РУБРИКИ |
Ответы на билеты по биологии 11 класс |
РЕКЛАМА |
|
Ответы на билеты по биологии 11 классНаблюдаемое в любой популяции животных или растений большое сходство всех особей — результат действия стабилизирующей формы естественного отбора. Известно много примеров стабилизирующего отбора. Во время бури преимущественно гибнут птицы с длинными и короткими крыльями, тогда как птицы со средним размером крыльев чаще выживают; наибольшая гибель детенышей млекопитающих наблюдается в семьях, размер которых больше и меньше среднего значения, поскольку это отражается на условиях кормления и на способности защищаться от врагов. Стабилизирующая форма естественного отбора была открыта выдающимся отечественным биологам-эволюционистам академиком И.И. Шмальгаузеном. Говоря о естественном отборе в целом, нельзя упускать из вида его творческую роль. Накапливая полезные для популяции и вида наследственные изменения и отбрасывая вредные, естественный отбор постепенно создает новые, более совершенные и прекрасно приспособленные к среде обитания виды. 3. Приспособление теплокровных животных к жизни в холодном климате. Медведи- густая шерсть пропитанная жиром(не промокает в воде), подкожный слой жира. Морж- толстая кожа(3-5 см.), толстый слой жира.
Билет №12 1. Хемосинтез. ХЕМОСИНТЕЗ — тип питания бактерий, основанный на усвоении СО2 за счет окисления неорганических соединений. Хемосинтез был открыт в 1888 году русским биологом С.Н.Виноградским, доказавшим способность некоторых бактерий образовывать углеводы, используя химическую энергию. Существует несколько групп хемосинтезирующих бактерий, из которых наибольшее значение имеют нитрифицирующие, серобактерии и железобактерии. Например, нитрифицирующие бактерии получают энергию для синтеза органических веществ, окисляя аммиак до азотистой, а затем до азотной кислоты, серобактерии — окисляя сероводород до сульфатов, а железобактерии — превращая закисные соли железа в окисные. Освобожденная энергия аккумулируется в клетках хемобактерий в форме АТФ. Процесс хемосинтеза, при котором из СО2 образуется органическое вещество, протекает аналогично темновой фазе фотосинтеза. Благодаря жизнедеятельности бактерий-хемосинтетиков в природе накапливаются большие запасы селитры и болотной руды. 2. Вид и видообразие. Видом называют совокупность особей, сходных по строению, имеющих общее происхождение, свободно скрещивающихся между собой и дающих плодовитое потомство. Все особи одного вида имеют одинаковый кариотип, сходное поведение и занимают определенный ареал (область распространения). Одна из важных характеристик вида — его репродуктивная изоляция, т. е. существование механизмов, препятствующих притоку генов извне. Защищенность генофонда данного вида от притока генов других, в том числе близкородственных, видов достигается разными путями. Сроки размножения у близких видов могут не совпадать. Если сроки одни и те же, то не совпадают места размножения. Например, самки одного вида лягушек мечут икру по берегам рек, другого вида — в лужах. При этом случайное осеменение икры самцами другого вида исключается. У многих видов животных наблюдается строгий ритуал поведения при спаривании. Если у одного из потенциальных партнеров для скрещивания ритуал поведения отклоняется от видового, спаривания не происходит. Если все же спаривание произойдет, сперматозоиды самца другого вида не смогут проникнуть в яйцеклетку, и яйца не оплодотворятся. Фактором изоляции также служат предпочитаемые источники пищи: особи кормятся в разных биотопах и вероятность скрещивания между ними уменьшается. Но иногда (при межвидовом скрещивании) оплодотворение все же происходит. В этом случае образовавшиеся гибриды либо отличаются пониженной жизнеспособностью, либо оказываются бесплодными и не дают потомства. Известный пример — мул — гибрид лошади и осла. Будучи вполне жизнеспособным, мул бесплоден из-за нарушения мейоза: негомологичные хромосомы не конъюгируют. Перечисленные механизмы, предотвращающие обмен генами между видами, имеют неодинаковую эффективность, но в комплексе в природных условиях они создают непроницаемую генетическую изоляцию между видами. Следовательно, вид — реально существующая, генетически неделимая единица органического мира. Каждый вид занимает более или менее обширный ареал (от лат. area — область, пространство). Иногда он сравнительно невелик: для видов, обитающих в Байкале, он ограничивается этим озером. В других случаях ареал вида охватывает огромные территории. Так, черная ворона почти повсеместно распространена в Западной Европе. Восточная Европа и Западная Сибирь населены другим видом — серой вороной. Существование определенных границ распространения вида не означает, что все особи свободно перемещаются внутри ареала. Степень подвижности особей выражается расстоянием, на которое может перемещаться животное, т. е.радиусом индивидуальной активности. У растений этот радиус определяется расстоянием, на которое распространяется пыльца, семена или вегетативные части, способные Дать начало новому растению. Для виноградной улитки радиус активности составляет несколько десятков метров, для северного оленя — более ста километров, для ондатры — несколько сот метров. Вследствие ограниченности радиусов активности лесные полевки, обитающие в одном лесу, имеют немного шансов встретиться в период размножения с лесными полевками, населяющими соседний лес. Травяные лягушки, мечущие икру в одном озере, изолированы от лягушек другого озера, расположенного в нескольких километрах от первого. В обоих случаях изоляция неполная, поскольку отдельные полевки и лягушки могут мигрировать из одного местообитания в другое. Особи любого вида распределены внутри видового ареала неравномерно. Участки территории с относительно высокой плотностью населения чередуются с участками, где численность вида низкая или особи данного вида совсем отсутствуют. Поэтому вид рассматривается как совокупность отдельных групп организмов — популяций. Популяция — это совокупность особей данного вида, занимающих определенный участок территории внутри ареала вида, свободно скрещивающихся между собой и частично или полностью изолированных от других популяций. Реально вид существует в виде популяций. Генофонд вида представлен генофондами популяций. Популяция — это элементарная единица эволюции. 3. Приспособление животных организмов к жизни в засушливых местах. Верблюд- шерсть(защищающая от солнечных лучей), долго может обходиться без пищи и воды(горб),мозолистые подушечки на стопах(не проваливается в песке, от горячего песка), может есть колючки. Могут изменят температуру своего тела. Тушканчик- накапливает жир. Черепахи в жаркий период впадают в спячку.
Билет №13 1.Работы Г. И. Менделя. Закон единообразия гибридов первого поколения — первый закон Менделя — называют также законом доминирования, так как все особи первого поколения имеют одинаковое проявление признака. Сформулировать его можно следующим образом: при скрещивании двух организмов, относящихся к разным чистым линиям (двух гомозиготных организмов), отличающихся друг от друга по одной паре альтернативных признаков, все первое поколение гибридов (F1) окажется единообразным и будет нести признак одного из родителей. Второй закон Менделя можно сформулировать следующим образом: при скрещивании двух потомков первого поколения между собой (двух гетерозиготных особей) во втором поколении наблюдается расщепление в определенном числовом соотношении: по фенотипу 3:1, по генотипу 1:2:1. Третий закон Менделя: при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях. 2. Экологический фактор и экологический оптимум. Экологические факторы. Природа, в которой обитает живой организм, является средой его обитания. Окружающие условия многообразны и изменчивы. Не все факторы среды с одинаковой силой воздействуют на живые организмы. Одни могут быть необходимы для организмов, другие, наоборот, вредны; есть такие, которые вообще безразличны для них. Факторы, среды, которые воздействуют на организм, называют экологическими факторами. По происхождению и характеру действия все экологические факторы разделяют на абиотические, т. е. факторы неорганической (неживой) среды, и биотические, связанные с влиянием живых существ. Эти факторы подразделяют на ряд частных факторов. Экологические факторы Абиотические-Свет, температура, влага, ветер, воздух, давление, течения, долгота дня и т. д. Механический состав почвы, ее водопроницаемость и влагоемкость Содержание в почве или воде элементов питания, газовый состав, соленость воды, естественный фон радиоактивности. Биотические- Влияние растений на других членов биоценоза Влияние животных на других членов биоценоза Антропогенные факторы, возникающие в результате деятельности человека, например выбросы тяжелых металлов, радионуклидов. Биологический оптимум. Часто в природе бывает так, что одни экологические факторы находятся в изобилии (например, вода и свет), а другие (например, азот) — в недостаточных количествах. Факторы, снижающие жизнеспособность организма, называют ограничивающими. Например, ручьевая форель живет в воде с содержанием кислорода не менее 2 мг/л. При содержании в воде кислорода менее 1,6 мг/л форель гибнет. Кислород — ограничивающий фактор для форели. Ограничивающим фактором может быть не только его недостаток, но и избыток. Тепло, например, необходимо всем растениям. Однако если продолжительное время летом стоит высокая температура, то растения даже при увлажненной почве могут пострадать из-за ожогов листьев. Следовательно, для каждого организма существует наиболее подходящее сочетание абиотических и биотических факторов, оптимальное для его роста, развития и размножения. Наилучшее сочетание условий называют биологическим оптимумом. Выявление биологического оптимума, знание закономерностей взаимодействия экологических факторов имеют большое практическое значение. Умело поддерживая оптимальные условия жизнедеятельности сельскохозяйственных растений и животных, можно повышать их продуктивность. 3. Приспособление животных к хищничеству. Тигр- зубы подразделяются на резцы, клыки и коренные. Резцы мелкие, а клыки крупные. Среди коренных зубов выделяются 4 коренных зуба, кот. в отличие от др. коренных зубов наз. хищными. Клыками хищники убивают добычу, а коренными зубами перегрызают мышцы и сухожилия. Кишечник короткий, что связано с питанием легко перевариваемой высококалорийной животной пищей. Ключицы отсутствуют. Мозг этих животных отличается сильным развитием извилин и борозд. Питается животной пищей. Имеет острые когти. Подушечки на лапах, благодаря которым могут бесшумно подкрадываться. Орел- мощный клюв, хорошее зрение, острые и цепкие когти, питается животной пищей.
