РУБРИКИ |
Тепловая смерть Вселенной |
РЕКЛАМА |
|
Тепловая смерть ВселеннойТепловая смерть ВселеннойМИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение Высшего профессионального образования Российский государственный торгово-экономический университет УФИМСКИЙ ИНСТИТУТ Факультет юриспруденции и заочного обучения Заочное обучение (5,5 лет) Курс 1 Специальность "Бухгалтерский учет анализ и аудит" Курсовая работа По предмету: Концепции современного естествознания Фамилия: Ситдикова Имя: Эльвира Отчество: Закиевна Контрольная работа выслана в университет Фамилия преподавателя: Хамидуллин Явдат Накипович УФА-2011г. Содержание 1. Идея Тепловой смерти Вселенной 1.2 Взгляд на Т.С.В. из ХХ века 2.1 Вывод закона возрастания энтропии 2.2 Возможность энтропии во Вселенной 3. Тепловая смерть Вселенной в научной картине Мира\ 3.1 Термодинамический парадокс 3.2 Термодинамический парадокс в релятивистских космологических моделях 3.3 Термодинамический парадокс в космологии и постнеклассическая картина мира
|
. |
|
Так как процесс является обратимым, для него можно воспользоваться соотношением (3.53) , которое дает
. |
|
Подстановка этой формулы в неравенство (3.55) позволяет получить выражение
. |
|
Сравнение выражений (3.53) и (3.57) позволяет записать следующее неравенство
, |
|
в котором знак равенства имеет место в случае, если процесс является обратимым, а знак больше, если процесс - необратимый.
Неравенство (3.58) может быть также записано и в дифференциальной форме
. |
|
Если рассмотреть адиабатически изолированную термодинамическую систему, для которой , то выражение (3.59) примет вид
|
|
или в интегральной форме
. |
|
В адиабтически изолированной термодинамической системе энтропия не может убывать: она или сохраняется, если в системе происходят только обратимые процессы, или возрастает, если в системе протекает хотя бы один необратимый процесс. Записанное утверждение является ещё одной формулировкой второго начала термодинамики. Таким образом, изолированная термодинамическая система стремится к максимальному значению энтропии, при котором наступает состояние термодинамического равновесия. Необходимо отметить, что если система не является изолированной, то в ней возможно уменьшение энтропии. Примером такой системы может служить, например, обычный холодильник, внутри которого возможно уменьшение энтропии. Но для таких открытых систем это локальное понижение энтропии всегда компенсируется возрастанием энтропии в окружающей среде, которое превосходит локальное ее уменьшение.
С законом возрастания энтропии непосредственно связан парадокс, сформулированный в 1852 году Томсоном (лордом Кельвином) и названый им гипотезой тепловой смерти Вселенной. Подробный анализ этой гипотезы был выполнен Клаузиусом, который считал правомерным распространение на всю Вселенную закона возрастания энтропии. Действительно, если рассмотреть Вселенную как адиабатически изолированную термодинамическую систему, то, учитывая ее бесконечный возраст, на основании закона возрастания энтропии можно сделать вывод о достижении ею максимума энтропии, то есть состояния термодинамического равновесия. Но в реально окружающей нас Вселенной этого не наблюдается.
Термодинамический парадокс в космологии, сформулированный во второй половине ХIХ века, непрерывно будоражит с тех пор научное сообщество. Дело в том, что он затронул наиболее глубинные структуры научной картины мира. Хотя многочисленные попытки разрешения этого парадокса приводили всегда лишь к частным успехам, они порождали новые, нетривиальные физические идеи, модели, теории. Термодинамический парадокс выступает неиссякаемым источником новых научных знаний. Вместе с тем, его становление в науке оказалось опутанным множеством предубеждений и совершенно неверных интерпретаций. Необходим новый взгляд на эту, казалось бы, довольно хорошо изученную проблему, которая приобретает нетрадиционный смысл в постнеклассической науке.
