РУБРИКИ |
Геологическое строение Самотлорского месторождения |
РЕКЛАМА |
|
Геологическое строение Самотлорского месторожденияРисунок 2.42.2.4 Петрофизическая характеристика пластов Петрофизические характеристики коллекторов Самотлорского месторождения определялись лабораторными методами по керну и по данным ГИС. Пористость. Одним из основных подсчетных параметров является коэффициент пористости, который определяется по данным керна или материалам промысловой геофизики. Наиболее широко применяются: 1.Метод сопротивлений. 2.Радиоактивные методы. 3.Метод потенциалов собственной поляризации. В последнее время опробуется акустический метод, гамма-гамма каротаж. На Самотлорском месторождении было опробовано несколько методов определения Кп: 1.Определение Кп по удельному сопротивлению зоны проникновения. Сопоставление значений коэффициента пористости, полученных по данной методике с результатами анализов керна для одних и тех же интервалов выявило существенное занижение величины Кп по r зп, по сравнению с Кп по керну при полном отсутствии связи между этими параметрами. 2.Определение Кп по радиометрии основано на наличии функциональной зависимости между показателями Нкт-50 и суммарным водосодержанием пласта (W å) при одинаковых аппаратурных и скважинных условиях измерения. 3.Определение Кп по методу потенциалов собственной поляризации. Наряду с применением радиометрии для оценки Кп рассмотрены возможности метода потенциалов собственной поляризации. Для этой цели по 58 скважинам, охарактеризованным керном проводился анализ тесноты связи Кп (a пс) для различных классов пород и отдельных продуктивных горизонтов. Пористость пород группы АВ1-5 в целом закономерно возрастет с ростом величины параметра a пс( с уменьшением глинистости пород ). По всему массиву пластов, охарактеризованных керновыми данными, были получены зависимости Кп ( a пс ), описываемые уравнениями: АВ1-5 -Кп = 17+13,2 пс БВ8-10 -Кп = 13+13,4 пс БВ16-22 - Кп = 12+12,8 пс ЮВ1-2 - Кп = 7,8+10,4 пс При расчете зависимостей между относительной амплитудой аномалии потенциалов ПС и пористостью пород использовались наблюденные значения потенциалов собственной поляризации. В качестве опорных пластов при расчетах относительной амплитуды аномалии потенциалов ПС (a пс) использовались наиболее чистые слабоглинистые интервалы в интервале пластов АВ4-6 для пластов группы АВ, БВ6 - для пластов группы БВ8-10, ЮВ1-2 - для пластов ЮВ1/1-2 и наибольшее по разрезу значение, исправленное за несоответствие температурных условий - для пластов БВ16-22. Для исключения влияния ограниченной мощности пласта на характер зависимости a пс ( Кп ) из массива были исключены пластопересечения мощностью менее 2 метров. Не учитывались также пластопересечения, охарактеризованные единичными образцами керна. Учитывались лишь интервалы с выносом керна не менее 70 % . Метод потенциалов собственной поляризации при достаточной точности обладает наибольшей простотой в реализации. Преимущество этого метода заключается в том, что по этому способу можно определить Кп практически любого прослоя, а также по тем литологическим разностям, по которым керн не изучен и не проведен РК. Средневзвешенные значения по керну и геофизике приведены в таблице 2.8. Таблица 2.8
Определение коэффициента нефтенасыщенности пород. Коэффициент нефтенасыщенности коллекторов изучался несколькими методами: 1. Косвенными - по определению остаточной воды, в кернах остаточная вода создавалась центрифугированием, вытяжкой и капилляриметрией. 2. С использованием данных естественной влажности кернов скв.107, пробуренной на известково-битумном растворе (РНО). 3. По промысловой геофизике - по параметру насыщения Рн (Кв, Кн ). Косвенные методы можно использовать для получения ориентировочных значений нефтенасыщенности. В практике лабораторных исследований наибольшее распространение в силу экспрессности и простоты получили методы капиллярного впитывания и центри-фугирования. Но в связи с тем, что метод капиллярной вытяжки фильтровальной бумагой обладает большими и трудно учитываемыми погрешностями, использование его для построения связей Рн (Кв) и нахождение по ним величины Кн нецелесообразно. Более надежным в этом отношении является метод центрифугирования. Метод прост и экспрессен, хотя также не лишен недостатков. Количество вытесненной из образца воды зависит от перепада давления, которое развивается в процессе центрифугирования на границе двух сред: вода - воздух. Метод впервые применен в грунтоведении при изучении влаги почв. В практику анализа керна нефтяных пород перенесен Р. Слободом, исследования которого показали хорошую сходимость результатов определения водонасыщенности методами центрифугирования и капилярных давлений. Позднее О. Ф. Корчагиным были получены аналогичные результаты. Им был обобщен материал по определению Кво методом центрифугирования для пород - коллекторов Среднего Приобья, проведено сопоставление результатов с данными, полученными по скважинам, пробуренным на нефильтрующейся нефтяной основе РНО. Другой способ определения коэффициента нефтегазонасыщенности пород получил распространение после бурения скважин с применением растворов, приготовленных