Билет №14 1. Хромосомная теория наследственности. Мендель проследил наследование только семи пар признаков у душистого горошка. В дальнейшем многие исследователи, изучая наследование разных пар признаков у самых разных видов организмов, подтвердили законы Менделя. Было признано, что эти законы носят всеобщий характер. Однако позже было замечено, что у душистого горошка два признака — форма пыльцы и окраска цветков не дают независимого распределения в потомстве: потомки остались похожими на родителей. Постепенно таких исключений из третьего закона Менделя накапливалось все больше. Стало ясно, что принцип независимого распределения в потомстве и свободного комбинирования распространяется не на все гены. В самом деле, у любого организма признаков очень много, а число хромосом невелико. Следовательно, в каждой хромосоме должно находиться много генов. Каковы же закономерности наследования генов, локализованных в одной хромосоме? Этот вопрос был изучен выдающимся американским генетиком Т. Морганом. Предположим, что два гена — А и В находятся в одной хромосоме, и организм, взятый для скрещивания, гетерозиготен по этим генам. В анафазе первого мейотического деления гомологичные хромосомы расходятся в разные клетки и образуются два сорта гамет вместо четырех, как должно было бы быть при дигибридном скрещивании в соответствии с третьим законом Менделя. При скрещивании с гомозиготным организмом, рецессивным по обоим генам — аа и bb, получается расщепление 1:1 вместо ожидаемого при дигибридном анализирующем скрещивании 1:1:1:1. Такое отклонение от независимого распределения означает, что гены, локализованные в одной хромосоме, наследуются совместно. Рассмотрим конкретный пример. Если скрестить мушку дрозофилу, имеющую серое тело и нормальные крылья, с мушкой, обладающей темной окраской тела и зачаточными крыльями, то в первом поколении гибридов все мухи будут серыми с нормальными крыльями. Это гетерозиготы по двум парам аллельных генов, причем ген, определяющий серую окраску брюшка, доминирует над темной окраской, а ген, обусловливающий развитие нормальных крыльев, — над геном недоразвитых крыльев. При анализирующем скрещивании гибрида Ft с гомозиготной рецессивной дрозофилой (темное тело, зачаточные крылья) подавляющее большинство потомков F2 будет сходно с родительскими формами. 2. Сходство и различие между человеком и другими животными. Рвзличия а) Обусловленные прямохождением: - S - образный позвоночник; - широкий таз и грудная клетка; - сводчатая стопа; - мощные кости нижних конечностей; б) Обусловленные трудовой деятельностью: - противопоставление большего пальца на руке остальным; в) Обусловленные развитым мышлением: - преобладание мозговой части черепа над лицевой; - развитый головной мозг. Сходство прослеживается в строении человека и других позвоночных животных. Человек относится к млекопитающим, так как имеет диафрагму, молочные железы, дифференцированные зубы (резцы, клыки и коренные), ушные раковины, зародыш его развивается внутриутробно. У человека есть такие же органы и системы органов, как и у других млекопитающих: кровеносная, дыхательная, выделительная, пищеварительная и др. О родстве человека с животными свидетельствуют также рудименты и атавизмы. У человека свыше 90 рудиментарных органов: копчик, аппендикс, зубы мудрости и др. Среди атавизмов можно назвать сильно развитый волосяной покров на теле, дополнительные соски, хвост. Эти признаки были развиты у предков человека, но изредка встречаются и у современных людей. Сходство прослеживается и в развитии зародышей человека и животных. Развитие человека начинается с одной оплодотворенной яйцеклетки. За счет ее деления образуются новые клетки, формируются ткани и органы зародыша. На стадии 1,5-3 месяцев внутриутробного развития у человеческого плода развит хвостовой отдел позвоночника, закладываются жаберные щели. Мозг месячного зародыша напоминает мозг рыбы, а семимесячного - мозг обезьяны. На пятом месяце внутриутробного развития зародыш имеет волосяной покров, который впоследствии исчезает. Таким образом, по многим признакам зародыш человека имеет сходство с зародышами других позвоночных. Поведение человека и высших животных очень сходно. Особенно велико сходство человека и человекообразных обезьян. Им свойственны одинаковые условные и безусловные рефлексы. У обезьян, как и у человека, можно наблюдать гнев, радость, развитую мимику, заботу о потомстве. У шимпанзе, например, как и у человека, различают 4 группы крови. Люди и обезьяны болеют болезнями, не поражающими других млекопитающих, например холерой, гриппом, оспой, туберкулезом. Шимпанзе ходят на задних конечностях, у них нет хвоста. Генетический материал человека и шимпанзе идентичен на 99%. 3. Составить схему пищевой цепи в лесу Пищевую цепь, например, составляют растительноядные мышевидные грызуны и зайцы, а также копытные за счет которых существуют хищники: ласка, горностай, куница, волк. Все виды позвоночных служат средой обитания и источником питания для различных наружных паразитов.
