РУБРИКИ |
Проблема времени и пространства в Метагалактике |
РЕКЛАМА |
|
Проблема времени и пространства в МетагалактикеПроблема времени и пространства в МетагалактикеПроблема времени и пространства в МетагалактикеВ.В. Орленок Хронология событий в геологической истории Земли исчисляется на основе двух циклических уровней - суточного вращения Земли вокруг своей оси и ее годичного обращения вокруг Солнца. В науках о Земле время выступает как мера последовательных и необратимых изменений природной среды в ходе геологической истории. В теоретической физике время рассматривается как мера скорости движения релятивистских частиц. Между пространством и временем в релятивистской механике существует связь, в которой время вместе со скоростью света определяет меру пространства: Изучение биологических систем позволило (Копылов, 1991) представить время как удельную плотность энергии. Эта идея, на наш взгляд, очень плодотворна. Отсюда, в частности, следует, что в зависимости от энергонасыщенности систем ход времени в них будет меняться. Настоящий параграф посвящен дальнейшему развитию этой идеи. Впервые дано уравнение времени. Его анализ позволяет углубить представления о физической сущности времени и с новых позиций критически оценить возраст Земли и Солнечной системы, границы Метагалактики (Орлёнок, 1999). Уравнение времениВыше было показано, что мир вокруг нас это - прежде всего мир физических явлений и объектов - разнообразных масс и энергетических полей. Ядра, атомы, молекулы - это элементы вещества. Их объединения создают макротела от небольших размеров - метеоритов, комет, астероидов, планет - до гигантских астрономических масс звезд и их скоплений. Наблюдаемое многообразие масс существует благодаря энергетическим полям взаимодействия между микрочастицами вещества и между макрообъектами. Если бы такого взаимодействия не существовало, то мир вокруг нас пребывал бы в рассыпанном на элементы состоянии. Сильные внутриядерные взаимодействия связывают системы протонов и нейтронов. Электромагнитные взаимодействия связывают внутриатомные ядра и электроны, а также обеспечивают связи в молекулах и макротелах. И, наконец, гравитационное взаимодействие обеспечивает связку планет и массивной звезды в Солнечной системе. Оно же определяет конфигурацию и взаимодействие звездных скоплений в Галактике и в более крупных ассоциациях вещества Вселенной. Иными словами, все многообразие мира обусловлено разнообразием масс вещества. Между элементарной частицей и каменной глыбой, между планетой и звездой, оказывается, лежит не пропасть, а лишь различие масс, которые создают разные по уровню и качеству взаимодействия внутри материальных систем. Чаще всего мы видим лишь результат этого процесса и по нему восстанавливаем весь путь эволюции объекта. В неорганическом мире именно масса вещества определяет его энергонасыщенность. В органических и социальных системах действуют иные законы, хотя роль масс по-прежнему велика. Таким образом, расширяя и углубляя физические представления о времени, мы можем рассматривать его как меру последовательности взаимодействий, происходящих на различных уровнях организации материи. Взаимодействия - это по существу физико-химические процессы, которые идут в неравновесных системах до того момента, когда энергия взаимодействий будет исчерпана и система перейдет в класс объектов "вечного Мира", то есть скорость течения процессов в системе не будет отличаться от той, что существует и существовала в межгалактическом пространстве вне астрономических масс до появления данной системы. Эти процессы реализуются в форме известных четырех фундаментальных взаимодействий - гравитационного, электромагнитного, сильного и слабого. В основе жизнедеятельности биологических систем функционируют те же фундаментальные взаимодействия, к которым добавляется информационное, записанное в генетическом коде биосистем (Копылов, 1991). Из приведенного следует: чем больше энергия системы, тем больше число взаимодействий в ней происходит. Иными словами, неравновесная система имеет различный масштаб времени, который тем больше, чем выше энергия