на нефтяной основе. Величина коэффициента пористости в глубинных условиях - сложная функция эффективного давления, коллекторских и литологических свойств. На территории Среднего Приобья, отличающейся платформенным развитием, наблюдается закономерное изменение эффективного давления, коллекторских свойств, минерального состава скелета и глинистой компоненты, основных литологических параметров в зависимости от глубины. При установлении зависимости между величинами пористости в глубинных условиях и глубиной естественного залегания породы последняя является интегральным параметро, определяющим термобарические условия и литологические свойства пород. Изменение пористости при подъеме керна из пласта приводит к изменению насыщенности. Количество остаточной воды при этом остается неизменным, а ее отношение к новому объему пор (то есть коэффициент водонасыщенности) становится меньшим, чем в условиях пласта. Определение нефтенасыщенности коллекторов продуктивных пластов АВ1-5 - БВ8,10 осуществлялось по традиционным связям Рн ( Кв ) и Рп ( Кп ) , увязанным с данными прямого метода связью rп ( Wв ) путем уточнения соответствующей величины сопротивления пластовой воды r в. В результате экспериментов, проведенных совместно специалистами Главтюменьгеологии и института СибНИИНП, установлены зависимости Рн (Кв) и Рп (Кп) для пластов групп АВ и БВ. При увязке полученных зависимостей с данными прямого метода (связью rп (wв) уточнено сопротивление пластовой воды коллекторов указанных пластов. Полученные зависимости и параметры использовались при определении коэффициента нефтенасыщенности коллекторов неокома. При расчете коэффициента нефтенасыщенности коллекторов ачимовской и юрской толщ также использовался традиционный способ. При установлении зависимости Рн ( Кв ) текущая водонасыщенность создавалась методом центрифугирования. 2.2.5 Результаты изучения нефтенасыщенности продуктивных пластов по скважинам, пробуренным на растворах с улеводородной основой Методика исследований. В связи с большими трудностями обоснования отдельных параметров нефтегазового пласта, а именно: для оценки его нефтенасыщенности и отработки косвенных лабораторных и промыслово-геофизических методов производится отбор керна на растворах с углеводородной основой (РУО или РНО). К подсчету запасов 1987г. на Самотлорском месторождении с применением РНО (известково-битумные безводные - ИБР и инвертно-эмульсионные - ИЭР), было пробурено несколько скважин с отбором керна практически из всех основных продуктивных пластов. На известково-битумном безводном растворе (ИБР) отбор керна производился в следующих скважинах: №1598 ( пл.АВ1, АВ2-3 ), №1241бис ( пл.АВ1 ), №107 ( пл.АВ2-3, пл.АВ4-5, БВ8 ), №13048 ( пл.АВ4-5 ), №5420 ( пл.БВ8 ). На инвертно-эмульсионном растворе керн отбирался только из пласта АВ1 в скважинах №№ 7227, 15073, 1100. Горизонт АВ1. Скважина 1241-бис пробурена в юго-западной части месторождения, в зоне развития пород V-Vi классов проницаемости. С отбором керна пройдено 8,3м, вынос - 2,4м (29%). По данным керна в разрезе скважины преобладают алевролиты мелкозернистые, сильно глинистые, участками известковистые с ничтожным содержанием песчаного материала. Открытая пористость пород колеблется от 10 до 23%. Нефтенасыщенность по прямому методу оказалась низкой (0-5%). Гранулометрический состав и текстурные признаки пород по скважине 1241-бис свидетельствуют, что керн был отобран выше эффективной части пласта АВ1/1+2, и соответствует самой верхней его части. К сожалению, после отбора керна в скважине ИБР не меняли на обычный глинистый раствор, чтобы провести полный комплекс стандартного каротажа, поэтому данные об интервалах проницаемых пропластков и их насыщении отсутствуют. В скв.№1598, пробуренной на западном крыле Самотлорской структуры, поднято керна из пласта АВ1/1+2 3,5м. Вынос - 80%. Пласт АВ1/1+2 представлен чередованием рябчиковых алевролитов, глин и песчаников. В верхней части разреза преобладают алевролиты средне-мелко-зернистые, плохоотсортированные, сильноглинистые, рябчиковой текстуры. Открытая пористость варьирует от 18 до 24%. Водонасыщенность по прямому методу высокая: 79-100%, в среднем 88%, т.е. нефтенасыщенность составляет в среднем всего 12%. По промыслово-геофизической характеристике (a пс = 0,27, rп=4,9омм) этот прослой глинистого “рябчика” относится к неколлектору, а нефтенасыщенность по ГИС ( 10% ) близка к определенной по прямому методу. Ниже, под слоем глин и глинизированных алевролитов, залегают песчаники мелкозернистые, слабосцементированные, местами трещиноватые, нефтенасыщенные. По гранулометрической характеристике они соответствуют монолитам пласта АВ1/1+2, имеют высокую пористость (от 28до 32%). Водонасыщенность по прямому методу составила 32,5%. Нефтенасыщенность по ГИС близка к нефтенасыщенности по прямому методу (66 и 67,5% соответственно). Кроме рассмотренных скважин на Самотлорском месторождении из пласта АВ1/1+2 керн изучен еще из трех скважин (№№ 7227, 15073, 1100), пробуренных на ИЭР. Разрезы этих скважин слагаются типичными для этого пласта породами. Керн в названных скважинах отбирался на высоте 42-79м от уровня ВНК, т.