РУБРИКИ |
Геосистема |
РЕКЛАМА |
|
ГеосистемаГеосистемаГЛАВА I 1. Определение некоторых понятий и терминов Определение некоторых понятий и терминов сформулировано Комиссией по
унификации ландшафтной терминологии при Президиуме географического общества Среди природных систем в окружающей человека среде особую роль играют
географические системы или геосистемы - это понятие ввел А. Г. Исаченко. 1) планетарная геосистема (географическая оболочка) – высшее природное единство; Фация – наиболее дробное и, как, правило, наименее долговечное подразделение географической среды (элементарная геосистема), которое не пересекается не одним существенным природным рубежом (Комиссия, 1963 г). Ландшафт - основная геосистема, внутри физико-географической области Теснота связей между компонентами геосистемы может быть поставлена на
первое место в ряду логических критериев учения о геосистемах, так как
характеризует очень важную особенность структуру этих систем. При нарушении
нормы тесноты (допустимой жесткости детерминации) геосистема как таковая
неминуемо распадается. Это обстоятельство имеет глубокий смысл, так как с
одной стороны, определяет возможность длительного существования геосистемы
как целого и, с другой – не стесняет некоторые отклонения режимов, ее
компонентов. Компонентами ландшафта (и любой геосистемы) являются слагающие
его «естественно - исторические тела» - качественно особые виды материи Наряду с ограниченной детерминацией в геосистемах действует различная
степень причинности между составляющими ее процессами и явлениями. Н. Винер
обращая внимание так же на то, что связи в пределах организации в одних
случаях играют более важную роль, в других второстепенную. При этом, по
мнению Н. Винера, следует считать, что причинность есть нечто, могущее
присутствовать в большей или меньшей степени, а не только быть или не быть. 2. Эволюция и динамика геосистем. 1.2.1. Эволюция и динамика. Эквифинальное и переменное состояние геосистем Ландшафтная сфера и вся составляющая ее иерархия геосистем формировалась в процессе исторического развития, и поэтому изучение большей части пройденного ими пути относится к компетенции полегеографии и геологии. Процесс эволюции ландшафтной оболочки, который мы мыслим как смену одних инвариантов геосистем другими, на протяжении геологических периодов шел в определенном направлении в результате саморазвития геосистем и воздействия на них изменяющихся внешних условий. Сменяющие друг друга инварианты представляют собой этапы эволюционного процесса. Сами они на всем протяжении эволюции были представлены множествам переменных состояний, каждое из которых надо рассматривать как временное преобразование инварианта – основной категории, на определенном отрезке эволюции остающейся относительно неизменной. Все превращения условно неизменного инварианта геосистемы
рассматриваются как ее динамика. Безусловно, в широком смысле динамика не
отделима от эволюции, а эволюция от динамики. Для каждого инварианта время, прошедшее с момента его возникновения в процессе эволюции ландшафтной
сферы мы считаем возрастом геосистемы, а время существования каждого из
переменных состояний одного инварианта на определенном участке поверхности Очень часто о древности той или иной геосистемы судят на основе
возраста одного из рельефа. Однако, знание возраста одного компонента
бывает недостаточно. Надо различать возраст геосистемы и таковой отдельных
ее составляющих. Возраст геосистемы определяется тем сроком, в течении
которого взаимоотношение между ее компонентами продолжают более или менее
подобными. Отдельные компоненты при этом могут быть старше. Установление
возраста геосистем требует анализа связей между компонентами геосистем во
временном разрезе , то есть необходимо составить представление об эволюции
системных связей в том или ином интервале геологического летоисчисления. Вопросы долговечности геосистем целиком относятся к сфере физической