системы. Резюмируя сказанное, дадим определение времени. Время - это мера внутриобусловленной последовательности взаимодействий, реализуемых на различных уровнях организации материального мира - от микромира до планетарного, космического, включая биологические и социальные системы. На основании сказанного время можно представить в виде уравнения: (XVI.1) где t0 - Мировое время, Е0 - Мировая энергия межгалактического пространства. Течение времени для различных структурных уровней материального мира будет разным. Это, в частности, следует и из продолжительности и радиуса действия четырех фундаментальных взаимодействий, характерных для микромира, макромира и межгалактического пространства. Геологические, планетарные, звездные формы взаимодействия нельзя рассматривать как что-то принципиально отличное от известных фундаментальных (Орлёнок, 1991). Они суть комбинации этих видов. Пространство и время каждого уровня определяются всеми взаимодействиями данного уровня и связаны с взаимодействиями соседних уровней. Они - суть и часть общей системы взаимодействия. Из приведенного следует: если энергия системы Е много больше энергии Мирового пространства Е0: (XVI.2) то масштаб времени системы становится большим. В такой энергонасыщенной системе в единицу времени происходит больше событий, чем в Мировом пространстве. Если энергия системы уменьшается и становится равной энергии Мирового пространства: (XVI.3) то масштаб времени t системы становится равным масштабу времени Мирового пространства t0: (XVI.4) Иными словами, скорость взаимодействий в системе становится такой же, как и в Мировом пространстве вне больших астрономических масс. Мировое время и Мировое пространствоЧто представляет собой Мировое время в свете данного определения физической сущности времени? Мировое время характеризует меру последовательности взаимодействий материи в межгалактическом пространстве, т.е. в пространстве вне астрономических масс. Поскольку радиус гравитационного взаимодействия равен (XVI.5) где Н - постоянная Хаббла, Мировое пространство заполнено гравитационными полями. Кроме того, оно пронизывается фотонами света и реликтового излучения, т.е. электромагнитными полями, а также атомами простейших элементов, плотность которых в межзвездной среде составляет 10-7 частиц на м3, при средней плотности вдали от туманностей rср = 0,89*10-29 г/см3 (Новиков, 1990). Отсюда ненулевая плотность энергии микроволнового фона: Его температура составляет 2,74 К при средней температуре межзвездной среды Если следовать термодинамическому определению физического смысла абсолютного нуля Кельвина (Базаров, 1991), то это - температура при нулевом парциальном давлении газа. С другой стороны, температура пропорциональна частоте колебания атомов или молекул относительно своего положения равновесия: Следовательно, абсолютный нуль термодинамической шкалы должен соответствовать состоянию покоя атомов любого, в том числе межзвездного, вещества, когда частота колебаний равна нулю (Орлёнок, 1991). Но, согласно третьему началу термодинамики, невозможно осуществить процесс, позволяющий охладить тело до абсолютного нуля. Поскольку межгалактическое пространство пронизывается фотонами, гравитационными полями, которые взаимодействуют с очень разреженным (в нашем нерелятивистком понимании) веществом с конечной плотностью, то физический смысл недостижимости абсолютного нуля в межгалактическом пространстве становится понятным. Вещество даже в "абсолютном пространстве" претерпевает определенный уровень взаимодействий. Этот уровень чрезвычайно низок, поэтому абсолютное время должно характеризоваться чрезвычайно малым масштабом: миллион лет в масштабе абсолютного времени - это миг. В энергонасыщенных системах, и тем более в биологических системах, на уровне микромира секунда может иметь такой же масштаб как, например, миллиард лет в абсолютном времени. Зависимость времени от энтропии и энтальпии системСледовательно, существует прямая зависимость масштаба времени от энтропии S системы. Чем ниже энтропия, т.