздействию промывочной жесткости. В результате этого существенно ухудшается фильтрационная характеристика ПЗП. При вскрытии пластов в глубоких скважинах высокие температуры оказывают существенное влияние на водоотдачу глинистого раствора. С повышением температуры усиливается коагуляция и образуется легко размываемые рыхлые корки. При t 150С водоотдача возрастает в 6-8 раз. 5.2 Основные факторы определяющие качество вскрытия пластовСреди таких факторов по [Аминяну] можно выделить 1) объем информации, получаемый в процессе вскрытия пласта бурением; 2) надежность разобщения пластов как в пределах вскрытой мощности продольного пласта, так и выше кровли и ниже подошвы пласта; 3) степень использования вскрытой мощности пласта; 4) состояние ПЗП. Объем информации, получаемый в процессе вскрытия пласта бурением На стадии поисковых и разведочных работ, на которых находится Приразломного месторождение необходимо получать максимальную информацию, позволяющую изучить: Состав пород-коллекторов и тип коллекторов как по керну так и по шламу; геолого-физические свойства коллектора и физико-химическую характеристику насыщающих его флюидов; метологические особенности пласта; продуктивность отдельных пластов и прослоев при различных депрессиях; тип промывочных жесткостей для первичного и вторичного вскрытия пласта. Надежность разобщения пластов Надежность разобщения пластов в зоне продуктивной части, выше кровли и ниже подошвы продуктивного объекта, а также создание непроницаемого цементного кольца за эксплуатационной колонной имеет решающие значение для успешной работы эксплуатационных скважин и всей залежи в целом. Обычно качество цементирования эксплуатационных колонн оценивается подъемом цементного раствора до заданной высоты, достижением хорошей сцепляемости цемента с породой и колонной, предотвращением межколонных перетоков жидкости и газа. Однако вследствие больших плотностей цементных растворов создаются избыточные давления на плост, что часто приводит к гидроразрыву и поглощению цементного раствора и, следовательно, к закупорке нарытой среды. Надежность разобщения пластов следует изучать во всех скважинах на стадии поисково-разведочных работ, так и при разбуривании залежи. Плотность бурового раствора. для вскрытия нефтяного пласта в <Дюкове> выражается через коэффициент избыточного давления Кизб и плотность пластовой воды: (4.2) где k-коэффициент, характеризующий превышение гидростатического давления промывочной жидкости над пластовым в кровле пласта. Степень использования вскрытой мощности пласта При разработке Нефтяных месторождений в настоящее время широко практикуется вскрытие перфорацией мощностей продуктивной зоны залежи. Это связано с желанием вовлечь в разработку возможно большие мощности продуктивных пластов по <Амиян> можно выразить следующим образом: (4.3) где: КИ - коэффициент использования вскрытой мощности пласта; МР - работающая мощность пласта; МВ - вскрытая мощность пласта; Коэффициент использования вскрытой мощности продуктивного пласта является одним из важнейших показателей качества вскрытия пласта, повышение степени извлечения нефти и газа из недр. Этот коэффициент должен служить определяющим показателем возможности объединения нескольких пластов и прослоев в один эксплуатационный объект. Величина Ки не постоянна во времени и зависит от периода эксплуатации залежи и способа вскрытия пласта. По мере извлечения пластового Р условия работы залежи будут отличаться от условий начального периода эксплуатаций. В связи с этим при необходимости бурение новых скважин для доразработки залежи следует вскрывать пласт с учетом изменившихся условий. Состояние ПЗП. Наиболее приемлемым способом определения состояния ПЗП является определение величины ОП - отношение продуктивностей, показывающей, во сколько раз реальный дебит скважины отличается от теоретического. В связи с тем, что различие между продуктивностями определяется только проницаемостью пород, например, ОП рассматривают <Амиян>, как отношение: , (4.3) где Qф - фактический дебит скважины; Qт - теоретический дебит скважины (вскрытие пласта без ухудшения его фильтрационных свойств); Параметр ОП показывает, какую долю теоретически возможного дебита в случае идеального вскрытия пласта имеет скважина при реальных условиях вскрытия. Методы повышения качества вскрытия. Под высоким качеством вскрытия продуктивного пласта следует понимать выполнение комплекса операции по завершению скважины с применением таких технологических приемов которые обеспечивают сохранение естественной проницаемости ПЗП К основным задачам решение которых может обеспечить достижение этой цели, можно отнести: выбор типа бурового раствора для вскрытия пласта; выбор конструкции скважины и способа цементирования колонны; определение интервала перфорации; определение раствора глушения; определение типа и вида перфорации; определение плотности перфорации; воздействие на пласт после перфорации; способ вызова притока. Рассмотрим технику и технологию вторичного вскрытия пласта с использованием пенных систем, представленные в следующем разделе. 