е. породы находятся в стабилизированной зоне нефтенасыщения. По скв.№ 7227 было изучено 39 образцов керна из 4,6м эффективной мощности пласта. Водонасыщенность пород прямым методом составила 74%, а по центрифужному методу - 80%. Более низкие значения водонасыщенности получены по скв.№15073, где было изучено 6 образцов керна из песчаного прослоя толщиной 1,2м. Керн представлен высокопроницаемыми (100 - 650 * 10-3 мкм2) песчаноалевритистыми породами. Водонасыщенность по прямому методу составила 50,1%, а по центрифужному - 27,6%. Горизонт АВ2-3. В скважине № 1598 горизонт АВ2-3 представлен, в основном, песчаниками мелко-зернистыми, местами средне-мелкозернистыми, хорошо отсортированными, слабосцементированными. Ниже эффективной части горизонта развиты глинистые алевролиты и алевритистые глины. Открытая пористость составляет в среднем 28%. Водонасыщенность по прямому методу вниз по разрезу снижается от 50% до 27%, хотя по геофизическим характеристикам такого не наблюдается. По-видимому, основной причиной повышенной водонасыщенности, определенной по керну, является проникновение РУО по трещинам, образовавшимся в процессе бурения (в РУО было значительное количество воды). Горизонт АВ2-3 в разрезе скважины № 107 в интервале 40-60 м от уровня ВНК представлен песчаниками глинисто-алевритовыми с содержанием песчаной фракции 60-70%, глинистой - 9%. Коллекторские свойства значительно выше, чем в скв.№ 1598, и значительно отличаются от средних величин для монолитных пропластков в целом по горизонтую. Так, пористость по скв. № 107 выше, чем в целом по горизонту на 1,9%, проницаемость - выше почти в 3 раза, а содержание остаточной воды по методу центрифугирования - в 1,4 раза. Это свидетельствует о том, что петрографическая характеристика пород горизонта АВ2-3 в скв. № 107 не характерна для монолитных пластов горизонта в целом. Горизонт АВ4-5. Скважина № 13048 пробурена в сводовой части Самотлорского поднятия. С отбором керна пройдено 48 м, вынос - 41,7м (87%). Разрез представлен песчаниками мелкозернистыми, участками средне-мелкозернистыми, умеренно глинистыми, слабосцементированными до сыпучих, массивными, нефтенасыщенными. Открытая пористость изменяется от 25,4 % до 28%. Водонасыщенность по прямому методу в нефтеносной части изменяется от 12% до 46%, хотя по геофизическим характеристикам такого не наблюдается. Это указывает на наличие переходной зоны, которая осложняется литологическими экранами. В скв.№ 107 горизонт АВ4-5 представлен глинисто-алевритовыми песчаниками. Коллекторские свойства пород горизонта значительно отличаются от средних значений для монолитных пластов горизонта в целом. Пористость выше на 1% ( 28,7% и 27,7% ), проницаемость выше в 1,3 раза (1,102 и 0,848 мкм2), а содержание остаточной воды по методу центрифугирования в 1,18 раза больше (22,1% и 26,0% ). Значения водонасыщенности в скв. № 107 на высоте 8м над уровнем ВНК на 3% выше, чем по геофизическим данным, что согласуется с данными по другим скважинам, где керн отбирался в стабилизированной зоне насыщения. Горизонт БВ8. Горизонт БВ8 состоит из двух самостоятельных объектов, разделенных друг от друга литологическим экраном. Пласт БВ8/0. Пласт БВ8/0 в скв. № 107 сложен песчано-алевритовыми породами, отобранными в интервале 62-77м от уровня ВНК. Пористость в среднем составляет 25%, проницаемость - 0,044 * 10-3 мкм2; остаточная водонасыщенность по методу центрифугирования в среднем равна 39,6%. Водонасыщенность пород пласта БВ8/0 по данным прямого метода в среднем равна 31,8%. Среднее значение пористости по всему пласту ниже на 1% и составляет 24,0%, водонасыщенность по центрифужному методу на 5,6% ниже и равна 34%. Водонасыщенность по прямому методу в среднем по пласту в разрезе скважины выше на 1,9% по данным промысловой геофизики. Это указывает на неплохую сходимость полученных результатов. Пласт БВ8/1-3. Пласт БВ8/1-3 в скв. № 107 представлен песчано-алевритовыми породами с содержанием песчаной фракции около 65%, глинистой - 7,4% и залегает в интервале 33-58 м от уровня ВНК, т.е. в стабилизированной зоне насыщения. Средневзвешенное значение водонасыщенности по прямому методу по 175 определениям составило 22,0%. В то же время по данным промысловой геофизики средневзвешенное значение водонасыщенности по разрезу скважины составило 16,3%. Коллекторские свойства пород пласта в скв. № 107 и в целом по пласту довольно близки. Наблюдается полное совпадение пористости, проницаемость находится в пределах одного класса коллекторов, значения водонасыщенности по центрифужному методу в обоих случаях практически совпали. 