РУБРИКИ |
Витамин К |
РЕКЛАМА |
|
Витамин КВитамин КМИНИСТЕРСТВО ОБРАЗОВАНИЯ РФ САМАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Химический факультет Реферат по теме: Витамин К Работу выполнил: студент 442 гр. (ф/х) Смирнов П.В. _________________ Работу проверил: _________________ Самара 2003
I. Витамины 1. Общие сведения Витамины – низкомолекулярные органические соединения различной химической природы, абсолютно необходимые для нормальной жизнедеятельности организмов. Являются незаменимыми веществами, так как за исключением никотиновой кислоты они не синтезируются организмом человека и поступают главным образом в составе продуктов питания. Некоторые витамины могут продуцироваться нормальной микрофлорой кишечника. В отличии от всех других жизненно важных пищевых веществ (незаменимых аминокислот, полиненасыщенных жирных кислот и т.д.) витамины не обладают пластическими свойствами и не используются организмом в качестве источника энергии. Участвуя в разнообразных химических превращениях, они оказывают регулирующее влияние на обмен веществ и тем самым обеспечивают нормальное течение практически всех биохимических и физиологических процессов в организме. Известно 13 незаменимых пищевых веществ, которые безусловно являются
витаминами. Их принято делить на водорастворимые и жирорастворимые. Наряду с витаминами известна группа витаминоподобных соединений. К ним
относят холин, инозит, оротовую, липоевую и парааминобензойную кислоты,
карнитин, биофлавоноиды (рутин, кверцетин и чайные катехины) и ряд других
соединений, обладающие теми или иными свойствами витаминов. Остальные жирорастворимые витамины могут синтезироваться в организме
из своих предшественников – так называемых провитаминов. Известны
провитамины А (каротины) и группы D (некоторые стерины). Каротины,
поступающие в организм в составе продуктов растительного происхождения,
расщепляются под воздействием специфического фермента с образованием
ретинола (наибольшей биологической активностью обладает (-каротин). Химическое строение всех известных витаминов полностью установлено. Необходимым условием реализации специфических функций витаминов в
обмене веществ является нормальное осуществление их собственного обмена:
всасывания в кишечнике, транспорта к тканям, превращения в биологически
активные формы. Эти процессы протекают при участии специфических белков. Снижение или полная потеря биологического эффекта витаминов может быть
вызвана так называемыми антивитаминами – веществами, имеющими структурное
сходство с витаминами или вызывающими модификацию их химической природы. Некоторые антивитамины обладают антимикробной активностью и
применяются в качестве химиотерапевтических средств. Так, сульфаниламидные
препараты являются антивитаминами парааминобензойной кислоты, используемой
бактериями для синтеза необходимого для их жизнедеятельности фолата ;
сульфаниламид, вытесняющий парааминобензойную кислоту из комплекса с
ферментом, способствует таким образом снижению проста бактерий и их гибели. Витамины обладают высокой биологической активностью и требуются организму в очень небольшом количестве, соответствующем физиологической потребности, которая варьирует в пределах от нескольких микрограммов до нескольких десятков миллиграммов. Потребность в каждом конкретном витамине также подвержена колебаниям, обусловленным действием различных факторов, которые учитываются в рекомендуемых нормах потребления витаминов, подвергающихся периодическому уточнению и пересмотру. Существенное влияние на потребность в витаминах оказывают возраст и пол человека, характер и интенсивность его труда. Потребность в витаминах значительно возрастает при особых физиологических состояниях организма: у женщин – во время беременности, в период лактации, у детей – в период интенсивного роста, следует иметь в виду, что любые причины, изменяющие интенсивность обмена веществ, существенно влияют и на обмен витаминов в организме, повышая их расход в процессе жизнедеятельности. В частности, потребность в витаминах значительно возрастает под влиянием некоторых климатических и погодных условий, способствующих длительному переохлаждению или перегреванию организма, сопровождающихся резкими перепадами температуры атмосферного воздуха. Повышенная