5.3 Вскрытие продуктивного пласта перфорацией с применением пенных системКак известно, продуктивный пласт вскрывают перфорацией после заполнения скважины той жидкостью, которую применяли при вскрытии пласта бурением. Так как процесс перфорации часто происходит длительное время, в призабойную зону проникает вода или фильтрат промывочной жидкости (глинистого раствора), что существенно ухудшает фильтрационные свойства коллектора. Как правило, при перфорации применяют глинистый раствор низкого качества с высокой водоотдачей, поэтому количество проникшего в пласт фильтрата бывает значительным. После перфорации глинистый раствор заменяют водой. В процессе этих работ в пласт дополнительно проникает как фильтрат глинистого раствора, так и вода. Если после полной замены глинистого раствора в стволе скважины водой отсутствует приток жидкости (газа) из пласта, то начинают снижать уровень воды в скважине путем закачки сжатого воздуха (компрессором), газа высокого давления (из газопровода высокого давления) или азота с помощью специальных установок. В процессе этих работ в пласт вновь проникает некоторое количество воды. Таким образом, от начала перфорации до получения притока жидкости (газа) из пласта в призабойную зону проникает большое количество фильтрата промывочной жидкости и воды, что ведет к существенному снижению естественной проницаемости коллектора. Для частичного устранения этих недостатков иногда до начала иногда до начала перфорации в нижней части эксплуатационной колонны помещают раствор на углеводной основе или водный раствор ПАВ. Оба способа до некоторой степени отвечают условиям сохранения проницаемости призабойной зоны пласта в процессе его вскрытия перфорацией. Однако при пластовом давлении намного ниже гидростатического применение водного раствора ПАВ может привести к отрицательным результатам вследствие того, что по мере проникновения водного раствора ПАВ в глубь пласта содержание ПАВ в воде резко уменьшится из-за адсорбации его на поверхности породы, и в связи с этим проницаемость удаленной зоны продуктивного пласта ухудшится. Отрицательное влияние водного раствора ПАВ будет тем интенсивнее, чем больше глинистых веществ содержится в продуктивном пласте и чем ниже пластовое давление по сравнению с гидростатическим. Наиболее прогрессивным техническим решением является применение растворов на углеводородной основе. Однако, при пластовом давлении намного ниже гидростатического (0,7 и ниже) применение растворов на углеводородной основе также может привести к ухудшению проницаемости призабойной зоны пласта вследствие проникновения в него вместе с раствором на углеводной основе большого количества воды. Если даже весь ствол скважины перед перфорацией будет заполнен раствором на углеводной основе, то при пластовом давлении, равном 0,7 и ниже гидростатического, вследствие проникновения в пласт этого раствора в большом количестве трудно будет вызвать приток жидкости и газа из пласта из-за высокой вязкости системы и ее структурно-механических свойств. В указанных условиях наиболее целесообразным является применение пен. Сущность рекомендуемого способа состоит в том, что в нижней части эксплуатационной колонны до проведения процесса вскрытия пласта перфорацией помещают столб пены, поверх которого должна находиться пенообразующая жидкость. Поскольку пена в нижней части колонны находится довольно длительное время, то может произойти частичное разделение фаз. Однако газовая фаза будет двигаться вверх и, встретив на своем пути пенообразующую жидкость, вновь образует пену. Таким образом, предотвращается разрушение пены, помещенной в нижней части эксплуатационной колонны на период вскрытия пласта перфорацией. Разрушению пены препятствует также давление столба жидкости в стволе скважины, находящейся над столбом пены. Объем пены определяют с учетом следующих условий: Объем