е. чем выше уровень взаимодействия в системе, тем значительнее ее временной масштаб, и наоборот: с ростом энтропии в умирающих системах масштаб времени уменьшается и приближается к бесконечно малому. Система "садится" на Мировое время, которое для нее, в сущности, как бы перестает существовать (рис. 113) (XVI.6) Возвращаясь к уравнению времени системы, мы теперь видим, что энергия системы не может быть равна нулю. Такие системы не могут существовать в абсолютном пространстве. Энергия может быть больше или равна Мировой энергии: . Рис. 113. Уравнение времени: t0 - Мировое время; tS - масштаб сингулярного времени в момент Большого взрыва Меньше энергии Мирового пространства она быть не может, ибо становится частью его после перехода в равновесное состояние. Таким образом, при Е = Е0, t = t0. График изменения масштаба времени системы приведен на рис.113. В качестве верхнего предела энергии следует принять энергию Е сингулярной массы до момента Большого взрыва. Тогда t будет характеризовать предельно максимальный масштаб времени взаимодействия на уровне сингулярной массы. Таким образом: (XVI.7) при (XVI.8) Это уравнения, характеризующие масштаб времени сингулярной массы. Как известно, энтропия макросостояния системы определяется числом реализируемых его микросостояний, т.е. микровзаимодействий. При релятивистском обобщении термодинамики необходимо использовать не энтропию, а энтальпию Н системы, где вместо объема V берется давление Р: Н = Н/S, Р, N (где N - число частиц), (XVI.9) чтобы исключить термодинамические потенциалы, не отвечающие Лоренц-преобразованиям (Базаров, 1991). Тем не менее на качественном уровне все рассуждения, высказанные выше относительно энтропии, верны и для энтальпии системы. Масштаб времени взаимодействующей системы определяется ее энтальпией: t ~ 1/H, (XVI.10) где энтальпия Н - тепловая функция. Для 1 моль идеального газа - Н = Е + РV, где PV = RT. Здесь R = 8,3 - газовая постоянная, Т - температура среды, К - градусы Кельвина. Следовательно, Н = Е + RТ, т.е. с точностью до постоянной RТ энтальпия системы Н определяется ее энергией Е. И. Кант не представлял материю без пространства, но пространство без материи он допускал: "...никоим образом нельзя себе представить, что нет никакого пространства, но легко себе представить, что в нем нет никаких предметов". Кант исходил в своем заключении из чувственного восприятия мира. В его время еще не знали о существовании физических полей, атомов и частиц, которыми буквально заполнено Мировое пространство за пределами островков астрономических масс различного структурного уровня. Однако Эйнштейн строил общую теорию относительности опираясь на известные уже данные о гравитационных и электромагнитных полях. И тем не менее он, как и Кант, не придавал первостепенного значения материальным системам, распределенным в пространстве, отдавая предпочтение пространственно-временной метрике. Первичным в ОТО является не материя, а пространство-время. Сегодня становится понятным, что общими физическими инвариантами являются движение и три его составляющие - масса, пространство и время (Вейник, 1968). Иерархическая структура на мегауровне простирается от микромира (элементарные частицы, атомы, молекулы) до макромира (планеты, астероиды, биосистемы) и далее до мегамира (звезды, шаровые скопления, галактики, метагалактики). Каждый этот уровень обладает различной энергонасыщенностью, и следовательно, время внутри каждой системы течет с различной скоростью. Однако сторонний наблюдатель, находящийся вне такой системы, не может отличить это различие от масштаба времени, характерного для системы, в которой находится сам наблюдатель. Наблюдатель же, находящийся внутри системы, живет масштабом времени данной системы. Перенося этот закон на социальный уровень организации мира, мы неизбежно приходим к заключению: надо быть членом общества, чтобы понять его. Масштаб времени биосистемЭнергетика биосистем, как и в неживой материи, обнаруживает связь с массой. Однако эта зависимость чаще всего находится в обратном соотношении. Энергооснащенность малых органических систем выше, чем больших, массивных. Она всецело определяет интенсивность взаимодействий внутри организма, т.