Постнеклассическая наука, прежде всего, теория самоорганизации, проблему направленности термодинамических процессов в природе решает существенно иначе, чем наука классическая или неклассическая; это находит выражение в современной научной картине мира (НКМ). Как же на самом деле появился термодинамический парадокс в космологии? Нетрудно убедиться, что он был фактически сформулирован оппонентами Томсона и Клаузиуса, которые увидели противоречие между идеей тепловой смерти Вселенной и коренными положениями материализма о бесконечности мира в пространстве и времени. Формулировки термодинамического парадокса, которые мы встречаем у различных авторов, на редкость схожи, практически полностью совпадают. "Если бы учение об энтропии, было правильным, то предполагаемому им "концу" мира должно было бы соответствовать и "начало", минимум энтропии", когда температурное различие между обособленными частями Вселенной было бы наибольшим.
В чем же состоит эпистемологическая природа рассматриваемого парадокса? Все цитированные авторы, по сути, приписывают ему философско-мировоззренческий характер. Но фактически здесь смешиваются два уровня знания, которые с нашей современной точки зрения следует различать. Исходным было все-таки возникновение термодинамического парадокса на уровне НКМ, на котором Клаузиус и осуществлял свою экстраполяцию возрастания принципа энтропии на Вселенную. Парадокс выступал как противоречие между выводом Клаузиуса и принципом бесконечности мира во времени, согласно космологии Ньютона. На том же уровне знания возникли и другие космологические парадоксы - фотометрический и гравитационный, причем их эпистемологическая природа была очень сходной. В самом деле, тепловая смерть Вселенной, даже если бы она произошла в каком-то отдаленном будущем, пусть даже через миллиарды или десятки миллиардов лет, все равно ограничивает "шкалу времени" человеческого прогресса.
Новый этап анализа термодинамического парадокса в космологии связан уже с неклассической наукой. Он охватывает 30 - 60-е годы ХХ века. Наиболее специфическая его черта - переход к разработке термодинамики Вселенной в концептуальных рамках теории А.А. Фридмана.
Обсуждались как модернизированные варианты принципа Клаузиуса, так и новая модель Толмена, в которой возможна необратимая эволюция Вселенной без достижения максимума энтропии. Модель Толмена в конечном счете получила перевес в признании научного сообщества, хотя и не дает ответа на некоторые "трудные" вопросы. Но параллельно развивался также квазиклассический "антиэнтропийный подход", единственная цель которого состояла в том, чтобы любой ценой опровергнуть принцип Клаузиуса, а исходной абстракцией был образ бесконечной и "вечно юной", как выражался Циолковский, Вселенной. На основе этого подхода был разработан ряд, так сказать, "гибридных" схем и моделей, для которых было характерно довольно искусственное сочетание не только старых и новых идей в области термодинамики Вселенной, но также оснований классической и неклассической науки.
В 30 - 40-е годы наибольшим влиянием среди сторонников релятивистской космологии продолжала пользоваться идея тепловой смерти Вселенной. Энергичными сторонниками принципа Клаузиуса выступали, например, А. Эддингтон и Дж. Джинс, неоднократно высказывавшиеся по поводу как физического смысла этой проблемы, так и ее "человеческого измерения". Вывод Клаузиуса был ими транслирован в неклассическую картину мира и в некоторых отношениях адаптирован к ней.
Изменился прежде всего объект экстраполяции - Вселенная как целое. Большой резонанс (и многократное цитирование) вызвала в 50-е годы сейчас почти забытая дискуссия по проблемам термодинамики Вселенной между К.П. Станюковичем и И.Р. Плоткиным. Обе они рассматривают статистико-термодинамические свойства модели Вселенной, сходной с Вселенной Больцмана, т.е. совпадают в отношении исследуемого объекта. Кроме того, оба считали, что проблемы термодинамики Вселенной могут анализироваться и независимо от ОТО, которая не вложила в закон возрастания энтропии нового содержания. Но наряду с изложенными попытками „преодоления” гипотезы Больцмана разрабатывались и модернизированные варианты самой этой гипотезы. Наиболее известный из них принадлежит Я.П. Терлецкому. "Гибридные схемы" и модели решения термодинамического парадокса в космологии вызвали в 50-е - 60-е годы довольно значительный интерес - преимущественно в нашей стране. Они обсуждались на одном из совещаний по вопросам космогонии (Москва, 1957 г.), на симпозиумах по философских проблемам теории относительности Эйнштейна и релятивистской космологии (Киев, 1964, 1966 гг.) и др., но в дальнейшем ссылки на них становились все более редкими. Это произошло в немалой степени благодаря сдвигам в решении этого круга проблем, достигнутым релятивистской космологией и нелинейной термодинамикой.