географии. Они решаются методами полевых ландшафтных исследований. Понятие долговечности применимо также к группам и классам фаций и к
геомам. Оценка возраста и долговечности геосистемы в единицах времени Динамический критерий в ландшафтоведении имеет довольно длительную
историю, но он укрепился и приобрел значение во всех разделах этой науки
лишь после того, как начала получать признание теория открытых систем в
новом ее толковании данном Л. Берталанфи (Bertalanffy, 1950), У. Эмби «Инвариант» - в известной мере абстрактное понятие, а «динамическое состояние»- конкретное воплощение модификации геосистем с ее повидовыми морфологическими и функциональными особенностями. Динамика в отличие от эволюции проявляется в пределах определенной структуры геосистемы. Между понятиями «динамика» и «структура» существует непосредственная связь – они взаимообусловлены. С другой стороны, по трактовке некоторых философов, структура – это инвариантный аспект системы. Если следовать этой формуле, то структура геосистемы и есть инвариантное начало. Динамика проявляется в рамках определенного «кадра» в эволюционном
ряду развития геосистемы. Последний можно для образности сравнить с
кинематографической лентой. Каждый кадр такой ленты соответствует
определенному инварианту и содержит некое множество переменных структур. Ландшафтной сфере свойственно множество динамических состояний, полную
типизацию которых в настоящее время мы еще можем предложить. Все же
рационально отличить два вида состояний: Коренные геосистемы – это устойчивые геомеры и геохоры с прочно
установившимися внутрисистемными и внешними связями. Это понятие
соответствует общеизвестному представлению о климаксе, или заключительном
природном комплексе. Условнокоренные геосистемы обычно близки к коренным и
отличаются от последних лишь тем, что за недостатком времени еще не пришли
в равновесие как внутри себя, так и с внешней средой. Растительность
условнокоренных геосистем соответствует понятию плезиоклимакса по Г. Все геосистемы эквифинального вида – коренные, условнокоренные и
квазикоренные – представляют собой своего рода материнские ядра
многочисленных серийных геосистем, ряды которых исходят от эквифинала,
когда сукцессия начинает прогрессировать, и всходят к нему, когда коренное Различного типа факторальные, динамические и прочие ряды серийных геосистем соответствуют сукцессионным рядам в понимание экологов , они заключают серию сменяющих друг друга состояний в ходе спонтанного развития или в результате воздействия человека. Каждой геосистеме свойственны ритмы изменчивые по годам, они входят в понятия ее состояния и должны учитываться при его определении. Состояние геосистемы – это не моментальный снимок геосистемы; оно может выявляться в интервале, например около 10 лет, если при этом не действуют какие – либо обстоятельства, удлиняющие или укорачивающие этот срок. Необходимо иметь в виду, что в любое время сколько – нибудь
значительный участок ландшафтной сферы состоит из многих разнокачественных
геосистем – не только по морфологическим и функциональным особенностям , но
и по динамическому состоянию. Так, почти каждую геохору, например
мезогеохору , мы можем рассматривать как мозаику геомеров с различными
динамическими тенденциями. От, того как сочетаются динамические категории
геомеров в пределах геохоры, зависят многие ее существенные особенности. 1) геосистема, относящаяся к коренной фации, примыкает к геосистеме другой коренной фации; Существуют и другие виды примыкания геомеров друг к другу, например контакты перечисленных категорий геосистем с квазикоренными, в частности с различными кратковременно - и длительнопроизводными модификациями. Из сказанного следует, что анализ рубежей геосистем возможен только с учетом динамического состояния контактирующих друг с другом биогеоценозов.