е. интенсивность обмена веществ. Обычно у крупных особей этот процесс идет в замедленном режиме по сравнению с мелкими (слон и бабочка-однодневка). Отсюда масштаб времени таких биосистем будет различен. Он зависит от интенсивности обмена веществ, т.е. от количества событий, происходящих в единицу времени. Та же бабочка за сутки проживает полный цикл жизни, как слон за свои 40 лет. Повышенная энергетика в детстве и юности человека воплощается в его представлении очень долгого года, длинного лета и т.д. В старости с уменьшением скорости обмена веществ и, следовательно, затуханием энергооснащенности организма время в сознании человека сжимается и становится короче, т.е. его масштаб уменьшается, при , , как это следует из уравнения времени . Таким образом, продление жизни - это не только возрастная категория. Можно увеличивать масштаб времени текущей жизни путем ускорения обмена веществ (медицинский путь) или увеличением числа событий в суточном, месячном, годовом ритме человеческой активности (социальный путь). Иными словами, человек, проводящий многие часы лежа на диване, объективно живет меньше человека путешествующего, занимающегося спортом, т.е. активного в обществе и пространстве. Масштаб времени социальных системСоциальные системы состоят из индивидуальных биосистем homо sapiens. Поведенческие особенности каждого индивидуума всецело определяются его способностями адаптации к данной природной среде и тому социуму, в котором он находится. Поэтому энергетика социальной системы зависит от количества "энергичных" индивидуумов в ней (пассионариев - по Гумилеву), природных и внешних условий (воздействия иных социумов). Суровая природа требует большей затраты энергии индивидуумов для их существования. И наоборот: благоприятные в географическом отношении природные условия требуют для этого меньшей затраты энергии. Следовательно, внутренний энергетический потенциал такого социума будет выше, чем социума, занятого проблемами собственного выживания. Третьим фактором, влияющим на энергетику социальной системы, является воздействие других систем (внешний фактор). Это воздействие может стимулировать повышение энергетики социума (его сплочение), но может и подавить, уменьшить ее, разрушив связи между группами и членами сообщества. Таким образом, воздействуя на те или иные элементы, определяющие энергонасыщенность социальной системы, можно приводить ее в то или иное состояние. В условиях России огромные пространства сыграли не лучшую роль, так как разобщают социум. Суровые природные условия на большей части ее территории требуют больших энергетических затрат населения для выживания. Отсюда любое энергетическое воздействие на такую ослабленную систему как изнутри (идеология), так и извне (враждебное или иное) приводит к быстрому нарушению равновесия системы, колебаниям энергетики и, следовательно, ее масштаба времени. Каждый социум живет в своем масштабе времени. Чем больше между этими масштабами различия, тем меньше взаимопонимание между народами, заселяющими ту или иную социальную систему. О сингулярном времени и предельном возрасте ГалактикиПоскольку понятие "пространство - время" тесно связано со скоростью света, в литературе давно обсуждается вопрос о предельном значении скорости света (Вейник, 1968). Проанализируем эту проблему, исходя из полученного выражения для масштаба времени различных уровней взаимодействующих систем. Преобразуем его: (XVI.11) Положим Е = mc2, , где mS - сингулярная масса до Большого взрыва, cS - скорость разбегания сбрасываемых в результате коллапса масс вещества. Из последнего уравнения найдем значение с: (XVI.12) Рассмотрим несколько сценариев. 1. Если в результате Большого взрыва произошел сброс всей массы или tS > t, скорость разбегания будет равна световой: , (XVI.12) Поскольку m = mS, c = cS. Именно с такими скоростями распространяются фотоны реликтового излучения. 2. В дальнейшем при достижении примерного равенства tS Мировому времени t0: , (XVI.14) т.