потребность в витаминах развивается при интенсивной физической нагрузке, нервно – психическом напряжении, в условиях воздействия неблагоприятных факторов окружающей среды, при ряде патологических состояний (например, при гипоксии). Повышенный расход витаминов возникает при болезнях желудочно-кишечного тракта, печени и почек, повышенная потребность в витаминах отмечается при некоторых эндокринных заболеваниях, например, гипотиреозе, функциональной недостаточности коры надпочечников. В пожилом и старческом возрасте повышенная потребность в витаминах обусловлена ухудшением всасывания и утилизации витаминов, а также различными диетическими ограничениями. Недостаточное потребление витаминов ведет к нарушениям, зависящих от них биохимических (главным образом ферментативных) процессов и физиологических функций организма, обуславливает серьезные расстройства обмена веществ, поэтому исследование витаминной обеспеченности человека имеет важное диагностическое значение. С этой целью обычно определяют содержание витаминов и продуктов их обмена в крови и моче, исследуют активность ферментов, в состав которых в виде кофермента или простетической группы входит конкретный витамин, а также другие биохимические и физиологические показатели, характеризующие осуществление тем или иным витамином его специфических функций. Другой подход заключается в изучении фактического питания обследуемых людей и оценке поступления витаминов с пищей с помощью справочных таблиц, отражающих химический состав потребляемых продуктов, ил непосредственного определения содержания витаминов в потребляемых продуктах и биологических объектах, используют различные колориметрические, спектрофотометрические и флюорометрические методы, а также методы микробиологического анализа. Все большее распространение получают методы высокоэффективной жидкостной хроматографии, позволяющие наиболее полно и точно определить дефицит витаминов в организме, что особенно важно при стертой картине витаминной недостаточности. Организм человека не способен запасать витамины на более или менее длительное время, они должны поступать регулярно, в полном наборе и соответствии физиологической потребности. Вместе с тем приспособительное возможности организма достаточно велики, и в течении определенного времени дефицит витаминов практически не проявляется: расходуются витамины, депонированные в органах и тканях, включаются и другие компенсаторные механизмы обменного характера. Только после израсходования депонированных витаминов возникают различные расстройства обмена веществ. Однако постоянное недостаточное потребление витаминов, даже не характеризующееся какими-либо клиническими проявлениями гиповитаминоза, отрицательно сказывается на состоянии здоровья человека: ухудшается самочувствие, снижаются работоспособность и сопротивляемость к респираторным и другим инфекционным заболеваниям, усиливается воздействие на организм неблагоприятных факторов среды обитания. Недостаточное потребление с пищей некоторых витаминов (особенно С и А) является фактором риска ишемической болезни сердца и ряда злокачественных новообразований. В частности, многолетние исследования больших контингентов людей, проведенные английскими и американскими специалистами, показали, что частота заболеваний раком полости рта, желудочно-кишечного тракта и легких при низком уровне витамина А в крови в 2-4 раза выше, чем при оптимальной обеспеченности этим витамином. Недостаточная обеспеченность витаминами беременных и кормящих женщин причиняет ущерб здоровью матери и ребенка, является одной из причин недоношенности, врожденных пороков, нарушений физического и умственного развития детей. В детском и юношеском возрасте недостаточное потребление витаминов отрицательно сказывается на показателях общего физического развития, препятствует формированию здорового жизненного статуса, обуславливает постепенное развитие обменных нарушений и хронических заболеваний. Недостаточная витаминная обеспеченность отягощает течение основного заболевания, снижает эффективность терапевтических мероприятий, осложняет исход хирургических вмешательств и течение послеоперационного периода. В этой связи следует подчеркнуть отрицательную роль многих фармакологических препаратов в