Билет №15 1. Сцепление и кроссинговер. Кроссинговер как источник изменчивости. Группы сцепления. Число генов у каждого организма, как мы уже отмечали, гораздо больше числа хромосом. Следовательно, в одной хромосоме расположено много генов. Как наследуются гены, расположенные в одной паре гомологичных хромосом? Большую работу по изучению наследования неаллельных генов, расположенных в паре гомологичных хромосом, выполнили американский ученый Т. Морган и его ученики. Ученые установили, что гены, расположенные в одной хромосоме, наследуются совместно, или сцепленно. Группы генов, расположенные в одной хромосоме, называют группами сцепления. Сцепленные гены расположены в хромосоме в линейном порядке. Число групп сцепления у генетически хорошо изученных объектов равно числу пар хромосом, т. е. гаплоидному числу хромосом. У человека 23 пары хромосом и 23 группы сцепления, у гороха 7 пар хромосом и 7 групп сцепления и т. д. Сцепленное наследование и явление перекреста. Рассмотрим, какие типы гамет будет производить особь, два гена которой находятся в одной хромосоме:------(А)-----(В)------ ------(а)------(b)------ Особь с таким генотипом производит два типа гамет: -----(а)----(b)----- и -----(А)-----(B)----- в равных количествах, которые повторяют комбинацию генов в хромосоме родителя. Было установлено, однако, что, кроме таких обычных гамет, возникают и другие, новые -----(А)-----(b)----- и -----(а)----(B)-----, с новыми комбинациями генов, отличающимися от родительских хромосом. Было доказано, что причина возникновения новых гамет заключается в перекресте гомологичных хромосом. Гомологичные хромосомы в процессе мейоза перекрещиваются и обмениваются участками. В результате этого возникают качественно новые хромосомы. Частота перекреста между двумя сцепленными генами в одних случаях может быть большой, в других — менее значительной. Это зависит от расстояния между генами в хромосоме. Частота (процент) перекреста между двумя неаллельными генами, расположенными в одной хромосоме, пропорциональна расстоянию между ними. Чем ближе расположены гены в хромосоме, тем теснее сцепление между ними и тем реже они разделяются при перекресте. И наоборот, чем дальше гены отстоят друг от друга, тем слабее сцепление между ними и тем чаще осуществляется перекрест. Следовательно, о расстоянии между генами в хромосоме можно судить по частоте перекреста. Итак, сцепление генов, локализованных в одной хромосоме, не бывает абсолютным. Перекрест, происходящий между гомологичными хромосомами, постоянно осуществляет «перетасовку» — рекомбинацию генов. Т. Морган и его сотрудники показали, что, изучив явление сцепления и перекреста, можно построить карты хромосом с нанесенным на них порядком расположения генов. Карты, построенные по этому принципу, созданы для многих генетически хорошо изученных объектов: кукурузы, мыши, дрожжей, гороха, пшеницы, томата, плодовой мушки дрозофилы. Как геологу или моряку совершенно необходима географическая карта, так и генетику крайне необходима генетическая карта того объекта, с которым он работает. В настоящее время создано несколько эффективных методов построения генетических карт. В результате возникла возможность сравнивать строение генома, т. е. совокупности всех генов гаплоидного набора хромосом, у различных видов, что имеет важное значение для генетики, селекции, а также эволюционных исследований. 2. Симбиотические отношения. Лишайник всеми воспринимается как единый организм. На самом же деле он состоит из гриба и водоросли. Основу его составляют переплетающиеся гифы (нити) гриба. В рыхлом слое под поверхностью среди гиф гнездятся водоросли. Чаще всего это одноклеточные зеленые водоросли. Совместное существование выгодно и грибу, и водорослям. Гриб дает водорослям воду с растворенными минеральными солями, а получает от водоросли органические соединения, вырабатываемые ею в процессе фотосинтеза, главным образом углеводы. Симбиоз так хорошо помогает лишайникам в борьбе за существование, что они способны поселятся на песочных почвах, на бесплодных скалах, там, где другие растения существовать не могут. 3. Основные биологические события палеозоя. Палеозой Кембрийский, ордовикский периоды- Процветание морских позвоночных, Широкое распространение трилобитов, водорослей. Силурийский- Развитие кораллов, трилобитов; по явление бесчелюстных позвоночных. Выход растений на сушу. Девонский- Появление кистеперых рыб, появление стегоцефалов. Распространение на суше высших споровых растений. Каменноугольный- Расцвет земноводных, возникновение пресмыкающихся, появление членистоногих; уменьшение числа трибо-литов. Расцвет папоротникообразны появление семенных папоротников. Пермский- Развитие пресмыкающихся. Распространение голосеменных. Вымирание трилобитов.
Билет №16 1. Мутации и наследственная изменчивость. Мутации имеют ряд свойств. 1) возникают внезапно, и мутировать может любая часть генотипа; 2) чаще бывают рецессивными и реже — доминантными; 3) могут быть вредными (большинство мутаций), нейтральными и полезными (очень редко) для организма; 4) передаются из поколения в поколение; 5) представляют собой стойкие изменения наследственного материала; 6) это качественные изменения, которые, как правило, не образуют непрерывного ряда вокруг средней величины при- g знака; 7) могут повторяться. Мутации могут происходить под влиянием как внешних, так и внутренних воздействий. Различают мутации генеративные — они возникают в гаметах, и соматические — они возникают в соматических клетках и затрагивают лишь часть тела; такие мутации будут передаваться следующим поколениям только при вегетативном размножении. По характеру изменений в генотипе мутации подразделяются на несколько видов. Точечные, или генные мутации представляют собой изменения в отдельных генах. Это может произойти при замене, выпадении или вставке одного или нескольких нуклеотидов в молекуле ДНК. Хромосомные мутации представляют собой изменения частей хромосом или целых хромосом. Такие мутации могут происходить в результате делеции — утраты части хромосомы, дупликации — удвоения какого-либо участка хромосомы, инверсии — поворота участка хромосомы на 180°, транслокации — отрыва части хромосомы и перемещения ее в новое положение, например, присоединения к другой, негомологичной, хромосоме. Структурные хромосомные мутации, как правило, вредны для организма. Геномные мутации заключаются в изменении числа хромосом в гаплоидном наборе. Это может происходить за счет уменьшения или увеличения числа хромосом в гаплоидном наборе. Частный случай геномных, мутаций — полиплоидия — увеличение числа хромосом в генотипе, кратное п. Это явление возникает при нарушении веретена деления при мейозе или митозе. Полиплоиды отличаются мощным ростом, большими размерами. Большинство культурных растений полиплоиды. Тетероплоидия связана с недостатком или избытком хромосом в одной гомологичной паре. Эти мутации вредны для организма; примером может служить болезнь Дауна, при которой в 21-й паре появляется лишняя хромосома. Комбинативная изменчивость — также относится к наследственным формам изменчивости. Она обусловлена перегруппировкой генов в процессе слияния гамет и образования зиготы, то есть при половом процессе. Сходство между комбинативной и мутационной изменчивостью заключается в том, что в обоих случаях потомство получает набор генов каждого из родителей. Однако между этими видами изменчивости есть принципиальные отличия. При комбинативной изменчивости в результате слияния родительских гамет возникают новые комбинации генов, однако сами гены и хромосомы остаются неизменными. При мутационной изменчивости обязательно происходит изменения в самом генотипе: меняются отдельные гены, изменяется строение хромосом и их число. Академик Н.И. Вавилов в течение многих лет исследовал закономерности наследственной изменчивости у дикорастущих и культурных растений различных систематических групп. Эти исследования позволили сформулировать закон гомологических рядов наследственной изменчивости, или закон Вавилова. Формулировка этого закона следующая: генетически близкие роды и виды характеризуются сходными рядами наследственной изменчивости. Таким образом, зная, какие мутационные изменения возникают у особей какого-либо вида, можно предвидеть, что такие же мутации в сходных условиях будут возникать у родственных видов и родов. Н.И. Вавилов проследил изменчивость множества признаков у злаков. Из 38 различных признаков, характерных для всех растений этого семейства, у ржи было обнаружено 37 признаков, у пшеницы — 37, у овса и ячменя — по 35, у кукурузы — 32. Знание этого закона позволяет селекционерам заранее предвидеть, какие признаки изменятся у того или иного вида в результате воздействия на него мутагенных факторов. 2. Вымершие предки человека. Австралопитек Рост 120—140 см; объем черепа 500—600 см3 Стадный образ жизни. Жили среди скал в открытых местах, употребляли мясную пищу. Камни, палки, кости животных. Человек умелыйРост 135—150 см; объем черепа 650—680 см. Стадный образ жизни, совместная охота; мясная пища, ходили на двух ногах. Орудия труда из природных объектов. Древнейший человек — питекантроп Рост 150 см; объем мозга 900—1000 см3, лоб низкий, с надбровным валиком; челюсти без подбородочного выступа. Общественный образ жизни; жили в пещерах, пользовались огнем. Примитивные каменные орудия труда, палки. СинантропРост 150—160 см; объем мозга 850-1220 см3, лоб низкий, с надбровным валиком, нет подбородочного выступа. Жили стадами, строили примитивные жилища, пользовались огнем, одевались в шкуры. Орудия из камня и костей. Древний человек — неандерталец Рост 155—165 см; объем мозга 1400 см'; извилин мало; лоб низкий, с надбровным валиком; подбородочный выступ развит слабо. Общественный образ жизни, строительство очагов и жилищ, использование огня для приготовления пищи, одевались в шкуры. Использовали жесты и примитивную речь для общения. Появилось разделение труда. Первые захоронения. Орудия труда из дерева и камня, (нож, скребок, многогранные острия и др.). Первый современный человек — кроманьонец Рост до 180 см; объем мозга 1600 см8, лоб высокий; извилины развиты; нижняя челюсть с подбородочным выступом. Родовая община. Строительство поселений. Появление обрядов. Возникновение искусства, гончарного дела, земледелия. Развитая речь. Приручение животных, окультуривание растений. Разнообразные орудия труда из кости, камня, дерева 3. Основные биологические события мезозоя. Мезозой Триасовый- Расцвет пресмыкающихся, появление костистых рыб, первых млекопитающих. Юрский- Появление археоптерикса, процветание головоногих моллюсков, господство пресмыкающихся. Господство голосеменных. Меловой- Вымирание динозавров, появление птиц и высших млекопитающих. Появление и распространение покрытосеменных.