пены, помещаемой в нижней части колонны, не должен вызывать притока жидкости (газа) из пласта в процессе перфорации; Объем пены должен препятствовать проникновению в пласт жидкости (воды, глинистого раствора), находящейся в стволе скважины; Гидростатическое давление столба жидкости (воды, глинистого раствора) с добавкой ПАВ, находящейся над столбом пены в скважине, должно быть выше величины упругой энергии пены. Для выполнения этих условий рекомендуется образовать двухфазную пену следующего компонентного состава: поверхностно-активное вещество, стабилизатор, хлористый кальций. Указанные компоненты предварительно растворяются в воде, а затем перед закачкой в скважину приготовленный водный раствор вспенивают. Результаты лабораторных исследований устойчивости пены, приготовленной на основе водных растворов ОП -10, стабилизатора КМЦ - 600 и хлористого кальция, Предоставлены в таблице - 5.4 Таблица 5.4-компонентный состав пен
Устойчивость пены определяли по методике ВНИИ. При концентрациях хлористого кальция наибольшая устойчивость пены получается при 0,5 - 0,8% -ой концентрации ОП - 10 и 1,0 - 1,5% -ной стабилизатора КМЦ - 600. В связи с этим пену можно создать как при 20% -ной концентрации хлористого кальция, так и при 30 - 40% -ной в зависимости от величины пластового давления. Если пласт давление составляет 0,8 и ниже гидростатического, двухфазную пену можно образовать с концентрацией хлористого кальция 20%. При пластовом давлении 0,8 - 1,0 гидростатического концентрацию хлористого кальция можно принять равной 30 - 40%. При степени аэрации 30 - 40 в нормальных условиях можно образовать двухфазную пену плотностью 1,0 г/см3. Приготовленная таким образом двухфазная пена, заполняющая нижнюю часть колонны, предохранит призабойную зону пласта от попадания в ней воды в процессе всего периода перфорации. Частично проникающая в пласт двухфазная пена не оказывает отрицательного влияния на проницаемость коллектора, пена указанного компонентного состава будет содействовать частичной очистке призабойной зоны в процессе вызова притока жидкости (газа) из пласта. Рекомендуемый способ перфорации эксплуатационной колонны имеет следующие преимущества: возможность регулирования давления на забое скважины в широком диапозоне; достигается это путем изменения степени аэрации и объеьма пены, помещаемой в нижней части эксплуатационной колонны; предотвращение попадания в призабойную зону пласта жидкости (глинистого раствора, воды) в процессе перфорации колонны. Скважина имеет глубину 2500 м, пластовое давление составляет 0,8 гидростатического, коллектор песчано-алевритовый с содержанием набухающих глинистых веществ. Пласт вскрывали бурением с применением глинистого раствора. По соседним скважинам установлено, что приток жидкости из пласта начинается только после замены столба глинистого раствора водой и снижения уровня воды в скважине на 800 - 1000м. Учитывая возможность проникновения в пласт после его вскрытия перфорацией некоторого количества двухфазной пены, примем, что закачанный объем пены в стволе скважины должен занимать в нижней ее части высоту 500 - 600м. Принимая диаметр эксплуатационной колонны равным 146 мм и степень аэрации 40, можно определить количество водного раствора ПАВ и воздуха для получения заданного объема пены. Столб двухфазной пены в нижней части скважины высотой 600м будет испытывать давление столба жидкости, находящейся над пеной, равное 140 кгс/см2. При степени аэрации а = 40 объем воздуха, приходящийся на 1м3 пенообразующего раствора при этом давлении, составит 40: 140=0,3м3. Объем ствола скважины высотой 600 м при диаметре колонны 146 мм составит 8 м³. Для получения такого объема пены необходимо закачать в скважину 6,5 м³ пенообразующей жидкости и (8-6,5) *140+360 м³ воздуха. Среднюю плотность пены на указанной глубине ориентировочно примем 0,8 г/см². Таким образом, если столб двухфазной пены высотой 600 м помещен в нижней части колоны, давление на забой скважины уменьшится всего на 12 кгс/см³, что примерно для безопасного ведения работ по периферии. Продуктивный пласт вскрывают перфорацией при заданных условиях в следующем порядке. До перфорации скважину промывают до забоя и насосно-компрессорные трубы устанавливают на уровне предполагаемых нижних перфорационных отверстий. Предварительно готовят водный раствор ПАВ указанного компонентного состава. Объем водного раствора ПАВ принимаем равным 35 м³; 8 м³ этого объема предназначенного для приготовления пены, 