процессах обмена и утилизации витаминов в организме. В частности, антибиотики и сульфаниламидные препараты, подавляя микрофлору кишечника, нарушают эндогенный синтез витамина К, биотина и пантотеновой кислоты. Неомицин (даже при однократном применении) серьезно нарушает всасывание витамина А. Широко используемые транквилизаторы триоксазинового ряда подавляют утилизацию рибофлавина, нарушая синтез его коферментной формы. Ацетилсалициловая кислота подавляет утилизацию фолата. Используемая в хирургии закись азота инактивирует витамины В12, что при продолжительной экспозиции (более 6 часов) может привести к нарушениям кроветворения и невропатиям. Одна из причин недостаточной обеспеченности организма витаминами – отклонение фактического питания от рекомендуемых рациональных норм: недостаточное потребление свежих овощей и фруктов, продуктов животного происхождения, избыточное потребление углеводов, плохая осведомленность в вопросах правильного построения рациона, небрежность в питании «модным» диетам и т.п. Наряду с этим все большее значение приобретает группа объективных причин, обусловленных изменениями условий труда и быта современного человека, а также особенностями современных методов технологической переработки и кулинарной обработки пищевых продуктов и их длительным хранением, следствием чего является разрушением значительной части содержащихся в них витаминов. Существенную роль играет также значительное увеличение потребления рафинированных высококалорийных продуктов (белый хлеб, некоторые жиры и др.), практически лишенные витаминов и других незаменимых пищевых веществ. В результате этих тенденций рацион современного человека, достаточный и (и даже избыточный) для покрытия энергозатрат, оказывается не в состоянии обеспечить рекомендуемые нормы потребления витаминов. Важную роль в обеспечении организма витаминами традиционно отводят
обогащению рациона свежими овощами и фруктами, однако их потребление
неизбежно имеет сезонные ограничения. Кроме того, овощи и фрукты являются
источниками лишь витамина С, фолата и каротинов. В то же время основными
источниками витаминов группы В являются черный хлеб и мясо – молочные
продукты, главным источником витамина А служит сливочное масло, витамина Е Одним из эффективных путей, позволяющих обеспечить оптимальное
потребление витаминов не увеличивая калорийность рациона, является
включение в него витаминизированных пищевых продуктов: хлеба из
витаминизированной муки, обогащенной витаминами В1, В2 и РР, молока,
кефира, соков и напитков, обогащенных витамином С, и ряда других. Наиболее эффективным методом коррекции витаминной обеспеченности
человека является регулярный прием поливитаминных препаратов
профилактического назначения ("Ревит", "Гексавит", "Ундевит" и др.). При необходимости проведения курсов интенсивной витаминотерапии следует учитывать, что большинство водорастворимых витаминов не депонируются в организме на сколько-нибудь длительный срок, а введение витаминов в высоких дозах может активировать системы их катаболизма и выведения. в связи с этим по завершении курса следует назначать регулярный прием поливитаминных препаратов в поддерживающих физиологических дозах. В противном случае может развиваться состояние более глубокого дефицита витаминов, чем до лечения. Прием витаминов в дозах, существенно превышающих физиологическую потребность, может привести к нежелательным побочным эффектам, а иногда и к тяжелой интоксикации. Следует подчеркнуть, что гипервитаминозы могут развиваться лишь при введении крайне высоких доз витаминов, редко используемых даже в лечебной практике. 2.Витаминные недостаточности Витаминная недостаточность – группа патологических состояний, обусловленных дефицитом в организме одного или нескольких витаминов. выделяют авитаминоз, гиповитаминоз и субнормальную обеспеченность витаминами. Под авитаминозом понимают практически полное отсутствие какого- либо витамина в организме, проявляющегося возникновением специфичного симптомокомплекса, например, цинги, пеллагры. Гиповитаминозом считают сниженное по сравнению с потребностями содержание витаминов в организме, которое клинически проявляется только отдельными и не резко выраженными симптомами из числа специфичных для определенного авитаминоза, а