Наряду с повсеместно очевидными тенденциями к изменению структуры
геосистем, при ближайшем анализе выявляется присущее им стабилизирующее
начало, которое вместе с другими причинами определяется процессами
соморегуляции. Таким образом, понятие о нем должно входить составной частью
в содержании понятия о динамики геосистем вообще и в частности той ее
категории, которую И. И. (1968) назвал стабилизирующей динамикой. Стабилизирующая динамика природной среды – чрезвычайно существенная особенность физико-географического процесса. Она способствует тому, что вдовые и родовые признаки фаций и геомов удерживаются во времени, несмотря на многочисленные воздействия извне на структуру геосистемы. Гомеостаз – одно из главнейших условий, определяющих
восстанавливаемость природных ресурсов и свойств окружающей среды (
самоочищение воздушного бассейна, водных масс, почв и прочее). Изучение
механизма стабилизирующей динамики имеет большое практическое значение,
если мы хотим рационально управлять воспроизводством природных богатств. Под саморегулирующей геосистемы понимается приведение ее в устойчивое
состояние в процессе функционирования – круговорота субстанции и излучение
тепла, жизнедеятельности биоты и другое. Саморигуляция обеспечивает
относительное равновесие всей системы. Саморигуляция и определяемое ею
стабилизирующие начало обеспечивает относительное равновесие всей системы. Саморегуляция обуславливает относительное равновесие геосистемы при
спонтанном ее развитии. Она заметно проявляется и при рациональной мере
воздействия, например антропогенного, на геосистему извне (сенокошение,
выпас, нормированная рубка деревьев, рациональное водопользование и
другое). При значительных нарушениях структуры геосистемы роль
саморегуляции снижается, но в полной мере она не может быть устранена. Геосистемы с нарушенной структурой делятся, по крайней мере, на две
категории: Таким образом, саморегуляция – это составная часть сложного процесса восстановления нарушенной структуры геосистемы. Причем действенность ее тем больше, чем меньше нарушена структура (Сочава, 1978) Саморегуляция – свойство, проявляющееся в разных геосистемах по-
разному в зависимости от их структурных особенностей. В основном,
саморегуляция наиболее действенна в оптимальных условиях тепла и влаги. В спонтанных условиях саморегуляции направлена главным образом на обеспечении равновесия геосистемы, которое нарушается различными отклонениями воздействующих факторов среды от средней их нормы по ходу временных циклов (периоды засухи; резкие случающиеся раз в десятилетия похолодания; колебания уровня грунтовых вод). Саморегуляция ни в коем случае не приостанавливает эволюцию природной среды. В спонтанных условиях она только сглаживает ее ход. В некоторых случаях направление эволюции непосредственно определяется саморегуляцией, например, когда механизм саморегуляции изменяется под влиянием внутренних и внешних (к эволюционирующей геосистеме) факторов . 1.2.3. Режим связей. Саморегуляция геосистемы в значительной мере зависит от направленности взаимоотношений между составляющими ее компонентами. Очень важен при этом режим связей как геосистемы в целом , так и подчиненных ей систем. .Многое в этом отношении определяет наличие обратных связей. Геосистема как класс управляющих систем выявляется и описывается при макроподходе. При макроподходе она расчленяет на элементарные управляющие системы, число которых может быть довольно большим. Отдельные элементарные системы характеризуются наличием или отсутствием обратных связей, что обнаруживается при изучении их функционирования. Обратные связи делятся на положительные и отрицательные (Ланге, Стабильность системы обеспечивается не только отрицательной обратной связью. Положительная обратная связь при определенных условиях может обеспечить необходимый для стабилизации компенсационный эффект. Кроме того, при некоторых обстоятельствах любая обратная связь сама по себе не обеспечивает стабильность системы (Сачава, 1978). Последняя обеспечивается обратными связями отрицательного и положительного значения , но при определенных условиях. Саморегуляция возможна, если связи, присущие системе, не абсолютно устойчивы. Последнее имеет место в природе для всех главнейших связей, определяющих коренной геомер и любую геохору. Нередко исследователи необоснованно придают слишком большое значение высоким показателям связи (коэффициентам корреляции) между отдельными природными явлениями. Сами по себе эти высокие коэффициенты корреляции не служат гарантией постоянной значительной взаимообусловленности соответствующих явлениях и существования между ними жесткой связи. Высокий коэффициент корреляции в изменчивой обстановке геосистемы может выявляться при определенных непродолжительно действующих условиях и не оставаться постоянным не только в многолетнем, но и в годичном цикле. Системы, в которых отдельные части плотно пригнаны к друг другу, где немыслимо существование этих частей при уклоняющихся соотношениях, должны быть крайне неустойчивыми, эфемерными, и, таким образом, по существу не реальны. Геомер, функции которого жестко лимитированы определенными показателями тепла или влаги, в особо засушливый период или годы крайнего похолодания распадается как структурный тип. Саморегуляция геомера возможна, если связи между его компонентами допускают определенную амплитуду показателей корреляции. Это обязательное условие устойчивой организации и необходимая предпосылка для саморегуляции.