2.3 Сопоставление результатов определения нефтенасыщенности пластов прямым и промыслово-геофизическими методами Результаты изучения остаточной водонасыщенности в продуктивных горизонтах Западной Сибири позволили выделить основные факторы, определяющие ее величину: коллекторские свойства; мощность нефтегазонасыщенных пропластков, а также степень их однородности и расчлененности; высота над уровнем ВНК; наличие литологических экранов на уровне или несколько выше линии ВНК. Выявленные факторы, а также литолого-коллекторские свойства пород в разрезе скважин, пробуренных на РУО, показывают, что результаты изучения водонасыщенности прямым методом не могут быть в целом перенесены на весь горизонт месторождения или даже его значительную часть. Они могут быть использованы для непосредственного определения остаточной нефтенасыщенности (Кнн ) только для характерных по строению и литолого-коллекторским свойствам интервалам, расположенным на том же уровне от ВНК, что и интервал, изученный по керну на РУО. Полученные результаты по прямому методу в основном необходимо использовать не для непосредственного определения нефтенасыщенности пласта, а для проверки и корректировки широко используемых в практике косвенных методов. В заключении можно сделать следующие выводы: 1. Результаты определения нефтегазонасыщенности продуктивных пластов по ранее применяемым в Главтюменьгеологии и Главтюменнефтегазе геофизическим неоткорректированным по скважинам на РУО методом обычно близки с результатами прямого метода (в среднем завышение относительно ее истинных значений было на 3%), но возможны отклонения по отдельным скважинам до 8-10% и более, особенно в глинистых прослоях с a сп менее 0,8м и толщиной менее 1-2м. 2. В нижней части зон недонасыщения (до 12м, а иногда и до 20м над ВНК) оценку истинной водонасыщенности следует проводить по данным только геофизических исследований с вышеуказанной поправкой на 3%. Результаты по прямому методу, в связи с частичным вытеснением воды в названных интервалах залежей, в большинстве случаев недостоверны. 3. Из-за значительных отклонений от истинных (до 10%) результатов определения нефтенасыщенности геофизическими методами необходимо продолжить бурение скважин на РУО для отдельных зон Самотлорского и других месторождений, обратив особое внимание на улучшение рецептуры этих растворов, повышение выноса кернов и сохранности в них флюидов. Для отбора рекомендуется заменить снаряд “Недра” на “Кембрий”. По скважинам, пробуренным на ИЭР, из-за изменения минерализации воды в призабойной зоне пластов оценить насыщенность по геофизическому методу не удалось. В связи с этим необходимо отметить, что по керну из скважин на ИЭР действительную насыщенность пластов оценивать можно, вводя в получаемые по керну результаты Квп поправки на частичное проникновение воды в породу. Это подтверждается выявленной близостью результатов по керну из скважин на ИБР и ИЭР по пластам со сходными свойствами и расстоянием от ВНК. 3. Специальная часть 3.1 Введение Гидравлический разрыв является одним из самых распространенных технологических приемов заканчивания скважин. Хорошее знание применяемых материалов и технологий процесса - ценное достояние каждого работника нефтяной промышленности. Теория гидроразрыва развивалась на протяжении ряда лет. Совершенствование технологии и оборудования, создание новых химических компонентов, проведенные в период после первого воздействия, выполненного в 1947 году, к настоящему времени превратили гидроразрыв пласта (ГРП) в операцию с надежно предсказуемым результатом. Нет сомнений, что дальнейшее развитие техники и новые исследования приведут к новым достижениям в этой области. Гидравлический разрыв играет основную роль в увеличении нефтяных запасов и ежедневной добыче. Процесс ГРП был осуществлен в нефтяной промышленности в 1947 году на газовом месторождении “Хуготон” на скважине “Келпер 1” расположенной в графстве “Грант” в Канаде. Скважина имела четыре продуктивных известняковых газовых пласта от 715 до 790м. Забойное давление равнялось примерно 2,9 Мпа. К 1981 году, было проведено более чем 800,000 обработок. А к 1988 году это число превысило 1 миллион. Около 35-40% всех направленно пробуренных скважин обработанны ГРП (в Северной Америке), и около 25-30% от общего объема запасов США сделали экономически рентабельными с помощью этого процесса. ГРП может увеличить извлекаемые запасы в Северной Америке на 1300 миллионов кубометров нефти. 3.1.1 Сущность метода ОПРЕДЕЛЕНИЕ. Гидравлическим разрывом называется процесс, при котором давление жидкости воздействует непосредственно на породу пласта вплоть до ее разрушения и возникновения трещины. Продолжающееся воздействие давления жидкости расширяет трещину вглубь от точки разрыва. В закачиваемую жидкость добавляется расклинивающий материал, например, песок, керамические шарики или агломерированный боксит. Назначение этого материала - удержать созданную трещину в раскрытом состоянии после сброса давления жидкости. Так создается новый, более просторный канал притока. Канал объединяет существующие природные трещины и создает дополнительную площадь дренирования скважины. Жидкость, передающая давление на породу пласта, называется жидкостью разрыва. Задачи гидравлического разрыва. При гидравлическом разрыве должны быть решены следующие задачи: а) создание трещины б) удержание трещины в раскрытом состоянии в) удаление жидкости разрыва г) повышение продуктивности пласта · Создание трещины: Трещина создается путем закачки жидкостей подходящего состава в пласт со скоростью превышающей ее поглощения пластом. Давление жидкости возрастает, пока не будут превзойдены внутренние напряжения в породе. В породе образуется трещина. · Удержание трещины в раскрытом состоянии: Как только развитие трещины