26,5 м³ применяют в качестве буферной жидкости, которая во время перфорации должна находиться в скважине над двухфазной пеной. Из емкости насосом водный раствор ПАВ в качестве первой порции буферной жидкости по линии подают в насосно-компрессорные трубы. Объем водного раствора ПАВ (первой порции буферной жидкости) принимают равным 9 м³. Вытесняемую из кольцевого пространства скважины жидкость по линии отводят в отдельную емкость Затем в скважину закачивают заданный объем двухфазной пены. Для получения более устойчивой пены используют аэратор. Насос нагнетает водный раствор ПАВ, поступающий из емкости, в наружную трубу аэратора, воздух поступает во внутреннюю перфорированную трубу аэратора от компрессора. По линии пена поступает в насосно-компрессорные трубы; вытесняемая при этом жидкость из кольцевого пространства также поступает в отдельную емкость. После закачки в насосно-компрессорные трубы заданного объема двухфазной пены вновь закачивают жидкость (воду или глинистый раствор) до выравнивания давлений в насосно-компрессорных трубах и затрубном пространстве. После выполнения операций по созданию в нижней части колонны столба двухфазной пены и буферной жидкости из скважины извлекают насосно-компрессорные трубы и приступают к работам по вскрытию пласта перфорацией. Аналогичным образом можно вскрывать перфорацией продуктивные объекты, пластовое давление в которых намного ниже гидростатического. В этих условиях перед перфорацией в скважине помещают двухфазную пену с высотой степенью аэрации (50-60), а столб ее достигает максимума. Величины, над которым находится водный раствор поверхностно-активного вещества, который сохраняет равновесное состояние упругой системе и тем самым предотвращает самоизлив пены из скважины. Если в процессе перфорации наблюдается снижение уровня, то в скважину закачивают набольшими порциями водный раствор поверхностно-активного вещества для сохранения статического уровня. Проникновение некоторого кол-ва пены в призабойную зону пласта, как уже отмечалось, не ухудшает его фильтрационных свойств. Оборудование для вскрытия пласта При вскрытии продуктивных пластов с применением пен используют следующее дополнительное оборудование: передвижные компрессоры, установку по разрушению пены, герметизирующее устройство устья скважины (вращающийся превентор), аэратор, обратный клапан, устанавливаемый в бурильных трубах, емкости для хранения и приготовления растворов ПАВ, приборы для замера расхода жидкости и воздуха (ДП-430). Для образования пены следует применять передвижные компрессорные установки: УКП-80, КПУ-16/100, КПУ-16/250, ДКС-7/200. Число компрессоров определяется расходом жидкости и степенью аэрации. Для бесперебойной работы необходимо иметь резервный компрессор. В таблице 5.5 дана характеристика применяемых компрессоров. Для образования пены можно применять также природный газ высокого давления и азот. Таблица 5.5
Установка по разрушению пен. Замкнутая циркуляция пенообразующего раствора при вскрытии пласта с применением пен осуществляется путем разрушения ее в установке конструкции Укр НГГГГГаза. Принцип действия установки основан на дросселировании через клапан и вакуумировании потока пены, выходящего из скважины. Установка обеспечивает разрушение пены при расходе пенообразующего раствора до 30 л/с и степени аэрации до 80, при этом газосодержание пены снижается до 6-8%. Установку рекомендуется располагать как можно ближе к скважине, при этом дегазированный пенообразующийся раствор необходимо сливать в ёмкость. Устье скважины соединяется с сепарационной камерой при помощи трубопровода диаметром 114 мм. Чтобы направить поток пены мимо установки в случае ее отказа в работе, монтируют отводную линию, направленную в земляную емкость. Для создания безопасных условий работы буровой бригады и твода пены на установку по разрушению устье скважины оборудуют герметизирующим устройством. Для герметизации устья скважины можно применять вращающиеся превенторы типа ПВ-156*320, ПВ-230*10, ПВ-307*10. В таблице 5.6 приведена краткая техническая характеристика вращающихся превенторов. Таблица 5.6