также малоспецифических признаков болезненного состояния, общих для различных видов гиповитаминозов (например, снижение аппетита и работоспособности, быстрая утомляемость). Недостаточность одновременно нескольких витаминов обозначают как полигиповитаминоз. Субнормальная обеспеченность витаминами представляет собой доклиническую стадию дефицита витаминов, который обнаруживается по нарушениям метаболических и физиологических реакций, протекающих с участием определенного витамина, и не имеет клинического выражения или проявляется только отдельными неспецифическими микросимптомами. Классические авитаминозы встречаются весьма редко, в основном в
условиях длительного голода, когда витаминная недостаточность сопутствует
алиментарной дистрофии, при вынужденном резком обеднении рациона питания Происхождение и развитие витаминной недостаточности у детей и у
пожилых лиц имеет некоторые особенности. У новорожденных и детей раннего
возраста витаминная недостаточность встречается чаще. Она может быть
следствием недостаточного поступления витаминов к плоду в период
внутриутробного развития; недостаточного содержания некоторых витаминов в
молоке матери при ее нерациональном питании и особенно в неадаптированных
для детского питания смесях из коровьего молока при использовании их для
искусственного вскармливания; нерационального питания детей раннего
возраста; наследственных и приобретенных болезней, при которых нарушаются
поступление в организм ребенка витаминов, их депонирование или метаболизм. В пожилом и старческом возрасте развитию витаминной недостаточности
способствует снижение всасывания и утилизация веществ, в том числе
витаминов. обусловленное присущими этому возрасту изменениями
функциональной активности системы пищеварения (снижение секреции и
кислотности желудочного сока, ферментообразования, функций поджелудочной
железы, печени). Изменения белкового обмена, выявляемые у лиц пожилого и
старческого возраста, ухудшают транспорт и фиксирование в организме
витаминов С, В1, В2, В6, а ограничение потребления жиров неблагоприятно
сказывается на поступлении жирорастворимых витаминов, в частности ретинола. 3. Клинические проявления и диагностика отдельных видов витаминной недостаточности В стадиях гипо- и авитаминоза совокупность клинических симптомов дефицита определенного вида витамина достаточно специфична, но отдельные симптомы могут совпадать с проявлениями основного заболевания, поэтому их правильная оценка нередко требует от врача исходного предположения о возможности развития у больного данного гиповитаминоза. Последнее зависит от знания врачом форм патологии и особенностей питания, которые могут быть причинами определенных видов витаминной недостаточности. В диагностически трудных случаях и при необходимости установить субнормальную обеспеченность витаминами используют дополнительные методы диагностики витаминной недостаточности, из которых наиболее достоверны лабораторные исследования содержания и функции витаминов в организме. 4. Классификация На основании химического строения витамины объединены в четыре группы. 1. Алифатические: а) производные лактонов ненасыщенных полиоксикарбоновых кислот 2. Алициклические: а) ретинолы (циклогексеновые соединения - витамина A, или каротиноиды). 3. Ароматические: а) нафтохиноны (витамин K1 - филлохинон, витамин К2 - фарнахинон). 4. Гетероциклические: а) хромановые (токоферолы - витамин Е); б) фенилахромановые (биофлавоноиды - витамин Р); в) пиридинкарбоновые (никотиновая кислота - витамин РР); г) пиридоксиновые (пиридоксин - витамин В6); д) пиримидинотиазовые (тиамин - витамин B1); е) птериновые (фолиевая кислота - витамин В9); ж) изоаллоксазиновые (рибофлавин - витамин В2); з) кобаламиновые (цианокобаламин - витамин B12) До выяснения строения витамины называли буквами латинского алфавита по мере их открытия: А, В, С, D и др. Встречаются названия витаминов, образованные от первых букв лечебного действия или заболевания. Например, название витамина Р происходит от "permeare" - проникать, так как он уменьшает проницаемость сосудов. Витамин РР назван первыми буквами заболевания "pellagra preventiva". В ГФ XI для витаминов приняты рациональные названия, основанные на их химическом строении. Витамин А - ретинол, витамин К - филлохинон, витамин В2 - рибофлавин, витамин РР - никотиновая кислота и т.