Эпифация – это совокупность переменных состояний элементарных геомеров, каждое из которых подчинено одному материнскому ядру – одной из эквифинальных фаций; ее можно рассматривать как совокупность динамически связанных геомеров, соотношение между которыми целесообразно изучать количественными методами. Эквифинальные структуры, их переменные состояния и модификации, вызванные внешними агентами, в пределах эпифации представляют динамическую целостность. В совокупности они образуют множество, для упорядочения представления о котором возможна только классификация всех переменных состояний (включая и их трансформацию под влиянием человека) в связи с материнским ядром – эквифинальной фации. То есть, коренная фация, сопряженные с ней ряды серийных фаций, а также различные ее модификации – все вместе должно рассматриваться как некое динамическое целое. Изучение этого целого имеет очень большое значение для правильной постановки проблем ландшафтоведения. Описание геомеров с переменной структурой без указания на принадлежность их к той или иной эпифации в основном не обеспечивает нужной информации, в особенности когда дело касается серийных и модифицированных антропогенными воздействиями геосистем. В общей классификации геомеров для каждой коренной фации должны быть указаны ряды ее переменных состояний. Так же надо поступать при обозначениях в классификации геомеров более высокого ранга. Если группа (или класс) фаций заключает не только обобщение коренных фаций, но и всех свойственных им производных состояний, то группа (или класс) эпифаций должна представлять собою обобщение всех входящих в соответствующую группу (или класс) эпифаций коренных структур и переменных состояний. По такому же принципу обобщаются коренные и производные геосистемы в эпигеомы, а также в другие эпигеомеры более высокого ранга. Материнским ядром эпифации является коренная фацианальная структура. Во круг условнокоренных фаций формируются самостоятельные эпифации со своими материнскими ядрами. Как уже говорилось, переменные состояния эпифации представлены серийными фациями и различными антропогенными модификациями. Те и другие образуют ряды (серийные и ряды трансформации) и представляют основное подвижное множество, слагающее эпиацию. Переменные структуры имеют разную долговечность: к ним относятся кратковременнопроизводные и длительнопроизводные фации, а также различные спонтанные биогеоценозы серийного типа. Более удобная квалификация по долговечности необходима, но ее следует основывать на количественных показателях, выявление которых – одна из задач, стационарного исследования биогеоценозов и фации. Разным эпифациям свойственна различная интенсивность динамических процессов. Они характеризуются разнообразием производных структур и разной скоростью их трансформации. При обработке и систематизации полевых материалов может быть
использована, наряду с другими приемами, теория графов, обеспечивающая
наглядность и геометрический подход к пониманию динамического состояния
геосистем. Построение графа осуществляется следующим образом: коренную
фацию изображают в центре ряда сукцессии, как материнское ядро эпифации. Граф, отображающий структурно – динамические связи в пределах эпифации, должен строиться на основе хорошо обработанного и обобщенного материала полевых наблюдений. 5. Эпигеомы, их группы и классы. Группа эпифаций представляет собою еще более сложную динамическую полисистему, чем эпифация. Это относится и к последующей геперализации групп фаций в классы фаций и далее - в геомы. Понятие об эпигеомах еще должно разрабатываться, но оно может использоваться уже сейчас при современных классификационных построениях. Переменные состояния геосистем, относящихся к одному геому Эпигеом имеет узловое значение и в классификации геомеров регионального порядка. Все выше его стоящие подразделения природной среды представляют объединение эпиогемов. От правильности выделения эпигеомов зависит стройность всей классификационной системы региональных геомеров. Эпигеомы позволяют получить общее впечатление о разнообразии ландшафтной сферы больших территорий. Вся природа укладывается в группы эпигеомов, заключающих коренные, условнокоренные, многочисленные квазикоренные группы и классы фаций. Сюда же относятся многочисленные серийные геосистемы, а также возделываемые и используемые под промышленное строительство земли, о ландшафтной принадлежности которых мы можем судить по их инварианту. Классификация геосистем с учетом их динамического состояния. Возможно
судить классификацию не геомеров, а эпигеомеров, но она будет не достаточно
действенна. Большое значение имеет классификация геомеров, где коренной