началось, в жидкость добавляется расклинивающий материал - проппант (обычно песок), переносимый жидкостью в трещину. После завершения процесса гидроразрыва и сброса давления проппант удерживает трещину открытой и, следовательно, проницаемой для пластовых жидкостей. · Удаление жидкости разрыва: Прежде чем начать добычу из скважины, следует удалить жидкость разрыва. Степень сложности ее удаления зависит от характера применяемой жидкости, давления в пласте и относительной проницаемости пласта по жидкости разрыва. Удаление жидкости разрыва весьма важно, так как, понижая относительную проницаемость, она может создавать препятствия на пути притока жидкостей. · Повышение продуктивности пласта: До начала проектирования процесса следует провести анализ его экономической целесообразности. Цель гидравлического разрыва. Проведение гидроразрыва преследует две главные цели: 1) Повысить продуктивность пласта путем увеличения эффективного радиуса дренирования скважины. В пластах с относительно низкой проницаемостью гидроразрыв - лучший способ повышения продуктивности. 2) Создать канал притока в приствольной зоне нарушенной проницаемости. Нарушение проницаемости продуктивного пласта - важное для понимания понятие, поскольку тип и масштаб процесса разрыва проектируетсяименно с целью исправления этого нарушения. Если есть возможность создать проходящую сквозь зону повреждения трещину, заполненную проппантом, и привести падение давления до нормальной величины градиента гидродинамического давления, то продуктивность скважины возрастет. Нарушение проницаемости продуктивного пласта. Обычно нарушение проницаемости продуктивного пласта отождествляется со “скиновым повреждением”, то-есть с нарушением проницаемости призабойной зоны. Однако, эту величину не всегда можно определить через измерения или расчет “скина”. Обычно принимают скин-фактор (коэффициент, определяющий степень нарушения коллекторских свойств пласта) равным нулю, чтобы указать, что нарушения проницаемости пласта нет, однако это фактически не означает, что повреждения нет. Например, кислотная обработка может проникнуть достаточно глубоко в пласт на участке в несколько метров в верхней части 20-метрового интервала перфорации, чтобы при исследованиях было обнаружено устранение положительного скина. Однако при этом положительная часть интервала может быть частично забита механическими примесями или буровым раствором. Подлинная потенциальная продуктивность этой скважины может оказаться во много раз больше, чем ее производительность при замеренном нулевом скине. Проницаемость пласта может быть нарушена в результате воздействия физических или химических факторов или их совместного действия: закупорки пор раствором, изменения смачиваемости пласта из-за вторжения воды из постороннего источника. Обыкновенный водяной барьер, вызванный избыточным поглощением жидкости, является разновидностью нарушения проницаемости. Аналогичный результат вызывает вторжение пластовой воды из другой зоны или из другого участка коллектора. Вот некоторые формы нарушения проницаемости пласта: 1) Вторжение в пласт частиц бурового раствора. 2) Вторжение в пласт фильтрата бурового раствора. 3) Вторжение в пласт фильтрата цемента. 4) Несоответствие перфорации по размеру, количеству и глубине проникновения отверстий. 5) Разрушение перфорации и уплотнение материнской породы. 6) Мехпримеси в жидкости заканчивания или жидкости глушения, проникающие в пласт или забивающие перфорацию. 7) Вторжение в пласт жидкостей заканчивания или глушения. 8) Закупоривание пласта природными глинами. 9) Отложения асфальтенов или парафинов в пласте или перфорации. 10) Отложения солей в пласте или перфорации. 11) Образование или закачка эмульсии в пласт. 12) Закачка кислот или растворителей с мехпримесями или отложения мехпримесей в пласте. Все это может привести к снижению продуктивности, а в тяжелых случаях - к полному прекращению добычи из скважины. Помочь могут некоторые виды стимуляционного воздействия. Влияние нарушенной проницаемости на продуктивность скважин Большинство видов нарушения проницаемости понижает начальную проницаемость пласта. Влияние этого понижения на продуктивность зависит от глубины повреждения зоны, окружающей ствол. Если, например, имеет место снижение проницаемости на 50% в слое толщиной 5 см, то это приведет к снижению продуктивности всего на 14%. Если же снижение проницаемости охватило 30-сантиметровый слой, продуктивность понизится на 40%. Снижение на 75% проницаемости в 30-сантиметровой толще приведет к потере продуктивности в 64%. Поэтому скважина, которая должна давать 100 кубометров в сутки, но проницаемость пласта в радиусе 30см от ствола составляет лишь 25% от начальной добычи, нефти составит только 36м3 /сутки. Для изучения влияния повреждения пласта на продуктивность можно использовать модели пласта (как математические, так и физические лабораторные модели). Важно помнить, что для минимизации глубины и степени тяжести повреждения пласта не нужно жалеть усилий. Низкая проницаемость Первоначально гидроразрыв внедрялся как экономическое средство повышения добычи газа из пластов с относительно низким давлением. В низкопроницаемых (до 10мд) пластах создается канал - высоко-проницаемый канал (100-1000дарси) притока. Этим обеспечиваются большие площади дренирования, в которые и осуществляется медленная подпитка углеводородами из пласта с очень низкой проницаемостью. Таким образом, вся энергия пласта используется максимально. Значительное влияние на ожидаемые результаты гидроразрывов различных типов и размеров оказывает несущая способность пластовой жидкости. Вертикальный разрыв. В большинстве скважин происходят вертикальные разрывы. Трещина разрыва образует два крыла, ориентированные под углом 180° друг к другу. НАПРАВЛЕНИЕ ТРЕЩИНЫ РАЗРЫВА. Трещина разрыва может быть сориентированна в горизонтальном или вертикальном направлении. Тип разрыва который может произойти в конкретных условиях зависит от напряжения в пласте. Разрыв происходит в направлении, перпендикулярном наименьшему напряжению. Горизонтальный разрыв Горизонтальный разрыв происходит в скважине, если горизонтальное напряжение больше, чем вертикальные напряжения. Жидкости разрыва. Важнейшей частью проектирования гидроразрыва является подбор жидкости разрыва. При этом следует рассмотреть следующие факторы: 3.2 Совместимость с пластом и пластовыми жидкостями Нарушение проницаемости пласта.При проведении гидроразрыва происходит поглощение жидкости в зоне, прилегающей к поверхности трещины. Из-за повышенного насыщения жидкостью зоны вторжения, относительная проницаемость по пластовой жидкости понижается. Если проницаемость по пластовой жидкости низка, а по жидкости разрыва еще ниже, это может привести к полному блокированию притока. Кроме того, в пласте могут быть пучинистые глины, которые набухают при контакте с жидкостью разрыва и понижают проницаемость. Нарушение проницаемости песчаной пробки.Проницаемость песчаной пробки, так же, как и зоны вторжения жидкости, может быть нарушена в результате насыщения жидкостью. Приток по трещине может быть также ограничен наличием в песчаной пробке остаточных после воздействия мехпримесей или полимеров. Пластовые жидкости.Многие жидкости склонны к образованию эмульсий или к осадкообразованию. Во избежание риска при выборе надлежащих химических компонентов следует провести лабораторные испытания. Стоимость жидкостей разрыва. Разброс по стоимости для различных жидкостей разрыва весьма различен. Наиболее дешева вода, тогда как метанол и кислоты довольно дороги. Следует также учитывать стоимость гелеобразующего компонента. В любом случае надо сопоставлять выгоды обработки пласта соответствующими жидкостями и химикатами с их стоимостью. Таблица 3.1СРАВНИТЕЛЬНАЯ СТОИМОСТЬ РАЗЛИЧНЫХ ЖИДКОСТЕЙ РАЗРЫВА. (ДОЛЛАРЫ США)
Виды жидкостей разрыва. ЖИДКОСТИ НА ВОДНОЙ ОСНОВЕЖидкости разрыва на водной основе используются сегодня в большинстве обработок. Хотя это было не так в первые годы гидроразрывов когда жидкости на нефтяной основе использовались фактически на всех обработках. Этот вид жидкости имеет ряд приемуществ над жидкостью на нефтяной основе. 1. Жидкости на водной основе экономичнее. Базовый компонент – вода намного дешевле чем нефть, конденсат, метанол и кислота. 2. Жидкости на водной основе дают больший гидростатический эффект чем нефть, газ и метанол. 3. Эти жидкости невоспламеняемы; следовательно они не взрывоопасны. 4. Жидкости на водной основе легко доступны. 5. Этот тип жидкости легче контролируется и загущаются. Линейные жидкости разрыва. Необходимость уплотнения воды чтобы помочь транспортировать расклинивающий материал(проппант), уменьшить потерю жидкости, и увеличить ширину трещины было очевидным для ранних иследователей. Первый загуститель воды был крахмал.В начале 1960-х была найдена замена - гуаровый клей - это полимерный загуститель. Он используется и в наше время. Также используются и другие линейные гели в качестве жидкости разрыва: гидроксипропил, гидроксиэтилцеллюлоза, карбоксиметил, ксантан и в некоторых, редких случаях полиакриламиды. Соединяющиеся жидкости разрыва. Впервые были использованны в конце 1960-х, когда было уделено большое внимание ГРП. Развитие этого типа жидкости решило много проблем которые возникали, когда было необходимо закачивать линейные гели в глубокие скважины с высокой температурой. Соединяющаяся реакция такова, что молекулярный вес базового полимера в значительной степени увеличивается связывая вместе различные молекулы полимера в структуру. Первой соединяющейся жидкостью был гуаровый клей. Типичный соединяющийся гель в конце 1960-х состоял из 9586г/м3 гуарового соеденителя с боритовой сурьмой. Сурьмовая среда была с относительно низким показателем pH в жидкости разрыва. Боровая среда была с высоким показателем pH. Также было разработанно много других жидкостей этого типа, таких как алюминиевые, на хромной, медной основе, и марганце. Дополнительно в конце 1960-х, начале 1970-х годов стали использовать соеденитель на основе КМЦ (карбоксилметилцеллюлоза) и некоторые типы соеденителя на основе гидрокситилцеллюлозы, хотя последний был дорогостоящим. С разработкой гидроксипропилового гуара и карбоксиметилгидроксиэтилцеллюлозных полимеров, также было разработанно новое поколение соеденителей. Полимерные молекулы соеденителя имеют тенденцию к