Качественно новые черты начала приобретать разработка проблемы термодинамики Вселенной на протяжении 80-х годов. Наряду с исследованием Вселенной в рамках неклассических оснований в этой области сейчас развивается и подход, который соответствует признакам "постнеклассической" науки. Например, синергетика, в частности, теория диссипативных структур позволяет глубже, чем было возможно в неклассической науке, понять специфику нашей Вселенной как самоорганизующейся, саморазвивающейся системы. Постнеклассическая наука позволяет внести ряд новых моментов в анализ проблем термодинамики Вселенной как целого. Но этот вопрос обсуждался пока лишь в самых общих чертах. Постнеклассическая наука позволяет внести ряд новых моментов в анализ проблем термодинамики Вселенной как целого. Но этот вопрос обсуждался пока лишь в самых общих чертах. Основную цель подхода, основанного на статистической теории неравновесных процессов, И. Пригожин выразил так:". мы отходим от замкнутой Вселенной, в которой все задано, к новой Вселенной, открытой флуктуациям, способной рождать новое". Попытаемся понять это высказывание в контексте анализа тех космологических альтернатив, которые были выдвинуты М.П. Бронштейном.
1. Теория И. Пригожина в сочетании с современным развитием космологии, по-видимому, совместима скорее с пониманием Вселенной, как термодинамически открытой неравновесной системы, возникшей в результате гигантской флуктуации физического вакуума. Таким образом, в этом отношении постнеклассическая наука отходит от традиционной точки зрения, разделявшейся и М.П. Бронштейном. Кроме того, при анализе поведения Вселенной как целого в современной науке следует, по-видимому, отбросить то, что Пригожин назвал "путеводным мифом классической науки" - принцип "неограниченной предсказуемости" будущего. Для нелинейных диссипативных структур это связано с необходимостью учета "ограничений", обусловленных нашим действием на природу".
Наши знания о термодинамике Вселенной как целого, основанные на экстраполяции статистической теории неравновесных систем, также не могут игнорировать прямой или косвенный учет роли наблюдателя.
2. Теория И. Пригожина совершенно по-новому ставит проблему законов и начальных условий в космологии, снимает противоречия между динамикой и термодинамикой. С точки зрения этой теории оказывается, что Вселенная, как считал и М.П. Бронштейн, может подчиняться законам, асимметричным по отношению к прошлому и будущему - что нисколько не противоречит фундаментальности принципа возрастания энтропии, его космологической экстраполируемости.