В климатических условиях Приразломного месторождения данный вид работ можно производить только в летний период. Поэтому рассмотрим и просчитаем приемлемые для наших условий варианты вторичного вскрытия пласта. 5.4 Влияние типа и видов перфорации на коэфициент продуктивности скважины и отбор - вытеснения нефти в системе разработкиПри вторичном вскрытии пласта на Приразломном месторождении как на любом другом важно знать: 1 влияние растворам глушения на призабойную зону пласта (ПЗП). 2 влияние тампонажного раствора при цементаже обсадной колонны на призабойную зону пласта. влияние бурового раствора при первичном вскрытие пласта на призабойную зону пласта. вид, тип и плотность перфорации для вторичного вскрытия пласта. физико-химическое воздействие на ПЗП после вторичного вскрытия. И если по первым трём пунктам принимается определение технологическое решение, то 4 и 5 пункт находится в состоянии отсутствия правильных технологических решений, в следствии чего приёмистость или приток по прослоях с различной проницаемостью оставляет погребённым значительное количество нефти, неравномерного вытеснения или неравномерных отборов. Поэтому рассмотрим эти пункты подробно. Типы перфорации бывают следующие: Пулевая Сверлящая Кумулятивная Торпедная Пескоструйная Каждая из них обладает своими особенностями. Виды кумулятивной перфорации бывают: 1 корпусные и безкорпусные; 2 одноразовые и многоразовые; перфораторы разрушающиеся; перфораторы спускаемые на трубах НКТ и на геофизическом кабеле. Каждая перфорация характеризуется своими особенностями: диаметром перфорационного канала, его длиной, соотношениями: (5.1) Основные типы и виды перфорации применяемые на Приразломном месторождении приводятся ниже. По Приразломному месторождению в последние годы наблюдаются резкое обводнение продукции не согласующиеся с расчётным проектным. Проведём анализ по вторичному вскрытию пласта. Для пластов БС4-5 коэффициент проницаемости меняется от 1 мД. До 100 мД. в зависимости от геофизической характеристики пласта относительной амплитуды собственных потенциалов, которая в свою очередь зависит от глинистости коллектора) принимаем плотность перфорации от 10 отверстий на метр при до 20 отверстий при . Считалось, что двойное увеличение плотности перфорации равноценно аналогичному уменьшению коэффициента проницаемости. Простой расчёт по методике, предложенный В.И. Щуровым с использованием его графиков (рисунки 5.1-5.3) приводит к следующим результатам: 1 рассчитаем при плотности перфорации 5-10 отверстий на метр сверлящим перфоратором ПС - 112; данные возьмём из двух прослоев с проницаемостями 35 мД и 70мД соответственно: примем, что пористость меняется в этом случае незначительно длина канала перфорации: l01=l02=2cм диаметр перфорационного канала: d01=d02=12мм мощность пласта: N1=N2=13м Диаметр скважины: Д1=Д2=216мм Поскольку на Приразломном месторождении пласт БС4-5 полностью нефтенасыщен, коэффициент несовершенства скважин по степени вскрытия будет равен 0 С1=0; график Щурова (приложении). Определим С2 коэффициент несовершенства скважины по характеру вскрытия) Определим
график Щурова. Определим (пД) 1=10 0,216=2,16; (пД) 2=5 0,216=1,08; определим определим (С2) 1=10 определим (С2) 2=18 Посчитаем относительный дебиты для пластов одинаковой толщины, то есть это будет коэффициенты показывающие в каких пластах идёт более интенсивный отбор при данном виде перфорации
(5.2) то есть наименьшее проницаемый пласт будет выработан на 0,74 в то время как более проницаемый пласт вырабатывается в 1: 0,74=1,36 раза быстрее. Как результат и вытеснение будет более интенсивно проходить в более проницаемом пласту, который за тем станет обводнённым. Посчитаем ту же задачу для перфоратора ПС-103-технические характеристики следующие: диаметр отверстия d0=5мм=0,5см; длина перфорационного канала l0=10-12cм мощность пласта h=13м; диаметр скважины Д. =0,216м Из графика Щурова следует (С2) 1=1,6; (С2) 2=3 для данного вида перфорации Следовательно, в плохо проницаемом пласту вытеснение или отбор нефти будет происходить медленее в 1/0,58 =1,7раза. Сделаем расчёт для перфоратора ПКСЛУ-80 со следующими техническими данными: d0=7мм=0,7см; длина перфорационного канала l0=21-22cм мощность пласта h=13м; диаметр скважины Д. =0,216м. Плотность перфорации: Из графика Щурова следует (С2) 1=0; (С2) 2=0,8 (5.3) то есть и в этом случае вытеснение или отбор идёт значительно хуже в слоях низкой проницаемостью 1/0,56=1,85раза. Поэтому и происходит на Приразломное месторождение обводнение по прослоям с более высокой проницаемостью. Для каждого конкретного случая следует подбирать вид перфоратора и плотность перфорации, которая соответствовала бы равномерным отборам - вытеснением по всем прослоям. В настоящие время появились более мощные перфораторы: RDX-DR - фирмы Шлюмберже Страницы: 1, 2 |
|
© 2000 |
|