Билет №17 1. Модификационная изменчивость. Проблема наследования благоприобретенных признаков. Разнообразие фенотипов, возникающих у организмов одинакового генотипа под влиянием условий среды, называют модификационной изменчивостью. Спектр модификационной изменчивости определяется нормой реакции. Примером модификационной изменчивости может служить изменчивость генетически сходных (идентичных) особей. Количество и набор микроэлементов в почве могут сильно менять (модифицировать) активность ферментов и, следовательно, сказываться на росте и развитии растений. Однако эти модификации не наследуются, потому что гены, отвечающие за развитие растений, не меняются в ответ на изменения температуры, влажности, характера питания. Вывод, что признаки, приобретенные в течение жизни организмов, не наследуются, сделал крупный немецкий биолог А. Вейсман. Иногда модификационная изменчивость называется ненаследственной. Это верно в том смысле, что модификации не наследуются. Следует помнить, однако, что сама способность живых организмов к адаптивным модификациям — приспособительным изменениям —генетически обусловлена, выработана в результате естественного отбора. Типы наследственной изменчивости. Наследственная изменчивость — основа разнообразия живых организмов и главное условие их способности к эволюционному развитию. Механизмы наследственной изменчивости разнообразны. Основной вклад в наследственную изменчивость вносит генотипическая изменчивость; существует также и цитоплазматическая изменчивость. Генотипическая изменчивость в свою очередь слагается из мутационной и комбинативной изменчивости. Комбинативная изменчивость — важнейший источник того бесконечно большого наследственного разнообразия, которое наблюдается у живых организмов. В основе комбинативной изменчивости лежит половое размножение организмов, вследствие которого возникает огромное разнообразие генотипов. Генотип потомков, как известно, представляет собой сочетание генов, которые были свойственны родителям. Число генов у каждого организма исчисляется тысячами. При половом размножении комбинации генов приводят к формированию нового уникального генотипа и фенотипа. Независимое расхождение гомологичных хромосом в первом мейотическом делении — первая и важнейшая основа комбинативной изменчивости. Именно независимое расхождение хромосом, как вы помните, является основой третьего закона Менделя. Появление зеленых гладких и желтых морщинистых семян во втором поколении от скрещивания растений с желтыми гладкими и зелеными морщинистыми семенами — пример комбинативной изменчивости Рекомбинация генов, основанная на явлении перекреста хромосом, — второй, тоже очень важный источник комбинативной изменчивости. Рекомбинантные хромосомы, попав в зиготу, вызывают появление комбинаций признаков, нетипичных для родителей. Третий важный источник комбинативной изменчивости — случайная встреча гамет при оплодотворении. В моногибридном скрещивании возможны три генотипа: АА, Аа и аа. Каким именно генотипом будет обладать данная зигота, зависит от случайной комбинации гамет. Все три основных источника комбинативной изменчивости действуют независимо и одновременно, создавая огромное разнообразие генотипов. Однако новые комбинации генов не только легко возникают, но также и легко разрушаются при передаче из поколения в поколение. Именно поэтому часто в потомстве выдающихся по качествам живых организмов появляются особи, уступающие родителям. К модификационной (групповой, определенной) изменчивости относят сходные изменения всех особей потомства популяции какого-либо вида в сходных условиях существования. Модификационная изменчивость не затрагивает гены организма и не передается из поколения в поколение. Модификации наблюдаются только на протяжении жизни организма, находящегося в определенных условиях. Границы модификационной изменчивости, контролируемые генотипом организма, называют нормой реакции. Одни признаки (например, молочность скота) — обладают широкой нормой реакции, другие (например, цвет шерсти) — узкой нормой реакции. Таким образом, можно сказать, что наследуется не сам признак, а способность организма (определяемая его генотипом) продемонстрировать признак в большей или меньшей степени в зависимости от условий существования. Модификационная изменчивость характеризуется следующими основными свойствами. 1. Ненаследуемостью. 2. Групповым характером изменений. 3. Четкой зависимостью направленности изменений от определенного воздействия внешней среды. 4. Нормой реакции (границы этого вида изменчивости определены генотипом организма). 2. Межвидовая конкуренция и ее роль в изменении биоценозов. Под межвидовой борьбой следует понимать взаимоотношения особей разных видов. Они могут быть как конкурентными, так и основанными на взаимной выгоде. Особой остроты межвидовая конкуренция достигает в тех случаях, когда противоборствуют виды, которые живут в сходных экологических условиях и используют одинаковые источники питания. В результате межвидовой борьбы происходит либо вытеснение одного из противоборствующих видов, либо приспособление видов к разным условиям в пределах единого ареала или, наконец, их территориальное разобщение. Иллюстрацией последствий борьбы близких видов могут служить два вида скальных поползней. В тех местах, где ареалы этих видов перекрываются, т. е. на одной территории живут птицы обоих видов, длина клюва и способ добывания пищи у них существенно отличаются. В неперекрывающихся областях обитания поползней отличий в длине клюва и способе добывания пищи не обнаруживается. Межвидовая борьба, таким образом, ведет к экологическому и географическому разобщению видов. В качестве примеров межвидовой борьбы можно назвать взаимоотношения хищника и жертвы, хозяина и паразита, а также взаимовыгодное сожительство особей разных видов. 3. Основные биологические события кайнозоя. Кайнозой Палеоген- Распространение млекопитающих; появление парапитеков и дриопитеков; расцвет насекомых. Господство покрытосеменных. Неоген- Господство млекопитающих, птиц. Антропоген- Эволюция человека.
Билет №18 1.Генная инженерия. ГЕННАЯ ИНЖЕНЕРИЯ - раздел молекулярной генетики, связанный с целенаправленным созданием новых комбинаций генетического материала, способного размножаться в клетке хозяина и синтезировать конечные продукты обмена. Одно из достижений генной инженерии — это перенос генов, кодирующих синтез инсулина у человека, в клетки бактерий. С тех самых пор, как выяснилось, что причиной сахарного диабета является нехватка гормона инсулина, всем больным дают инсулин, который получали из поджелудочной железы животных. Инсулин — это белок, и поэтому было много споров о том, можно ли встроить гены этого белка в клетку бактерий и можно ли выращивать такие бактерии в промышленных масштабах, чтобы использовать их как намного более дешевый и более удобный источник гормона. Даже при удачном переносе генов существует одна скрытая трудность, которая связана с возможными различиями в механизмах регуляции синтеза белка у эукариот и прокариот. В настоящее время удалось успешно перенести гены человеческого инсулина, и уже началось промышленное получение этого гормона. Другим важнейшим для человека белком является интерферон, который обычно образуется в ответ на вирусную инфекцию. Ген интерферона удалось перенести в клетки бактерий, и, заглядывая в будущее, можно, по-видимому, сказать, что бактерии будут широко применяться как «фабрики» для производства целого ряда таких продуктов эукариотических клеток, как гормоны, антибиотики, ферменты и вещества, необходимые в сельском хозяйстве. Не исключено, что полезные гены азотфиксирующих бактерий удастся включить в растения сельскохозяйственных культур. Это позволило бы вносить меньше азотных удобрений на поля и не загрязнять реки и водоемы. 2. Общая характеристика растений. НИЗШИЕ РАСТЕНИЯ — водоросли, одноклеточные и многоклеточные, живущие в водной среде и местах с высокой влажностью; у многоклеточных тело (слоевище) не разделено на органы, нет тканей; содержат хлорофилл и др. пигменты, обуславливающие их окраску. Известно приблизительно 55 000 видов. ВЫСШИЕ РАСТЕНИЯ — наземные растения, большинство имеет ткани и тело, состоящее из органов (корень, стебель и его производные). 1. Споровые — размножаются спорами. 2. Семенные — размножаются семенами. 3. На основе сравнения строения современных животных организмов приведите свидетельства в пользу эволюции. О родстве человека с животными свидетельствуют также рудименты и атавизмы. У человека свыше 90 рудиментарных органов: копчик, аппендикс, зубы мудрости и др. Среди атавизмов можно назвать сильно развитый волосяной покров на теле, дополнительные соски, хвост. Эти признаки были развиты у предков человека, но изредка встречаются и у современных людей. Атавизмы- 3-е веко, опендицит, копчик.