3. Теория Пригожина - в хорошем соответствии с современной космологией - по-новому оценивает роль и вероятность макроскопических флуктуаций во Вселенной, хотя прежний механизм этих флуктуаций с современной точки зрения иной, чем у Больцмана. Флуктуации перестают быть чем-то исключительным, становятся вполне объективным проявлением спонтанного возникновения нового во Вселенной. Таким образом, теория Пригожина позволяет довольно непринужденно ответить на вопрос, который вот уже почти полтора века раскалывает научное сообщество и так занимал в свое время К.Э. Циолковского: почему - вопреки принципу Клаузиуса - повсюду во Вселенной мы наблюдаем не процессы монотонной деградации, а напротив, процессы становления, возникновения новых структур. Переход от "физики существующего" к "физике возникающего" произошел во многом за счет синтеза представлений, казавшихся взаимоисключающими в прежних концептуальных рамках. Идеи Пригожина, ведущие к пересмотру ряда фундаментальных представлений, как и все принципиально новое в науке, встречают неоднозначное отношение к себе - в первую очередь среди физиков. С одной стороны, растет число их сторонников, с другой - говорится о недостаточной корректности и обоснованности выводов Пригожина с точки зрения идеала развитой физической теории. Сами эти идеи интерпретируются иногда не вполне однозначно; в частности, некоторые авторы подчеркивают, что в процессе самоорганизации энтропия системы может уменьшаться. Если такая точка зрения правильна - она означает, что удалось, наконец, сформулировать те крайне специфические условия, о которых писал К.Э. Циолковский, обсуждая возможности существования в природе антиэнтропийных процессов. Но идеи русского космизма, в том числе и космической философии К.Э. Циолковского, посвященные этим проблемам, находят и более непосредственную разработку в постнеклассической науке. Например, Н.Н. Моисеев отмечает, что в ходе эволюции Вселенной происходит непрерывное усложнение организации структурных уровней природы, причем этот процесс носит явно направленный характер. Природой как бы запасен определенный набор потенциально возможных (то есть допустимых в рамках ее законов) типов организации и по мере развертывания единого мирового процесса в нем оказывается "задействованным" все большее количество этих структур. Разум и разумная деятельность должны быть включены в общий синтетический анализ процессов эволюции Вселенной.
Разработка идей самоорганизации, в частности, пригожинской теории диссипативных структур, связанная с пересмотром концептуальных оснований термодинамики стимулировала дальнейшее исследование этого уровня знания. Статистическая термодинамика, развитая еще в классической физике, содержит ряд незавершенностей и неясностей, отдельных странностей и парадоксов - несмотря на то, что с фактами у нее как будто "все в порядке". Но, согласно исследованиям Ф.А. Цицина, даже в такой установившейся и явно прошедшей "проверку временем" сфере научного поиска кроется немало неожиданностей. Сопоставление характерных параметров флуктуаций, введенных еще Л. Больцманом и М. Смолуховским, доказывает существенную неполноту "общепринятой" статистической интерпретации термодинамики. Как ни странно, эта теория построена в пренебрежении флуктуациями! Отсюда следует, что необходимо ее уточнение, т.е. построение теории "следующего приближения".
Более последовательный учет флуктуационных эффектов заставляет признать физически нетождественными понятия "статистического" и "термодинамического" равновесия. Оказывается, далее, справедливым вывод, находящийся в полном противоречии с "общепринятым": функциональная связь между ростом энтропии и стремлением системы к более вероятному состоянию отсутствует. Не исключены и такие процессы, в которых переход систем в более вероятное состояние может сопровождаться уменьшением энтропии! Учет флуктуаций в проблемах термодинамики Вселенной может привести, тем самым, к обнаружению физических границ принципа возрастания энтропии. Но Ф.А. Цицин не ограничивается в своих выводах основаниями классической и неклассической науки. Он высказывает предположение, что принцип возрастания энтропии неприменим к некоторым типам существенно нелинейных систем. Не исключена заметная "концентрация флуктуаций" в биоструктурах. Возможно даже, что подобные эффекты уже давно фиксируются в биофизике, но их не осознают или неправильно интерпретируют, именно потому, что считают "принципиально невозможными". Подобные явления могут быть известны другим космическим цивилизациям и эффективно использоваться ими, в частности, в процессах космической экспансии.
Итак, мы можем отметить, что в постнеклассической науке были сформулированы принципиально новые подходы к анализу принципа Клаузиуса и устранению термодинамического парадокса в космологии. Наиболее значительны перспективы, которых можно ожидать от космологической экстраполяции теории самоорганизации, развитой на основе идей русского космизма.