е. скорости разбегания будут меньше скорости света. Можно предположить, что разбегание сброшенных масс происходило по спирали с ускорением вдоль магнитных силовых линий мощного магнитного поля, созданного сингулярной вращающейся коллапсирующей массой. При удалении от нее они могли достичь скорости света. При любом из рассмотренных сценариев необходимо признать, что скорость разбегания масс будет различной на различных расстояниях от сингулярной массы. Спиральное движение Солнечной системы вокруг центра масс Галактики, спиральное движение Метагалактики вокруг центра сингулярной массы исключают возможность определения абсолютного направления движения этих систем относительно начальной массы. Видимый радиус Метагалактики сегодня оценивается в 10 млрд. световых лет, или R = Gm/c2 = 1028 cм, (XVI.15) или, через постоянную Хаббла, равную 100 км/с: R = c/H = 1028 cм. (XVI.16) Если Метагалактика не имеет поступательного прямолинейного и равномерного движения от момента Большого взрыва (рис. 114), то оцениваемый ее возраст в 10 млрд. лет будет существенно заниженным. Нет оснований полагать, что и микроволновый фон межгалактического пространства, если он является производной Большого взрыва, распространяется каким-то иным путем, отличным от спирального. Район сингулярной массы лежит за пределами видимости современных телескопов. Следовательно, берег Вселенной лежит значительно дальше видимых сегодня границ в 1028 см и возраст ее значительно больше 10 млрд. лет. Разбегание по спирали требует значительно большего времени, чем по прямой (рис. 115), как это предполагалось до сих пор. Следовательно, возможен пересмотр возраста Солнечной системы в целом, и Земли в частности, в сторону его значительного увеличения. В литературе давно дискутируется вопрос о недостаточности принятого возраста Земли - 4,6 млрд. лет - для наблюдаемой эволюции биологических систем. Рис. 114. Схема прямолинейного разбегания масс вещества после Большого взрыва Рис. 115. Схема спирального разбегания масс вещества после Большого взрыва Итак, время - это мера жизни органических и неорганических материальных систем. А жизнь - это осуществление взаимодействий различных элементов внутри системы. Прекращение взаимодействия приводит к распаду системы. Например: смерть живого организма, дезинтеграция и рассыпание горной породы, камня, взрыв сверхновой звезды и т.п. В органическом мире напряженность взаимодействий (череда событий) более интенсивна, чем в неорганическом, и зависит от уровня организации материи (дождевой червь, растение, человек). В неорганическом мире энергонасыщенность системы зависит от ее массы, так как масса определяет термодинамику недр (астероиды, планеты, звезды). Таким образом, время - это мера последовательности взаимодействий на различных уровнях организации материи, это неуловимая стрела стремительно идущих событий. Возникает вопрос: существует ли время вне событий? Иными словами, существует ли оно вне взаимодействий, а следовательно, вне материальных систем? Ответ должен быть отрицательным. Нет, не существует. Почему? Вне событий, вне взаимодействий нет материи, следовательно, нет и меры ничего не происходящего. Время - это атрибут существующего мира Вселенной. Вне ее ничего нет. Это трудно понять - так же, как трудно понять представление о конечности или бесконечности Вселенной, начале или конце ее. В связи с этим можно дать такое определение пространственных размеров Вселенной. Вселенная там, куда проникает свет звезд, т.е. где существуют электромагнитные, гравитационные или иные поля. Там, где их нет, - нет ничего, ни материи, ни времени. Итак, время - это не только одна из координат пространства (x, y, z, t), но и мера последовательности процессов взаимодействия вещества и энергии, происходящих в объектах, заполняющих Метагалактику. Оно необратимо отсчитывает ее существование начиная с момента Большого взрыва. Время - это мера всего сущего, и придавать ему какие-то иные свойства, например, энергии, заряда и т.п., отделяя его от вещества, было бы так же неверно, как и представление этого вещества в функции только какой-то одной координаты. Список литературыДля подготовки данной работы были использованы материалы с сайта http://elib.albertina.ru/ |
|
© 2000 |
|