д. Химические особенности витаминов изучаются органической и фармацевтической химией. 5. Заготовка Собирают сырье в фазе максимального накопления преобладающего витамина. В плодах шиповника это витамин С, хотя в них содержатся также витамины группы В, витамин Е и др. Сырье заготавливают в сухую погоду, сушат в день сбора. Витамины - относительно стойкие соединения и сушка допускается при температуре 70-90°С. 6. Хранение В сухом, хорошо проветриваемом помещении, оберегая от действия факторов окружающей среды и вредителей. II. ВИТАМИНЫ К (Синонимы: витамин коагуляции, антигеморрагический витамин) 1. История открытия В 1929 г. датский ученый Дам описал авитаминоз у цыплят, находившихся
на синтетической диете. Основным признаком его являлась геморрагия –
кровоизлияние в подкожную клетчатку, мышцы и другие ткани. Добавление
дрожжей в качестве источника витаминов В и рыбьего жира, богатого
витаминами А и D, не устраняло патологических явлений. Оказалось, что
целебным эффектом обладают зерна злаков и другие растительные продукты. В 1939 г. в лаборатории Каррера впервые был выделен из люцерны витамин Краткая история открытия витамина отражена в таблице 1. Исследование химической природы витаминов К привело к заключению, что в основе их молекулы лежит структура 2-метил-1,4-нафтохинона, который, как и природные витамины К, обладает антигеморрагическим действием. 2. Химическое строение Природные витамины К являются производными 2-метил-1,4-нафтохинона, у
которых в положении 3 водород замещен на остаток спирта фитола или на
изопреноидную цепь с различным числом углеродных атомов: Витамин К2 представлен несколькими формами, отличающимися по длине изопреноидной цепи. Выделены производные с боковой цепью из 20, 30 и 35 углеродных атомов. |[pic] | Кроме природных витаминов К, в настоящее время известен ряд производных
нафтохинона, обладающих антигеморрагическим действием, которые получены
синтетическим путем. К их числу относятся следующие соединения: |В 1943 г. А. В. Палладин и М. М. Шемякин синтезировали дисульфидное
производное 2-метил-1,4-нафтохинона, получившее название викасола, который
применяется в медицинской практике в качестве заменителя витамина К: 3. Физико-химические свойства Витамин К1 представляет собой светло-желтое масло, которое
кристаллизуется при температуре –20° и кипит при 115–145° в вакууме. Это
вещество растворимо в хлороформе, диэтиловом эфире, этиловом спирте и
других органических растворителях. Его растворы поглощают УФ лучи. Так, в
петролейном эфире максимумы адсорбции находятся при длине волны, равной Витамин К2 – желтый кристаллический порошок с температурой плавления Витамин К3 представляет собой лимонно-желтое кристаллическое вещество с характерным запахом. Температура плавления 160°. Он слабо растворим в воде, что обусловлено отсутствием в его молекуле длинной углеводородной цепи. Витамины К, содержащие в положении 3 изопреноидную цепь, относятся к светочувствительным соединениям. При освещении ультрафиолетом происходит фотолиз, отщепляется изопреноидная цепь, которую замещает гидроксил, а молекула фитола окисляется в кетон фитон. Витамины К, будучи, как сказано выше, производными нафтохинона, обладают способностью к окислительно-восстановительным реакциям. На этой способности витаминов К основано количественное определение их полярографическим методом. Нафтохиноновая молекула, присоединяя два водорода, переходит в нафтогидрохиноновую. Эта реакция в присутствии кислорода воздуха обратима. Реакция восстановления нафтохинонов (окрашенных веществ) сопровождается их обесцвечиванием. Витамины К способны непосредственно взаимодействовать с кислородом,
присоединяя его в положении 2, 3 молекулы нафтохинона. Продуктом окисления
является эпоксид: Эпоксиды витаминов К сохраняют витаминную активность исходных молекул. Витамин К3 под влиянием света и кислорода воздуха может давать димерное
производное: Как отмечено выше, бисульфидное производное витамина К3 обладает витаминной активностью. Это важное для медицинской практики вещество получают воздействием бисульфита натрия на 2-метил-1,4-нафтохинон. Хорошими стабилизаторами витамина К являются монокальциевый фосфат,