Необратимые процессы в резко неравновесных, нелинейных системах позволяют, по-видимому, избежать тепловой смерти Вселенной, поскольку она оказывается открытой системой. Продолжаются и поиски теоретических схем "антиэнтропийных" процессов, непосредственно предсказываемых научной картиной мира, основанной на космической философии К.Э. Циолковского; правда, такой подход разделяется лишь немногими естествоиспытателями. Сквозь всю новизну постнеклассических подходов к анализу проблем термодинамики Вселенной "просвечивают", однако, те же самые "темы", которые сформировались еще во второй половине Х1Х века и порождены парадоксом Клаузиуса и дискуссиями вокруг него.
Мы видим таким образом, что принцип Клаузиуса до сих пор является почти неиссякаемым источником новых идей в комплексе физических наук. Тем не менее, несмотря на появление все новых моделей и схем, в которых тепловая смерть отсутствует, никакого "окончательного" разрешения термодинамического парадокса до сих пор не достигнуто. Все попытки разрубить "гордиев узел" проблем, связанных с принципом Клаузиуса, неизменно приводили лишь к частичным, отнюдь не строгим и не окончательным выводам, как правило, достаточно абстрактным. Содержавшиеся в них неясности порождали все новые проблемы и пока нет особой надежды, что успеха удастся достигнуть в обозримом будущем.
Вообще говоря, это - вполне обычный механизм развития научного познания, тем более, что речь идет об одной из наиболее фундаментальных проблем. Но ведь далеко не всякий принцип науки, как и вообще не любой фрагмент НКМ, является столь эвристичным, каким выступает принцип Клаузиуса. Можно назвать несколько причин, объясняющих, с одной стороны, эвристичность этого принципа, который до сих пор не вызывает ничего, кроме раздражения, у догматиков - безразлично, естествоиспытателей или философов, с другой - неудачи его критиков.
Первое - сложности любых противостоящих этому принципу "игр с бесконечностью", каковы бы ни были их концептуальные основания.
Вторая причина - использование неадекватного смысла термина "Вселенная как целое" - все еще обычно понимаемого в значении "всего существующего" или "тотальности всех вещей". Неопределенность этого термина, вполне соответствующая неясностям употребления неэксплицируемых смыслов бесконечности, резко противостоит четкости формулировки самого принципа Клаузиуса. Понятие „Вселенная” в этом принципе не конкретизировано, но именно потому и возможно рассматривать проблему его применимости к различным вселенным, конструируемым средствами теоретической физики и интерпретируемым как „все существующее” лишь с точки зрения данной теории (модели).
И, наконец, третья причина: как сам принцип Клаузиуса, так и попытки разрешения выдвинутого на его основе термодинамического парадокса предвосхитили одну из черт постнеклассической науки _ включенность гуманистических факторов в идеалы и нормы объяснения, а также доказательности знаний. Эмоциональность, с какой на протяжении более сотни лет критиковали принцип Клаузиуса, выдвигали различные его альтернативы, анализировали возможные схемы антиэнтропийных процессов, имеет, пожалуй, мало прецедентов в истории естествознания - и классического, и неклассического. Принцип Клаузиуса явно апеллирует к постнеклассической науке, которая включает „человеческое измерение”. Естественно, в прошлом эта особенность рассматриваемых знаний еще не могла быть по-настоящему осознана. Но сейчас, ретроспективно, некие "зародыши" идеалов и норм постнеклассической науки мы находим в этих старых дискуссиях.
Флуктуационная гипотеза, космологическая гипотеза Л. Больцмана, согласно которой весь наблюдаемый звёздный мир, включая Солнечную систему, является одной из грандиозных флуктуаций во Вселенной, находящейся в целом в состоянии термодинамического равновесия ("тепловой смерти" Вселенной). Распространение второго начала термодинамики на системы космологического масштабов приводило к выводу о неизбежности для этих систем, а в конечном счёте и для всей Вселенной, конечного состояния термодинамического равновесия (максимума энтропии), при котором невозможны какие бы то ни было макроскопические изменения и движения, существование организованных структур любой природы. В то же время наблюдаемая нами часть Вселенной далека от такого состояния. В качестве возможного объяснения этого противоречия (парадокса) и была предложена Ф. г. (80-е гг. 19 в.). В рамках статистической термодинамики существование неравновесных подсистем в равновесной системе возможно, хотя и мало вероятно. Согласно же Ф. г., в равновесной Вселенной, если она достаточно велика, должны возникать не только малые, но и грандиозные (и тем более маловероятные) флуктуации.