увеличению термостабильности базового полимера. Это теоретезирует что эта температурная стабильность происходит из снижения термальной нестабильности молекулы в результате ее самой однородной природы и некоторой защищенности от гидролиза, окисления, или других реакций деполимеризации которые могут случиться. Полимеры соединителя, хотя и увеличивают кажущеюся вязкость жидкости на несколько порядков, не обязательно вызывают трение при давление увеличивающееся на некоторую степень при операциях закачки. Эти системы были недавно заменены на замедляющие соединительные системы. Замедляющие соединительные системы. Достойны внимания своего развития в 1980-е годы, когда они использовались как жидкости разрыва с контролируемым временем соединения, или замедленной реакцией соединения. Время соединения определено как время чтобы базовая жидкость имела однородную структуру. Очевидно, что время соединения, это время, необходимое чтобы достичь очень большого увеличения вязкости и становления жидкости однородной. Значительное количество исследований было проведено чтобы понять важность использования соединительных систем жидкости. Эти исследования показали, что замедляющие соеденительные системы показывают лучшую дерсперсность соединителя, дают большую вязкость, и увеличивают в жидкости разрыва термостабильность. Другое преимущество эти систем это пониженное трение при закачке. Как результат этого, замедляющие соединительные системы используются больше чем обычные соеденительные системы. Основное достоинство использования соединительных систем над линейными жидкостями описанны ниже: 1. Они могут достигнуть вязкости намного выше при ГРП по сравнению с нагрузкой геля. 2. Система наиболее эффективна с точки зрения контроля потери жидкости. 3. Соединительные системы имеют лучшею термостабильность. Соеденительные системы более эффективны в цене за фут полимера. ЖИДКОСТИ НА НЕФТЯНОЙ ОСНОВЕ Самый простой на нефтяной основе гель разрыва возможен сегодня это продукт реакции фосфата алюминия и базовый, типичный алюминат соды. Эта реакция присоединения, которая преобразует созданную соль что дает вязкость в дизельных топливах или сдерживает до высоко гравитационной сырую систему. Гель фосфата алюминия улучшала в геле более сырые нефти и увеличивала термостабильность. Фосфат алюминия может быть использован, чтобы создать жидкость с повышенной стабильностью к высоким температурам и хорошей емкостью для транспортировки проппанта для использования в скважинах с высокими температурами: более 127°C. Основным недостатком использования жидкостей на нефтяной основе это пожаровзрывоопасность. Также надо отметить, что приготовление жидкостей на нефтяной основе требует большого технического и качественного контроля. Приготовление же жидкости на водной основе значительно облегчает процесс. ЖИДКОСТИ НА СПИРТОВОЙ ОСНОВЕ Метанол и изопропанол использовались как компоненты жидкости на водной основе и жидкости на кислотной основе, или, в некоторых случаях как и солевые жидкости разрыва в течении многих лет. Спирт, который уменьшает поверхностное натяжение воды, направленно использовался для удаления водяных препятствий. В жидкостях разрыва спирт нашел широкое применение как температурный стабилизатор, так как он действует как удерживатель кислорода. Полимеры повысили возможность загустить чистый метанол и пропанол. Эти полимеры включая гидроксипропилцеллюлозу и гидроксипропилгуар, заменили. Гуаровая смола поднимает вязкость на 25% выше, чем метанол и изопропанол, но кроме того дает осадок. В пластах, чувствительных к воде, жидкости на гидрокарбонатной основе более предпочтительны, чем жидкости на спиртовой основе. ЭМУЛЬСИОННЫЕ ЖИДКОСТИ РАЗРЫВА Этот вид жидкости разрыва использовался на протяжении многих лет. Даже некоторые первые жидкости разрыва на нефтяной основе, были внешне нефтяными эмульсиями. У них много недостатков и они используются в очень узком спектре, потому, что крайне высокое давление трения это результат присущих им вязкости и из-за отсутствия снижения трения. Эти жидкости разрыва были изобретены в середине 1970-х. Стоимостная эффективность нефтяной эмульсии подразумевает, что закаченная нефть может быть добыта назад и проданна. Эти эмульсии были очень популярными, когда сырая нефть и конденсат стоили 19$-31$ за м3. Использование эмульсий типа "нефть в воде" направленно сокращалось с ростом цены на нефть. Также в мировой практике известны следующие виды жидкостей разрыва: Жидкости на основе пен, Энергетические жидкости разрыва, где используется азот и углекислый газ, растворяемые в воде. 3.3 Реология Типы жидкостей. К реологическим свойствам жидкостей относятся свойства, описывающие течение жидкостей, поглощение их, несущую способность и т.д. например вязкость. Вязкость жидкости разрыва в очень большой степени влияет на то, как жидкость поглощается породой пласта: густой жидкости теряется меньше, чем невязкой. Ниже приводится классификация жидкостей разрыва. 1) НЬЮТОНОВСКИЕ ЖИДКОСТИ У таких жидкостей наблюдается линейная зависимость между напряжением сдвига и скоростью сдвига. Примеры: вода, незагущенная сырая нефть, реформат. 