фации или коренному геомеру подчинены хотя бы главнейшие динамические ряды. Объединение эпигеомеров в градиции более высокого ранга не должно встретить особых трудностей, если будет осуществляться в рамках двухрядной классификации геосистем. Эти градиции большего масштаба имеют определенное значение и в лесохозяйственном отношении, кроме того. Они обозначают в общих чертах потенциал местности при других видах ее использования. 2. Графическое прогнозирование. 1.3.1. Прогноз и прогнозирование. Следует различать понятие «прогноз» и «прогнозирование». Несмотря на некоторые отличия определений термина «прогноз», связанные, по – видимому, с различиями целей и объектов прогноза, во всех случаях мысль исследователя устремлена в будущее, то есть прогноз представляет собой специфический вид познания, где прежде всего исследуется не то, что есть, а то, что будет. Но суждение о будущем не всегда есть прогноз. Например, есть закономерные события , которые не вызывают сомнения и не требуют прогнозирования (смена дня и ночи, сезонов года). Кроме того, определение будущего состояния объекта – это не самоцель, а средство научного и практического решения многих общих и частных современных проблем, параметры которых, исходя из возможного будущего состояния объекта, задаются в настоящие время. Общая логическая схема процесса прогнозирования представляется как
последовательная совокупность: Для решения многих познавательных и практических задач все возрастающее значение приобретают комплексные прогнозы, включающие и собственно географический прогноз. Его значение особенно велико для обоснования и апробации различных концепций экономического и социального развития, при составлении плановых и технических проектов. Географы определяют прогноз преимущественно как научно обоснованное предвидение тенденций в изменении природной среды и производственно территориальных систем. (Сачава, 1978) В аспекте эволюции геосистем – это особая задача, решение которой относится к области полеогеографии, а в части текущей динамики, то есть смены одной переменной структуры другой, - это актуальный предмет учения о геосистемах. Такого рода динамика, хотя и проявляется при спонтанном развитии природы, но чаще всего представляет собой следствие влияния человека на окружающую среду. Она способствует всем его мероприятиям, в частности, по освоению местности и разработки природных ресурсов. Поэтому прогноз направлений текущей динамики является необходимым условием всякого рационального природопользования. Географический прогноз касается только природной среды человека. Некоторые понятия прогностики: Цель и объект прогнозирования. Процесс прогнозирования начинается с определения его цели и объекта, так как именно они определяют тип прогноза, содержание и набор методов прогнозирования, его временные и пространственные параметры. Цели и объекты прогнозирования могут быть очень разными. В настоящее время главной, наиболее актуальной и очень ответственной целью географического прогнозирования является предвидение того состояния природной среды, в которой будет обитать человек. При этом цель заключается не только в прогнозировании состояния воздуха, воды и почвы, но в целом географической среды, ее природы и хозяйства. При выборе объекта прогноза можно использовать классификацию, которая основана на следующих шести признаках (Звонкова, 1987): 1. Природа объекта прогноза. Географический прогноз, привязанный к определенному региону, чаще всего соприкасается с другими объектами прогноза разных природных свойств. 35), глобальные (от 36 до 100), суперглобальные (более 100 значащих переменных). В географии имеют место объекты всех масштабов. Основные операционные единицы прогнозирования. Все объекты прогнозирования изменяются во времени и пространстве. Поэтому время и пространство – главные операционные единицы прогнозирования. Какая из операционных единиц важнее ? Некоторые географы считают главными принципами прогнозирования историко-генетический (Саушкин, 1976) и структурно- динамический (Сачава, 1974). Тем самым они отдают предпочтение временным аспектам прогнозирования. Действительно, проблема времени в общей прогностики является центральной проблемой, однако в географическом прогнозировании, имеющем дело с регионами, пространствами разных рангов, необходимо сочетание пространственных и временных аспектов. Главная проблема географического прогнозирования. Географическое прогнозирование – это, как правило, решения комплекса проблем, составляющих часть предплановых разработок будущего плана. Но из многих проблем прежде всего надо выбрать главную и общую для географов проблему. Выбор такой проблемы должен основываться на следующих кретериях (Звонков, 1987): 1. Соответствие проблемы современным общественным и научно – техническим потребностям. 2. Актуальности значения проблемы на большой период времени (25-30 лет и более). 