Ф. г. была наиболее выдающейся попыткой преодолеть упомянутый парадокс в рамках классической (дорелятивистской) физики и космологии. Однако, сточки зрения физики, вероятность флуктуации нужных масштабов настолько мала, а время ожидания её появления настолько велико, что различие между понятиями "маловероятно" и "невозможно" становится, в сущности, формальным. С мировоззренческой точки зрения представляется неудовлетворительным, что существование жизни (и вообще организованных структур) оказывается почти чудом, и, Т.о., парадокс тепловой смерти, по сути дела, не устраняется, а всего лишь смягчается. Как и другие космологические парадоксы, этот парадокс вообще не мог быть последовательно преодолен в рамках классической физической картины мира: к явлениям космологического масштаба применима не классическая, а релятивистская физика (в частности, релятивистская термодинамика). Английский физик Р. Толмен показал (1928), что учёт тяготения ведёт к выводу, неожиданному с точки зрения классической термодинамики: энтропия системы может расти безгранично, не достигая какого-либо конечного состояния с максимальной энтропией.
Заключение Тепловая смерть Вселенной - это вывод о том, что все виды энергии во Вселенной в конце концов должны перейти в энергию теплового движения, которая равномерно распределится по веществу Вселенной, после чего в ней прекратятся все макроскопические процессы.
Согласно второму началу термодинамики, любая физическая система, не обменивающаяся энергией с другими системами (для Вселенной в целом такой обмен, очевидно, исключен), стремится к наиболее вероятному равновесному состоянию - к так называемому состоянию с максимумом энтропии.
Однако ещё до создания современной космологии были сделаны многочисленные попытки опровергнуть вывод о тепловой смерти Вселенной. Наиболее известна из них флуктуационная гипотеза Л. Больцмана (1872), согласно которой Вселенная извечно пребывает в равновесном изотермическом состоянии, но по закону случая то в одном, то в другом её месте иногда происходят отклонения от этого состояния; они происходят тем реже, чем большую область захватывают и чем значительнее степень отклонения.
На сегодняшний день у данной теории также имеются как сторонники, так и противники. Несомненно то, что в настоящее время необходим новый взгляд на эту, казалось бы, довольно хорошо изученную проблему.
1. Концепции современного естествознания. / под ред. проф. С.А. Самыгина, 2-е изд. - Ростов н/Д: "Феникс", 1999. - 580 с.
2. Дубнищева Т.Я. Концепции современного естествознания. Новосибирск: Изд-во ЮКЭА, 1997. - 340 с.
3. Пригожин И. От существующего к возникающему. М.: Наука, 1985. - 420 с.
4. Ремизов А.Н. Медицинская и биологическая физика. - М.: Высшая школа, 1999. - 280 с.
5. Станюкович К.П. К вопросу о термодинамике Вселенной // Там же. С.219-225.
6. Суорц Кл.Э. Необыкновенная физика обыкновенных явлений. Т.1. - М.: Наука, 1986. - 520 с.
7. О человеческом времени. - "Знание-Сила", №, 2000 г. С.10-16
8. Цицин Ф.А. Понятие вероятности и термодинамика Вселенной // Философские проблемы астрономии ХХ века. М., 1976. С.456-478.
9. Цицин Ф.А. Термодинамика, Вселенная и флуктуации // Вселенная, астрономия, философия.М., 1988. С.142-156 10. Цицин Ф.А. [К термодинамике иерархической Вселенной] // Труды 6-го совещания по вопросам космогонии (5-7 июня 1957 г.). М., 1959. С.225-227.
A
|
© 2000 |
|