Билет №19 1. Наследственные болезни человека. Возможности их профилактики и лечения. Генетическое конструирование. Лечение наследственных аномалий обмена веществ. Повышенный интерес медицинской генетики к наследственным заболеваниям объясняется тем, что во многих случаях знание биохимических механизмов развития заболевания позволяет облегчить страдания больного. Больному вводят несинтезирующиеся в организме ферменты или исключают из пищевых рационов продукты, которые не могут быть использованы вследствие отсутствия в организме необходимых для этого ферментов. Заболевание сахарным диабетом характеризуется повышением концентрации сахара в крови вследствие отсутствия инсулина — гормона поджелудочной железы. Это заболевание вызывается рецессивной мутацией. Оно лечится введением в организм инсулина. Однако следует помнить, что излечивается только болезнь, т. е. фенотипическое проявление «вредного» гена, и вылеченный человек продолжает оставаться его носителем и может передавать этот ген своим потомкам. Сейчас известны более ста заболеваний, в которых механизмы биохимических нарушений изучены достаточно подробно. В некоторых случаях современные методы микроанализов позволяют обнаружить такие биохимические нарушения даже в отдельных клетках, а это, в свою очередь, позволяет ставить диагноз о наличии подобных заболеваний у еще не родившегося ребенка по отдельным его клеткам, плавающим в околоплодной жидкости беременной женщины. Резус-фактор. К числу хорошо изученных признаков человека относится система групп крови. Для примера рассмотрим систему крови «резус». Ген, ответственный за наличие в крови резус-фактора, может быть в двух состояниях: одно из них называют «резус +», а другое — «резус -». В браках резус-отрицательных женщин с резус-положительными мужчинами вследствие доминирования резус-положительности плод приобретает это свойство и выделяет в кровеносную систему матери особое вещество, так называемый антиген. Против него в организме матери начинают вырабатываться антитела, разрушающие кроветворную систему плода. В результате реакции между организмами матери и плода может развиваться отравление как материнского организма, так и плода. Это может быть причиной гибели плода. Выяснение характера наследования этой системы крови и ее биохимической природы позволило разработать медицинские методы, избавившие человечество от огромного количества ежегодных детских смертей. Нежелательность родственных браков. В современном обществе родственные браки (браки между двоюродными братьями и сестрами) сравнительно редки. Однако есть области, где в силу географических, социальных, экономических или других причин небольшие контингенты населения в течение многих поколений живут изолированно. В таких изолированных популяциях (так называемых изолятах) частота родственных браков по понятным причинам бывает значительно выше, чем в обычных «открытых» популяциях. Статистика свидетельствует, что у родителей, состоящих в родстве, вероятность рождения детей, пораженных теми или иными наследственными недугами, или частота ранней детской смертности в десятки, а иногда даже в сотни раз выше, чем в неродственных браках. Родственные браки особенно нежелательны, когда имеется вероятность гетеро-зиготности супругов по одному и тому же рецессивному вредному гену. Медико-генетическое консультирование. Знание генетики человека позволяет прогнозировать вероятность рождения детей, страдающих наследственными недугами в случаях, когда один или оба супруга больны или оба родителя здоровы, но наследственное заболевание встречалось у предков супругов. В ряде случаев имеется возможность прогноза вероятности рождения второго здорового ребенка, если первый был поражен наследственным заболеванием. По мере повышения биологической и особенно генетической образованности широких масс населения родители или молодые супружеские пары, еще не имеющие детей, чаще и чаще обращаются к врачам-генетикам с вопросом о величине риска иметь ребенка, пораженного наследственной аномалией. Медико-генетические консультации сейчас открыты во многих областных и краевых центрах России. В ближайшие годы такие консультации прочно войдут в быт людей, как уже давно вошли детские и женские консультации. Широкое использование медико-генетических консультаций сыграет немаловажную роль в снижении частоты наследственных недугов и избавит многие семьи от несчастья иметь нездоровых детей. 2. Грибы Размножение- Бесполое: спорами, почкованием(дрожжи); Вегетативное: Участками мицелий; возможен половой процесс. Питание- гетеротрофное: сапрофиты и паразиты. Запасные вещества- животный крахмал- гликоген. Тело гриба называют грибницей или мицелием. Образовано переплетением нитей- гиф. Грибы-1) Плесневые(мукор, пеницилл), 2)Дрожжи, 3) Шляпочные. а)Трубчатые(белый гриб, подберезовик) б) Пластинчатые(рыжики, сыроежки.) Строение гриба: Шляпка, пенек, плодовое тело, грибница. 3. Основные ароморфозы в эволюции наземных растений. 1.Появление проводящей системы у папоротниковообразных. 2.Появление настоящих корней. 3.Разделение тела на органы (побег и корень). 4.Появление семени. 5.Появление цветка (у покрытосеменных, голосеменных). 6.Двойное оплодотворение (у покрытосеменных).
Билет №20 1. Генетика в сельском хозяйстве. Выведение новых сортов культурных растений и пород сельскохозяйственных животных. Значение изменчивости для отбора. В основе селекционного процесса лежит искусственный отбор. Отбирая для размножения лучших животных, наиболее продуктивные формы растений или штаммы микроорганизмов, человек коренным образом изменяет генотип диких родоначальников. Учение об отборе, созданное Ч. Дарвином, а также знания об изменчивости и наследственности организмов составляют основу теории и практики селекции. Человек может отобрать те генотипы, которые дают наиболее интересные для него сочетания признаков. Отбор и его творческая роль. На первых этапах одомашнивания человек пользовался отбором бессознательно, т. е. без осознанной цели изменить животных и растения в нужном направлении. Он оставлял лишь тех животных, которые способны были существовать и размножаться в условиях неволи. Агрессивные и трусливые животные либо уничтожались, либо оказывались настолько подавлены, что не были в состоянии размножаться. Бессознательному отбору подвергались, конечно, и растения. Например, дикие примитивные формы злаков характеризуются ломкостью колоса, что служит приспособлением для распространения семян. Собирая урожай растений в определенное время, человек вел бессознательный отбор на прочность колосового стержня, что стало характерным признаком культурных злаков. На ранних этапах развития животноводства и растениеводства человек заметил, что от лучших особей, т. е. в наибольшей степени удовлетворяющих его потребностям, рождается, как правило, лучшее потомство. Благодаря бессознательному отбору возникли основные мясные и молочные породы крупного рогатого скота; скаковые лошади и тяжеловозы; охотничьи, сторожевые и декоративные породы собак; местные породы кошек; почтовые, гончие и декоративные породы голубей; мясные, яичные, бойцовые и декоративные породы кур. Такой отбор, проводимый людьми в течение многих поколений, привел к резкому изменению целого ряда признаков и свойств животных и растений, нужных и полезных для человека, и сделал их непохожими на диких предков. Более того, многие породы животных и сорта растений, происходящие от одного общего предка, настолько сильно отличаются друг от друга, что, если бы их обнаружили в природе, их можно было бы отнести к разным видам или даже родам. Таким образом, отбор создал новые формы организмов. В этом состоит его творческая роль. Оценка наследственных качеств. Признаки, которые интересуют селекционера, очень разнообразны. Фенотипическая изменчивость некоторых из них в сильной степени определяется разнообразием генотипов и сравнительно мало зависит от условий существования. Примером может служить длина шерсти у овец. Другие признаки, наоборот, мало зависят от генетической изменчивости и сильно подвержены влиянию внешней среды. К таким признакам относится молочная продуктивность крупного рогатого скота. Важнейшая задача, которая встает перед селекционерами, состоит в том, чтобы оценить наследственные качества особей и выбрать для размножения лучших не только по фенотипу, но и по генотипу. Наиболее точный из них — оценка их племенных (наследственных) качеств по потомству. В результате оценки выделяются лучшие по тем или иным качествам производители. Они интенсивно используются для получения максимального количества потомства, представляющего для сельского хозяйства большую ценность. Отбор, основанный на оценке наследственных качеств отдельных растений, используется и в растениеводстве. В этом случае оценивается потомство отдельных самоопыленных (чистых) линий растений, выделенных из какого-либо сорта, а для размножения отбираются лучшие линии. Чистая линия — это потомство одной пары родителей, гомозиготное по определенному комплексу признаков; у растений это может быть потомство одной самоопыленной особи. 