3. Наличие научных предпосылок, в частности соответствующих методов решения проблемы. Из перечисленных общих критериев следует, что главная задача состоит в географическом обосновании долгосрочного развития народного хозяйства в его региональном аспекте, а главная общая для географов научная проблема – предвидение изменений природной среды в естественных и техногенных условиях. 1.3.2. Методы физико-географического прогнозирования. В географических исследованиях широко используется общенаучные методы прогнозирования или непосредственно, или в специализированной интерпретации. Так. Наиболее популярный в прогнозировании процесс экстраполяции составляет основу палеографического, ландшафтно- индикационного и метода ландшафтно-генетических рядов. Метод ландшафтной индикации. Этот метод относительно хорошо разработан в геоботанической части и еще предостаточно используется в ландшафтно- географическом плане. Он основан на пространственно-временных корреляционных связей природных компонентов и комплексов и позволяет определять тенденции их развития и изменения в структуре. Индикаторами могут быть все природные компоненты и ландшафты, но значение компонентных индикаторов не универсально. Они могут хорошо работать в пределах одного и не работать в другом природном комплексе. В процессе экстраполяции ландшафт можно рассматривать также как фон, который во многом определяет пространственно – временные особенности нарушения его компонентов, обеспечивает учет однородности природных условий, особенно при выборе природных аналогов. Для решения прогностических задач такие исследования являются предварительными и необходимыми, они позволяют прогнозировать и экстраполировать изменения природных комплексов с учетом перспектив хозяйственного развития. Одним из методических приемов ландшафтно-прогнозной индикации является анализ структурно-генетических рядов. Основной объект исследования – пространственные ряды природных комплексов в пределах трансекты – полосы, в которой они размещаются в том порядке, в каком сменяют друг друга в процессе развития. Очень хорошо прослеживается смена природных комплексов от современной дельты Амударьи к пустыне, где в генетическом ряду закономерно сменяют друг друга природные комплексы. Показателями пространственно – временных тенденций изменения природных комплексов в пределах трансекты в данном случае служат : господство (встречаемость) определенных комплексов в общей структуре ландшафта; число элементов ряда, отражающих стадии непрерывных изменений природных комплексов; повторяемость комплексов в ряду. Чаще всего природные комплексы, входящие в структурно – генетические ряд, переходят друг в друга постепенно, что свойственно естественным природным комплексам. Размытые границы индицируют плавность процесса, а резкие – антропогенные нарушения. Более детально для целей прогноза разработаны приемы использования экологических рядов растительности, которые отражают связи растительных сообществ с основными экологическими факторами. Составляют мелкомасштабные карты, на которых показывают территории, единые по общему направлению смен растительных сообществ в связи с изменением, например увлажнения , и крупномасштабные карты с показом наших пространственно – временных переходов от одного к другому растительному сообществу. Достоинство прогнозирования с использованием экологических и структурно – генетических рядов – непрерывность получаемой информации. Одним из частных прогнозно индикационных методов оценки состояния природной среды и колебаний климата, не приводящих в настоящее время к коренным преобразованиям растительного покрова, является метод фенологических индикаторов. Сущность метода состоит в том, что периоды поступления прогнозируемых фенологических явлений определяются по предшествующим феноявлениям – индикаторам, коррелятивно связанным со временем прогнозируемого явления. Палеогеографический метод. Этот метод в прогнозировании основан на экстраполяции тенденций из прошлого через настоящее в будущее. Этот метод применим в долгосрочном прогнозировании на больших и разнообразных по ландшафтной структуре территориях. Надежность метода определяется полнотой и непрерывностью палеогеографической информации, обеспечиваемой правильным выбором опорных резервов новейших отложений. Используя приемы палеогеографического анализа, можно получить прогностические данные об обратимости и необратимости природных процессов и ландшафтов (например, потепление – похолодание –вновь потепление и связанные с ним смены ландшафтов); ритмичности развития природных процессов; палеогеографических аналогах современных ландшафтов; об устойчивости ландшафтов при колебаниях климата; обратимости или необратимости развития