пирофосфаты натрия или калия и др., стабилизирующее действие которых
состоит в поддерживании в водном растворе кислой реакции (рН = 4,8). Смесь 4. Специфичность строения. Гомовитамины и антивитамины К К-витаминной активностью обладают многие производные нафтохинона (см. стр. 68). В зависимости от деталей их структуре существенно изменяется величина биологической активности соединения. Сравнительная оценка биологической активности витаминов группы К представлена в табл. 2. |Таблица 2 | Как видно из данных табл. 2, гидрирование хиноидных групп, находящихся
в положении 1,4, не оказывает существенного влияния на биологическую
активность витаминов К. В то же время гидрирование самого нафтохинонового
ядра приводит к почти полной утрате биологической активности молекулы. Представляет особый интерес влияние изменения длины боковой
изопреноидной цепи на биологическую активность производных нафтохинонов. Введение гидроксильных групп в различные позиции нафтохинонового ядра,
за исключением положений 1 и 4, почти полностью лишает соединения
витаминной активности. Примером 'такого соединения является фтиокол, или 2-
метил-З-гидрокси-11,4-нафтохинон: Это соединение почти не обладает К-витаминной активностью, по данным
некоторых ученых даже имеет антивитаминные свойства. Некоторые химические
соединения, имеющие отдельные черты сходства в строении с витаминами группы Другим представителем антивитаминов К является производное фтиокола Третьим представителем этой группы соединений является варфарин: Все названные вещества обладают геморрагическим действия на организм. 5. Биохимические функции Как отмечено выше, обнаружение К-авитаминоза было связано с клинической картиной, показывающей замедление процессов свертывания крови. Это выражалось в точечном кровоизлии в ткани. Кровь, взятая из организма К- авитаминозных цыплят и других животных, часами оставалась жидкой при ее хранении. В последующие годы было выяснено, что витамин К имеет отношение к синтезу протромбина – одного из факторов сложной ферментативной системы свертывания крови. Роль системы состоит в превращении растворимого в плазме белка фибриногена под ферментативным действием тромбина сначала в мономерную форму белка фибрина, а затем в полимерный, уже нерастворимый белок фибрин. Тромбин образуется из протромбина. Особенно сложным является многоступенчатый процесс превращения протромбина в тромбин. В плазме крови постоянно содержатся плазменные факторы свертывания крови (см. табл. 3), являющиеся белковыми веществами, и ионы кальция. В форменных элементах крови – тромбоцитах – содержится особый липопротеид, называемый тромбопластином тромбоцитов, или фактором III тромбоцитов. При разрушении тромбоцитов этот неактивный белок превращается под действием белков плазмы акцеллерина и конвертина в активную тромбокиназу, которая в присутствии других названных плазменных факторов и, кроме того, тканевого фактора начинает ферментативный процесс образования тромбина.
Как видно из схемы, витамин К непосредственно не входит в систему свертывания крови. Он необходим для синтеза в печени протромбина, проконвертина, фактора Х и фактора IX (см. табл. 3). Специальное изучение биохимической роли витамина К позволяет
предположить, что она заключается во влиянии на заключительную стадию
формирования молекулы протромбина на посттрансляционном уровне. Наряду с
этим имеются сведения об изменении способности протромбина К-авитаминозных
организмов взаимодействовать с липидами, углеводами и кальцием. Вследствие
этого нарушается активирующее действие факторов ввертывающей системы крови
и процесса превращения протромбина в тромбин. Помимо участия витаминов К в процессе биосинтеза белковых факторов свертывания крови у высших животных, установлено, что они участвуют в окислительно-восстановительных превращениях. Это обусловлено способностью нафтохинонового ядра к обратимым окислительно-восстановительным превращениям. На некоторых микроорганизмах, в частности Escherichia Coli, и микобактериях показана роль менахинонов в биосинтезе пиримидиновых оснований при аэробных условиях. Менахинон принимает участие в превращении дигидрооротовой кислоты в оротовую. Возникающая при этом молекула восстановленного витамина К (менахинола) дегидрируется в присутствии фумаровой кислоты: | | |[pic] | |[pic] | Для растительных организмов показано участие витаминов я в транспорте электронов. Не исключена также роль витаминов Ц в процессах окислительного фосфорилирования в митохондриях животных клеток. 