2. Важнейшие достижения науки в XIX веке. Теория происхождения видов Дарвина. Учение Дарвина об искусственном отборе, учение Дарвина о естественном отборе. Определены основные закономерности явлений наследственности . Мендель – основоположник генетики. Были сделаны большие успехи в сравнительной анатомии и палеонтологии (Кювье). 3. Основные ароморфозы в эволюции позвоночных животных. Рыбы: позвоночник и череп; челюсти, снабженные зубами; парные конечности — плавники; внутреннее ухо; первичные (туловищные) почки; двухкамерное сердце на брюшной стороне тела. Земноводные: пятипалые конечности; органы воздушного дыхания — легкие; 3-камерное сердце и два круга кровообращения; среднее ухо. Пресмыкающиеся: зачатки коры переднего мозга, вторичные (тазовые) почки, дифференцировка дыхательных путей, ячеистые легкие, подвижное сочленение черепа и позвоночника, формирование грудной клетки, неполная перегородка в желудочке сердца, скорлуповые оболочки яйца и зародышевая оболочка — амнион. Птицы: 4-камерное сердце; полное разделение артериальной и венозной крови; постоянная температура тела, совершенная терморегуляция; дифференцировка дыхательных путей. Млекопитающиеся: высокоразвитая кора больших полушарий переднего мозга, внутриутробное развитие, выкармливание детенышей молоком, волосяной покров, 4-камерное сердце и полное разделение артериальной и венозной крови, теплокровность, легкие альвеолярного строения. Билет №21 1. Генотип и фенотип. Аллельные гены. Итак, мы установили, что гетерозиготные особи имеют в каждой клетке два гена — А и а, отвечающих за развитие одного и того же признака. Гены, определяющие альтернативное развитие одного и того же признака и расположенные в идентичных участках гомологичных хромосом, называют аллельными генами или аллелями. Схематически гетерозиготная особь обозначается так: -----(А)----- ------(а)----- Гомозиготные особи при подобном обозначении выглядят так: -----(А)----- -----(А)------ или ------(а)------, но их можно записать и как АА и аа. ------(а)------ Фенотип и генотип. Рассматривая результаты самоопыления гибридов F2, мы обнаружили, что растения, выросшие из желтых семян, будучи внешне сходными, или, как говорят в таких случаях, имея одинаковый фенотип, обладают различной комбинацией генов, которую принято называть генотипом. Таким образом, явление доминирования приводит к тому, что при одинаковом фенотипе особи могут обладать различными генотипами. Понятия «генотип» и «фенотип» — очень важные в генетике. Совокупность всех генов организма составляет его генотип. Совокупность всех признаков организма, начиная с внешних и кончая особенностями строения и функционирования клеток и органов, составляет фенотип. Фенотип формируется под влиянием генотипа и условий внешней среды. Анализирующее скрещивание. По фенотипу особи далеко не всегда можно определить ее генотип. У самоопыляющихся растений генотип можно определить в следующем поколении. Для перекрестно размножающихся видов используют так называемое анализирующее скрещивание. При анализирующем скрещивании особь, генотип которой следует определить, скрещивают с особями, гомозиготными по рецессивному гену, т. е. имеющими генотип аа. Рассмотрим анализирующее скрещивание на примере. Пусть особи с генотипами АА и Аа имеют одинаковый фенотип. Из этих примеров видно, что особи, гомозиготные по доминантному гену, расщепления в F1 не дают, а гетерозиготные особи при скрещивании с гомозиготной особью дают расщепление уже в F1. Неполное доминирование. Далеко не всегда гетерозиготные организмы по фенотипу точно соответствуют родителю, гомозиготному по доминантному гену. Часто гетерозиготные потомки имеют промежуточный фенотип, в таких случаях говорят о неполном доминировании. Например, при скрещивании растения ночная красавица с белыми цветками (аа) с растением, у которого красные цветки (АА), все гибриды F1 имеют розовые цветки (Аа). При скрещивании гибридов с розовой окраской цветков между собой в F2 происходит расщепление в отношении 1 (красный):2 (розовый):1 (белый). Принцип чистоты гамет. У гибридов, как мы знаем, объединяются разные аллели, привносимые в зиготу родительскими гаметами. Важно отметить, что разные аллели, оказавшиеся в одной зиготе и, следовательно, в развившемся из нее организме, не влияют друг на друга. Поэтому свойства аллелей остаются постоянными независимо от того, в какой зиготе они побывали до этого. Каждая гамета содержит всегда только один аллель какого-либо гена. Цитологическая основа принципа чистоты гамет и закона расщепления состоит в том, что гомологичные хромосомы и расположенные в них аллельные гены распределяются в мейозе по разным гаметам, а затем при оплодотворении воссоединяются в зиготе. В процессах расхождения по гаметам и объединения в зиготу аллельные гены ведут себя как независимые, цельные единицы. 2. Роль живых организмов в формировании и поддержании состава атмосферы Земли. Живые организмы, регулируют круговорот веществ, служат мощным геологическим фактором , образующим поверхность Земли. Живое вещество выполняет в биосфере следующие биологические функции: Газовую –поглощает и выделяет газы; окислительно –восстановительную – окисляет, например, углеводы до углекислого газа и восстанавливает его до углеводов; концентрационную – организмы-концентраторы накапливают в своих телах и скелетах азот, фосфор, кремний, кальций, магний. Газовая и окислительно- восстановительная функции живого вещества тесно связаны с процессами фотосинтеза и дыхания. В результате биосинтеза органических веществ автотрофными организмами было извлечено из древней атмосферы огромное количество углекислого газа. по мере увеличения биомассы зеленых растений изменялся газовый состав атмосферы – количество углекислого газа сокращалось, а кислорода – увеличивалось. Весь кислород атмосферы образован в результате процессов жизнедеятельности автотрофных организмов. Кислород используется живыми организмами для процесса дыхания, в результате чего в атмосферу поступает углекислый газ. Многие микроорганизмы непосредственно участвуют в окислении железа, что приводит к образованию осадочных железных руд, или восстанавливают сульфаты, образуя биогенные месторождения серы. 3. Основные ароморфозы в эволюции беспозвоночных животных Кишечнополостные: - дифференцировка клеток и образование тканей; - нервная система диффузного типа; - полостное пищеварение Плоские черви: - двухсторонняя симметрия тела; - системы органов пищеварения, выделительная и половая Круглые черви: - первичная полость тела - наличие заднего отдела кишечника и анального отверстия Кольчатые черви: - органы движения; - органы дыхания; - замкнутая кровеносная система - вторичная полость тела - сегментация тела Моллюски: - разделение тела на отделы - появление сердца, почки, печени Членистоногие: -наружный скелет - членистые конечности - поперечно-полосатая мускулатура Насекомые Появились крылья