ландшафтов при катастрофических природных явлениях; об общих тенденциях развития природной среды и событиях, их усиливающих или ослабляющих. Для сверх срочного и долгосрочного прогнозов восстанавливают развитие природной среды за время от нескольких десятков лет до тысячелетий и используют палеоботанические палеофаунистические методы, например метод спорово-пыльцевого анализа современных почв. Этот метод позволяет восстановить картину природы и фазы ее развития за время формирования современных почв. Для определений прошлых тенденций развития ландшафта за более короткие сроки применяют палеогляциологический, депдрохронологический, лихенометрический методы. Палеогляциологический метод основан на исследовании ледников – естественных аккумуляторов атмосферных осадков. По ним можно судить о естественном и антропогенном загрязнении среды за значительный период времени. Анализ содержания пыли в годовых слоях ледников позволяет также определять тенденции изменения в составе приземных слоев воздуха и прогнозировать по этим данным возможный ход развития естественного и антропогенного загрязнения атмосферы. Депдрохронологический метод основан на измерении роста древесных пород с большим жизненным циклом, который отражает внутрисезонные и многолетние климатические изменения за несколько сотен лет. При этом изменяется главным образом радиальный прирост древостоя. Отражая динамику фитомассы лесных комплексов, он служит показателем их состояния. По радикальным приростам могут устанавливаться эктраполяционные
прогностические ритмы и тенденции развития природной среды. Например, для Для прогнозирования на еще боле короткие сроки и небольшие площади
можно использовать лихенометрический метод, который (как и
депдрохропологический) не является собственно полеогеографическим методом. 3. Прогнозирование изменений природной среды в сфере воздействия крупных промышленных объектов (на примере КАТЭКа). Прогнозирование изменений природжной среды в сфере воздействия промышленных объектов по характеру и методам исследований может быть комплексным и отраслевым. Комплексное прогнозирование подразумевает изучение сочетания промышленных объектов разных отраслей. Обычно оно связано с очень крупными промышленными узлами. Отраслевой подход основан на выделении из суммы промышленных объектов лишь одной отрасли и оценки ее воздействия на природную среду. Сильное воздействие на природную среду оказывают и будут оказывать предприятия черной и цветной металлургии, нефтехимии, электроэнергетики и другие. До начала прогнозирования нужна информация о тенденциях развития природной среды, а также современном состоянии и планах развития хозяйства региона, в частности о размещении промышленных объектов, их будущих объемах, технологии и ее воздействии на природу. В большинстве случаев сложность размещения крупных промышленных предприятий определяется высокой материалоемкостью их производства, потребностью в энергии и воде, а также степенью экологичности и технологии. (Звонков Т.В., 19 ) Между природными и промышленными блоками многих геотехнических систем
главные связи осуществляются через воздушные и водные каналы, поэтому
главные объекты прогнозирования это состояние воздуха и воды. Воздушные
массы оказывают воздействие на ландшафт на расстояниях более 60 кмЮ водные Количественные изменения в состоянии природной среды можно определить, установив размеры разнонарушенных площадей в границах промышленного воздействия. Обычно выделяют от двух до четырех зон, в пределах которых характер изменения природных комплексов определяется источником воздействия. Один из актуальных объектов прогнозирования – воздействие на
окружающую природную среду Канско–Ачинского топливно – энергетического
комплекса (КАТЭКа). Этот крупнейший комплекс топливных и энергетических
предприятий создается в экономически освоенной и заселенной части Восточной Во всех случаях прогнозирования воздействия крупных промышленных объектов на природную среду проводится сопряженный анализ фоновой естественной морфологической структуры ландшафтов и функционирования их техногенных аналоговых модификаций. 1.3.4. Ландшафтно-геохимические аспекты прогнозирования состояний геосистем в условиях техногенного воздействия. Ландшафтно-геохимический прогноз, как часть ландшафтного, направлен на
предсказание потенциально возможных (с учетом воздействия природных и
антропогенных факторов) характеристик вещества геосистем. Его основным
предметом служат изменение поведения вещества в геосистемах топологического
и регионального уровней. (Снытко, Семенов, Мартынов, 1984) Значимость
ландшафтно-геохимического прогноза особенно повышается в предсказании
поведения геосистем в условиях усиливающегося техногенного воздействия. Страницы: 1, 2 |
|
© 2000 |
|