6. Связь с витаминами При недостаточности витамина К наблюдали снижение активности аденозинтрифосфатазы и креатинкиназы в крови и скелетной мышце. Это приводит к пониженному использованию макроэргов, что отражается на повышении содержания АТФ в печени и сердце крыс и цыплят. Дополнительное введение витамина Е в рацион, лишенный витамина К, предупреждает снижение активности указанных энзимов в мышцах крыс. Это обнаруживает образование метаболитов, не обладающих антигеморрагическим действием, но, подобно витамину К, обеспечивающих нормальный биосинтез энзиматических белков. Включение в рацион крыс витамина А – кислоты в дозе, не превышающей 50 7. Биосинтез Установлены основные этапы биосинтеза витамина К у микроорганизмов. Имеются данные, показывающие значение сукцинилбензойной кислоты в
синтезе менадионов. Схема превращения сукпинилбензойной кислоты в менадион
представлена следующим рядом реакций: К 2-метилнафтоевой кислоте присоединяется в дальнейшем пирофосфорный эфир соответствующего изопреноида. Интересно отметить, что независимо от того, из каких объектов 8. Авитаминоз Как отмечено выше, недостаточное поступление в организм витамина К вызывает подкожные и внутримышечные кровоизлияния – геморрагии, возникшие в результате снижения скорости свертывания крови. Уже упоминалось, что витамин К не является непосредственным участником
процесса образования фибрина. Он необходим для синтеза в печени белков
протромбина (фактор II), проконвертина (фактор VII), фактора Проуэра – При К-авитаминозе оказываются сниженными содержание протромбина в крови и концентрация плазменных факторов свертывания крови. Известен ряд заболеваний, сопровождающихся повышенной свертываемостью крови и образованием тромбов в сосудах (например, инфаркт, тромбофлебит). В этих случаях применяются различные препараты антивитаминов К. Следует отметить также, что для усвоения витамина К необходимо нормальное поступление желчи в кишечный тракт (последнее важно также и для других жирорастворимых витаминов). 9. Распространение в природе и потребность Определение суточной дозы витамина К затруднительно в связи с синтезом его микроорганизмами, населяющими кишечный тракт. Обычно суточная потребность человека составляет 100 мкг, однако она может быть и более высокой. Рекомендуемая профилактическая доза для взрослых лиц мужского пола
составляет 80 мкг в сутки, а для взрослых лиц женского пола - 65 мкг в
сутки. Имеющиеся данные не достаточны для установления профилактической
дозы витамина К во время беременности и кормления грудью. Количество
витамина К, потребляемое с пищей, в целом превышает рекомендуемую
профилактическую дозу. Рекомендуемая общая доза для новорожденных
составляет 5 мкг филлохинона или менахинона в сутки в течение первых шести
месяцев и 10 мкг в течение последующих шести месяцев. Прописи для
новорожденных должны содержать 4 мкг витамина К на 100 кКал. Лечебные дозы витамина К значительно превышают суточную потребность здоровых людей и составляют, например при заболевании желтухой, 10–15 мг в сутки. Не наблюдалось никаких проявлений токсичности даже после длительного приема больших количеств витамина К1 и К2. Однако введение менадиона (К3) может вызывать гемолитическую анемию, желтуху и ядерную желтуху (серую форму желтухи у новорожденных). В природе витамином К особенно богаты зеленые части растений. Наиболее высоко его содержание в бобовых растениях, шпинате, капусте, листьях крапивы, томатах и др. Из животных продуктов следует отметить печень, в которой он депонируется (табл. 4).
Витаминизация продуктов. За исключением специальных продуктов для
новорожденных витамин К не добавляют в пищу. Витамин К синтезируется
промышленным образом и используется в прописях для новорожденных (100
мг/литр) и лекарственных препаратах для человека. 1. Колотилова А.И. Витамины. – Л. 1976 2. Труфанов А.В Биохимия витаминов. – М. 1972 3. Мецлер Д. Биохимия. – М. 1980 4. Березов Т.Т., Коровкин Б.Ф. Биологическая химия. – М. 1990
|
|
© 2000 |
|