Билет №22 1. Митоз. Способность к делению — важнейшее свойство клеток. Без деления невозможно представить себе увеличение числа одноклеточных существ, развитие сложного многоклеточного организма из одной оплодотворенной яйцеклетки, возобновление клеток, тканей и даже органов, утраченных в процессе жизнедеятельности организма. Деление клеток осуществляется поэтапно. На каждом этапе деления происходят определенные процессы. Они приводят к удвоению генетического материала (синтезу ДНК) и его распределению между дочерними клетками. Период жизни клетки от одного деления до следующего называется клеточным циклом. Подготовка к делению. Эукариотические организмы, состоящие из клеток, имеющих ядра, начинают подготовку к делению на определенном этапе клеточного цикла, в интерфазе. Именно в период интерфазы в клетке происходит процесс биосинтеза белка, удваиваются все важнейшие структуры клетки. Вдоль исходной хромосомы из имеющихся в клетке химических соединений синтезируется ее точная копия, удваивается молекула ДНК. Удвоенная хромосома состоит из двух половинок — хроматид. Каждая из хроматид содержит одну молекулу ДНК. Интерфаза в клетках растений и животных в среднем продолжается 10—20 ч. Затем наступает процесс деления клетки — митоз. Во время митоза клетка проходит ряд последовательных фаз, в результате которых каждая дочерняя клетка получает такой же набор хромосом, какой был в материнской клетке. Фазы митоза. Различают следующие четыре фазы митоза: профаза, метафаза, анафаза и телофаза. На рисунке 26 схематически показан ход митоза. В профазе хорошо видны центриоли — образования, находящиеся в клеточном центре и играющие роль в расхождении дочерних хромосом животных. (Напомним, что у высших растений нет центриолей в клеточном центре, который организует расхождение хромосом.) Мы же рассмотрим митоз на примере животной клетки, поскольку присутствие центриоли делает процесс расхождения хромосом более наглядным. Центриоли удваиваются и расходятся к разным полюсам клетки. От центриолей протягиваются микротрубочки, образующие нити веретена деления, которое регулирует расхождение хромосом к полюсам делящейся клетки. В конце профазы ядерная оболочка распадается, ядрышко постепенно исчезает, хромосомы спирализуются и в результате этого укорачиваются и утолщаются, и их уже можно наблюдать в световой микроскоп. Еще лучше они видны на следующей стадии митоза — метафазе. В метафазе хромосомы располагаются в экваториальной плоскости клетки. При этом хорошо видно, что каждая хромосома, состоящая из двух хроматид, имеет перетяжку — центромеру. Хромосомы своими центромерами прикрепляются к нитям веретена деления. После деления центромеры каждая хроматида становится самостоятельной дочерней хромосомой. Затем наступает следующая стадия митоза — анафаза, во время которой дочерние хромосомы (хроматиды одной хромосомы) расходятся к разным полюсам клетки. Следующая стадия деления клетки — телофаза. Она начинается после того, как дочерние хромосомы, состоящие из одной хроматиды, достигли полюсов клетки. На этой стадии хромосомы вновь деспирализуются и приобретают такой же вид, какой они имели до начала деления клетки в интерфазе (длинные тонкие нити). Вокруг них возникает ядерная оболочка, а в ядре формируется ядрышко, в котором синтезируются рибосомы. В процессе деления цитоплазмы все органоиды (митохондрии, комплекс Гольджи, рибосомы и др.) распределяются между дочерними клетками более или менее равномерно. Таким образом, в результате митоза из одной клетки получаются две, каждая из которых имеет характерное для данного вида организма число и форму хромосом, а следовательно, постоянное количество ДНК. Весь процесс митоза занимает в среднем 1—2 ч. Продолжительность его несколько различна для разных видов клеток. Зависит он также и от условий внешней среды (температуры, светового режима и других показателей). Биологическое значение митоза заключается в том, что он обеспечивает постоянство числа хромосом во всех клетках организма. В процессе митоза происходит распределение ДНК хромосом материнской клетки строго поровну между возникающими из нее двумя дочерними клетками. В результате митоза все дочерние клетки получают одну и ту же генетическую информацию. 2. Важнейшие достижения биологической науки в XX веке. Вопрос о возможных путях достижения биологического прогресса был разработан Северцовым создал теорию морфологического и биологического прогресса и регресса. Вавиловым был сформулирован закон гомологических рядов наследственной изменчивости. Развивается селекция (Мичурин), генная инженерия, клонированы животные. 3. Составит схему пищевой цепи пресноводного водоема. Растительными остатками и развивающимися на них бактериями питаются простейшие, которые поедают рачки. Рачков поедают рыбы. Рыбами питаются хищные рыбы. Рыбой птицы. Растительные остатки и бактерии à простейшие-> рачки-> рыба-> Хищные рыбы -> птицы Билет №23 1. Мейоз и оплодотворение. Их место в жизненном цикле животных и растений, роль в сохранении постоянного числа хромосом. Мейоз — способ деления клеток с образованием из одной материнской диплоидной клетки четырех дочерних гаплоидных клеток. Мейоз состоит из двух последовательных делений ядра и короткой интерфазы между ними. Первое деление состоит из профазы I, метафазы I, анафазы I и телофазы I. В профазе I парные хромосомы, каждая из которых состоит из двух хроматид, подходят друг к другу (этот процесс называется конъюгацией гомологичных хромосом), перекрещиваются (кроссинговер), образуя мостики (хиазмы), затем обмениваются участками. При кроссинговере осуществляется перекомбинация генов. После кроссинговера хромосомы разъединяются. В метафазе I парные хромосомы располагаются по экватору клетки; к каждой из хромосом прикрепляются нити веретена деления. В анафазе I к полюсам клетки расходятся хромосомы из каждой гомологичной пары; при этом число хромосом у каждого полюса становится вдвое меньше, чем в материнской клетке. Затем следует телофаза I — образуются две клетки с гаплоидным числом двухроматвдных хромосом; поэтому первое деление мейоза называют редукционным. После телофазы I следует короткая интерфаза (в некоторых случаях телофаза I и интерфаза отсутствуют). В интерфазе между двумя делениями мейоза удвоения хромосом не происходит, т.к. каждая хромосома уже состоит из двух хроматид. Второе деление мейоза отличается от митоза только тем, что его проходят клетки с гаплоидным набором хромосом; во втором делении иногда отсутствует профаза II. В метафазе II двухроматидные хромосомы располагаются по экватору; процесс идет сразу в двух дочерних клетках. В анафазе П к полюсам отходят уже однохроматидные хромосомы. В телофазе II в четырех дочерних клетках формируются ядра и перегородки (в растительных клетках) или перетяжки (в животных клетках). В результате второго деления мейоза образуются четыре клетки с гаплоидным набором хромосом (lnlc); второе деление называют уравнительным. Так образуются гаметы у животных и человека или споры у растений. "Значение мейоза состоит в том, что создается гаплоидный набор хромосом и условия для комбинативной наследственной изменчивости за счет кроссинговера и вероятностного расхождения хромосом. Отличие митоза от мейоза состоит в том, что митоз — это такое деление клетки, в результате которого получаются две клетки с исходным набором хромосом; митоз — это бесполый процесс размножения. При мейозе в результате двух последовательных митотических делений из исходной диплоидной клетки (2п) образуются четыре гаплоидные (п). При этом происходит перекомбинация наследственных признаков вследствие кроссинговера, происходящего в профазе I мейоза. 2. Общая характеристика бактерий. Бактерии не имеют ядра, отделенного мембраной от цитоплазмы. Большинство бактерий не содержит хлорофилла и питается готовыми органическими веществами – гетеротрофно Размножение простым делением (возможен элементарный половой процесс) Питание гетеротрофное: сапрофиты (используют органические вещества мертвых организмов); паразиты (используют органические вещества живых организмов); у некоторых - автотрофное: фотосинтезирующие (зеленые и пурпурные бактерии, цианобактерии); хемосинтезирующие (железобактерии, серобактерии, аммонифицирующие и нитрифицирующие бактерии) Дыхание аэробное-у живущих в кислородной среде; анаэробное - у живущих в бескислородной среде; факультативные анаэробы способны жить и в кислородной и в бескислородной среде Бактерии могут образовывать споры - приспособление к выживанию в неблагоприятных условиях. 3. Ископаемые животные свидетельство в пользу эволюции. Обнаружение ископаемых останков археоптерикса позволило сделать вывод о существовании переходной формы между пресмыкающимися и птицами. Голова напоминала голову ящерицы, на крыльях сохранились пальцы с когтями, имелся длинный хвост. Билет №24 1. Этапы развития многоклеточного животного. Эмбриональное развитие: 1.Зигота(оплодотворенная яйцеклетка)->2. Бластула(стадия 2-128 клеток(полый шар))-> 3.Гаструла(2 слоя клеток. Имеет 2 зародышевых листа- эктодерму и энтодерму)-> 4. Зародыш(образуется мезодерма, формируются органы)-> Пост эмбриональное развитие:1. Прямое (Организм сразу после рождения сходен со взрослым). 2.Непрямое (Организм после рождения проходит промежуточные стадии (личинка и т.п.)) Вероятный путь возникновения жизни 1.Синтез в первичном океане органических веществ из неорганических под действием небиологических факторов.-> 2. Возникновение коацерватных капель(самопроизвольное концентрирование веществ)-> 3. Возникновение самовоспроизводящихся молекул, способных к матричному синтезу. 