2) НЕНЬЮТОНОВСКИЕ ЖИДКОСТИ Пластмассы Бингама - простейшая разновидность неньютоновских жидкостей. Как и у ньютоновских жидкостей, здесь проявляется линейная зависимость между напряжением сдвига и скоростью сдвига. Однако, для возбуждения потока этих жидкостей требуется некоторое, не бесконечно малое напряжение сдвига. Пример: пена. Расчет вязкости в трещине прямоугольного сечения: E=P+5,79x10-3 xQ/HW2 (Сантипуаз) Где P-пластическая вязкость (Сантипуаз) Q-расход при закачке (м3/мин) H-высота трещины (м) W-ширина трещины (мм) 3) ЖИДКОСТИ, ПОДЧИНЯЮЩИЕСЯ СТЕПЕННОМУ ЗАКОНУ У таких жидкостей проявляется "кажущаяся" вязкость, которая меняется с вместе изменением расхода (скорости сдвига). "Кажущаяся" вязкость уменьшается при увеличении скорости сдвига. Примеры: загущенная вода, загущенная нефть, полимерсшитные жидкости. N=3,32lg(n600/n300) n600 -показания прибора при 600об/мин n300 -показания прибора при 300об/мин k'(фут*секn' /фут2)=N*n300 /100x511n' N-коэффициент упругости вискозиметра Фанна (обычно равен 1,0) Кажущаяся вязкость: A=4,788x104 k'/(скорость сдвига)1-n' (Сантипуаз) Примечание: обычно скорость сдвига = 170 сек-1 (при 100об/мин) Скорость сдвига для трещины прямоугольной формы: Скорость сдвига(сек-1)=49859Q/HW2 4) СВЕРХКРИТИЧЕСКИЕ ЖИДКОСТИ При использовании жидкостей разрыва с высоким содержанием CO2 (ГРП смесью метанола и CO2, ГРП жидким CO2) разрыв происходит при давлении, а зачастую и температуре, которые выше критических параметров для CO2. В этом диапазоне при повышении давления увеличивается плотность и вязкость, реология жидкости становится трудной для описания. Измерение вязкости. Обычно измерение вязкости проводится с помощью ротационного вискозиметра Фанна или воронки Марша. Скорость сдвига при стандартных оборотах вискозиметра
Скорость сдвига при 100об/мин (170 сек-1) моделирует вязкость жидкости в трещине разрыва. Показания вискозиметра Фанна при 300об/мин соответствует вязкости 511 сек-1. Воронку Марша применяют для измерения вязкости в полевых условиях. Время истечения из воронки 500 мл жидкости называется показателем воронки Марша. Регулирование фильтруемости. Величина эффективности жидкости разрыва покаазывает, какой объем жидкости поглащается пластом по отношению к количеству жидкости, создающему трещину. Например, если эффективность жидкости равна 0,65 это означает, что 35% жидкости теряется, и лишь 65% жидкости образуют объем разрыва. Упрощенно можно сказать, что чем ниже потери жидкости, тем выше ее эффективность. Однако, следует помнить, что хотя чрезмерная фильтрация нежелательна, от низкого поглощения не будет пользы, если не добавить в жидкость достаточное количество проппанта для надлежащего расклинивания трещины. Более низкая утечка жидкости также не даст трещине быстро сомкнуться и позволит проппанту выпасть из взвешенного состояния. Для количественной характеристики потерь жидкости применяется коэффициент фильтруемости, в котором учтены порода пласта, свойства жидкости и параметры жидкости разрыва. Несущая способность по проппанту. Несущая способность по проппанту является функцией подачи насоса, вязкости, концентрации песка и трения о поверхность трещины разрыва. Во время гидроразрыва на проппант действуют как вертикальная, так и горизонтальная составляющие вектора скорости. Горизонтальная составляющая обычно гораздо больше вертикальной, благодоря чему проппант перемещается вместе с жидкостью. Как только работа насоса прекращается, проппант будет оседать до тех пор, пока трещина не сомкнется. Полимерсшитые жидкости имеют очень большую вязкость и образуют с проппантом почти идеальную суспензию, что позволяет заполнить проппантом весь объем трещины. В маловязких системах, например, в жидком CO2, для получения взвеси частиц проппанта используется турбулентоность. Трение. При проведении гидроразрыва до половины мощности механизмов, сосредоточенных на площадке, может затрачиваться на преодоление трения в НКТ. Некоторые жидкости проявляют большую силу трения, чем другие. Кроме того, трение тем выше, чем меньше диаметр труб. Учет трения жидкости и требования по расходу при проектировании гидроразрыва не менее важны, чем ограничение по давлению или совместимость с пластом. На основании информации по большому количеству гидроразрывов были составлены графики давления, которые помогут при проектировании энергетических потребностей процесса. Безопасность. При выборе жидкости разрыва помимо опасности высокого давления, присутствующего при любом ГРП, следует учитывать также пожароопасность и токсичность жидкости. Удаление и определение количества жидкости. Возврат скважины на добычу после гидроразрыва требует тщательного планирования. Если давление на забое скважины недостаточно для того, чтобы скважина начала добывать сама, можно газифицировать жидкость, создав этим дополнительную знергию и понизив статическое давление. Некоторые жидкости разрыва, как жидкий CO2 или пены, удаляются очень быстро и с определением их объема. 3.4 Расклинивающие материалы (проппанты) Проппанты и расклинивание трещин разрыва. Расклинивание выполняется с целью поддержать проницаемость, созданную путем гидроразрыва. Проницаемость трещины зависит от ряда взаимосвязанных факторов: |
|
© 2000 |
|