2.Человеческие расы. Генетическое разнообразие человечества. Расы и нации. Основные человеческие расы. В современном человечестве выделяют три основные расы: европеоидную, монголоидную и негроидную. Это большие группы людей, отличающиеся некоторыми физическими признаками, например чертами лица, цветом кожи, глаз и волос, формой волос. Для каждой расы характерно единство происхождения и формирования на определенной территории. К европеоидной расе относится коренное население Европы, Южной Азии и Северной Африки. Европеоиды характеризуются узким лицом, сильно выступающим носом, мягкими волосами. Цвет кожи у северных европеоидов светлый, у южных — преимущественно смуглый. К монголоидной расе относится коренное население Центральной и Восточной Азии, Индонезии, Сибири. Монголоиды отличаются крупным плоским широким лицом, разрезом глаз, жесткими прямыми волосами, смуглым цветом кожи. В негроидной расе выделяют две ветви — африканскую и австралийскую. Для негроидной расы характерны темный цвет кожи, курчавые волосы, темные глаза, широкий и плоский нос. Расовые особенности наследственны, но в настоящее время они не имеют существенного значения для жизнедеятельности человека. По-видимому, в далеком прошлом расовые признаки были полезны для их обладателей: темная кожа негров и курчавые волосы, создающие вокруг головы воздушный слой, предохраняли организм от действия солнечных лучей, форма лицевого скелета монголоидов с более обширной носовой полостью, возможно, является полезной для обогрева холодного воздуха перед тем, как он попадает в легкие. По умственным способностям, т. е. способностям к познанию, творческой и вообще трудовой деятельности, все расы одинаковы. Различия в уровне культуры связаны не с биологическими особенностями людей разных рас, а с социальными условиями развития общества. Реакционная сущность расизма. Первоначально некоторые ученые путали уровень социального развития с биологическими особенностями и пытались среди современных народов найти переходные формы, связывающие человека с животными. Эти ошибки использовали расисты, которые стали говорить о якобы существующей неполноценности одних рас и народов и превосходстве других, чтобы оправдать беспощадную эксплуатацию и прямое уничтожение многих народов в результате колонизации, захват чужих земель и развязывание войн. Когда европейский и американский капитализм пытался покорить африканские и азиатские народы, высшей была объявлена белая раса. Позднее, когда гитлеровские полчища шагали по Европе, уничтожая захваченное население в лагерях смерти, высшей была объявлена так называемая арийская раса, к которой фашисты причисляли германские народы. Расизм — это реакционная идеология и политика, направленная на оправдание эксплуатации человека человеком. Несостоятельность расизма доказана настоящей наукой о расах — расоведением. Расоведение изучает расовые особенности, происхождение, формирование и историю человеческих рас. Данные, полученные расоведением, свидетельствуют о том, что различия между расами недостаточны для того, чтобы считать расы различными биологическими видами людей. Смешение рас — метисация — происходило постоянно, в результате чего на границах ареалов представителей различных рас возникали промежуточные типы, сглаживающие различия между расами. Исчезнут ли расы? Одно из важных условий формирования рас — изоляция. В Азии, Африке и Европе она в какой-то степени существует и сегодня. Между тем недавно заселенные регионы, такие, как Северная и Южная Америка, можно сравнить с котлом, в котором переплавляются все три расовые группы. Хотя общественное мнение во многих странах не поддерживает межрасовые браки, почти нет сомнений, что смешение рас неизбежно, и рано или поздно приведет к образованию гибридной популяции людей. 3. На конкретном примере показать возможные пути ограничения численности вредителей сельского хозяйства без использования ядовитых веществ. Наиболее надежный и современный путь охраны природы – применение биоматериалов. Например, в одном из опытных хозяйств Краснодарского края обнаружили, что душистый табак настолько привлекателен для колорадского жука, что ради него оставляет в покое картофель, томаты, баклажаны, перец. Он набрасывается на душистый табак, поедая его он становится своеобразным наркоманом, и личинки ослабленного вредителя погибаю без применения ядохимикатов в первые заморозки. Найден новый метод борьбы с белокрылкой. Это биотехнический метод с помощью оптических раздражителей. Установлено, что любимый цвет белокрылки – желтый. Этот цвет используется в специальный цветоловушках. Совершенно безвредны для человека, но вызывают гибель картофельных жуков некоторые штампы грибов, паразитирующие на насекомых. Штаммы грибов проникают в насекомых и начинают там быстро расти. Другие насекомые при обработке полей не страдают. Для птиц поедающих таких насекомых они тоже безвредны. Билет №25 1.Проблема происхождения жизни. Проблема происхождения жизни на Земле Гипотеза А. И. Опарина о происхождении жизни на Земле 1. Начальный этап существования Земли. Солнце возникло из пылевого облака, остатка взрыва сверхновой звезды 5 млрд, лет назад; образовались планеты, возраст Земли 4,5 млрд. лет. Начальный этап характеризовался интенсивными термоядерными процессами, высокой температурой (более 1000 градусов) и высокой химической активностью. Образовавшиеся при этом газы и водяной пар (кислород, азот, углекислый газ и др.) создали атмосферу. Температура поверхности упала за счет снижения радиоактивности (ниже 100 градусов), на Землю при конденсации паров хлынули потоки воды с растворенными в ней веществами и образовали моря и океаны. При участии молний и ультрафиолета возникли первые органические вещества. 2. Абиогенный синтез органических веществ (сахара, аминокислоты, азотистые основания, простые белки)— без участия живых организмов — при использовании энергии электрических разрядов непрекращавшихся гроз, УФ-излучений, вулканической деятельности. 3. Образование коацерватов — многомолекулярных комплексов, представляющих собой скопления органического вещества, возникающие вследствие свойства органических соединений самопроизвольно концентрироваться в виде капелек, способных захватывать из окружающей среды — питательного бульона — различные вещества и увеличиваться в размерах. Среди них шел"отбор" наиболее устойчивых в среде. 4. Появление самовоспроизводящихся молекул вследствие формирования сложных комплексов нуклеиновых кислот и белков, возникновение реакций матричного синтеза. 5. Возникновение первичных организмов; возможно, подобно вирусам они были нуклео-протеидами; под действием радиации и УФ-излучения возникали мутации, более совершенные сохранялись в процессе естественного отбора. Первичные организмы были гетеротрофами, т. к. питались первичным бульоном. По мере их размножения между ними возникла борьба за пищу, в результате которой выживали формы, имевшие наружную мембрану и белковую защиту у ДНК. 6. Появление автотрофного питания — важнейший ароморфоз. Первыми автотрофами были хемотрофные организмы. Когда исчезла сплошная облачность, появился новый ароморфоз — фотосинтез; фотосинтезирующие организмы выделяли кислород в воду и атмосферу. С накоплением кислорода в атмосфере появился новый ароморфоз — кислородный путь расщепления глюкозы (более эффективный, чем гликолиз), новые организмы вытеснили старые. 7. Появление защитного озонового слоя позволило жизни выйти на сушу. 2.Система живых организмов. Принципы построения. Система органического мира Империя(неклеточные и клеточные) Надцарство (безъядерные и ядерные) Органический мир делят на 4 царства I БАКТЕРИИ I | ГРИБЫ | | РАСТЕНИЯ ! ЖИВОТНЫЕ Элементарная единица в систематике -вид. Каждый вид называют двумя латинскими словами: первое обозначает принадлежность к роду, второе -видовой эпитет (Campanula latifolia - колокольчик широколистный). Сходные виды объединяют в роды , роды - в семейства , семейства – в порядки (у животных - в отряды ),порядки – в классы ,классы – в отделы (у животных – в типы ),отделы – в царства. Основоположником систематики был К. Линней 3. Приспособления животных к жизни в почве и их роль в почвообразовании. Крот, у него есть лапы похожие на лопаты, шерсть, которая не создает проблем в перемещении животного. Крот разрыхляет почву. Кольчатые черви-Сокращение кожно-мускульного мешка, слизь, упругие щетинки. Разрыхляет почву, улучшают плодородие почвы(калифорнийский червь). Страницы: 1, 2 |
|
© 2000 |
|