РУБРИКИ

Ответы на билеты по биологии 11 класс

   РЕКЛАМА

Главная

Зоология

Инвестиции

Информатика

Искусство и культура

Исторические личности

История

Кибернетика

Коммуникации и связь

Косметология

Криптология

Кулинария

Культурология

Логика

Логистика

Банковское дело

Безопасность жизнедеятельности

Бизнес-план

Биология

Бухучет управленчучет

Водоснабжение водоотведение

Военная кафедра

География экономическая география

Геодезия

Геология

Животные

Жилищное право

Законодательство и право

Здоровье

Земельное право

Иностранные языки лингвистика

ПОДПИСКА

Рассылка на E-mail

ПОИСК

Ответы на билеты по биологии 11 класс

Наблюдаемое в любой популяции животных или растений большое сходство всех особей — результат действия стабилизи­рующей формы естественного отбора.

Известно много примеров стабилизирующего отбора. Во вре­мя бури преимущественно гибнут птицы с длинными и корот­кими крыльями, тогда как птицы со средним размером крыль­ев чаще выживают; наибольшая гибель детенышей млекопита­ющих наблюдается в семьях, размер которых больше и меньше среднего значения, поскольку это отражается на условиях корм­ления и на способности защищаться от врагов. Стабилизирую­щая форма естественного отбора была открыта выдающимся отечественным биологам-эволюционистам академиком И.И. Шмальгаузеном.

  Говоря о естественном отборе в целом, нельзя упускать из вида его творческую роль. Накапливая полезные для популяции и вида наследственные изменения и отбрасывая вредные, естественный отбор постепенно создает новые, более совершенные и прекрасно приспособленные к среде обитания виды.

 3. Приспособление теплокровных животных к жизни в холодном климате.

Медведи- густая шерсть пропитанная жиром(не промокает в воде), подкожный слой жира.

Морж- толстая кожа(3-5 см.), толстый слой жира.

                                           

                                                




 Билет №12

 1. Хемосинтез.

ХЕМОСИНТЕЗ — тип питания бактерий, основанный на усвоении СО2 за счет окисления неорганических соедине­ний. Хемосинтез был открыт в 1888 году русским биологом С.Н.Виноградским, доказавшим способность некоторых бактерий образовывать углеводы, используя химическую энергию. Существует несколько групп хемосинтезирующих бактерий, из которых наибольшее значение имеют нитри­фицирующие, серобактерии и железобактерии. Например, нитрифицирующие бактерии получают энергию для син­теза органических веществ, окисляя аммиак до азотистой, а затем до азотной кислоты, серобактерии — окисляя сероводород до сульфатов, а железобактерии — превращая закисные соли железа в окисные. Освобожденная энергия аккумулируется в клетках хемобактерий в форме АТФ. Процесс хемосинтеза, при котором из СО2 образуется органическое вещество, протекает аналогично темновой фазе фотосинтеза. Благодаря жизнедеятельности бактерий-хемосинтетиков в природе накапливаются большие запасы селитры и болотной руды.

2. Вид и видообразие.

Видом называют совокупность особей, сходных по строе­нию, имеющих общее происхождение, свободно скрещиваю­щихся между собой и дающих плодовитое потомство. Все особи одного вида имеют одинаковый кариотип, сходное поведение и занимают определенный ареал (область рас­пространения).

Одна из важных характеристик вида — его репродуктив­ная изоляция, т. е. существование механизмов, препятст­вующих притоку генов извне. Защищенность генофонда данного вида от притока генов других, в том числе близко­родственных, видов достигается разными путями.

Сроки размножения у близких видов могут не совпадать. Если сроки одни и те же, то не совпадают места размноже­ния. Например, самки одного вида лягушек мечут икру по берегам рек, другого вида — в лужах. При этом случайное осеменение икры самцами другого вида исключается. У многих видов животных наблюдается строгий ритуал поведения при спаривании. Если у одного из потенциальных партне­ров для скрещивания ритуал поведения отклоняется от ви­дового, спаривания не происходит. Если все же спаривание произойдет, сперматозоиды самца другого вида не смогут проникнуть в яйцеклетку, и яйца не оплодотворятся. Фак­тором изоляции также служат предпочитаемые источни­ки пищи: особи кормятся в разных биотопах и вероятность скрещивания между ними уменьшается. Но иногда (при межвидовом скрещивании) оплодотворение все же происхо­дит. В этом случае образовавшиеся гибриды либо отличают­ся пониженной жизнеспособностью, либо оказываются бесплодными и не дают потомства. Известный пример — мул — гибрид лошади и осла. Будучи вполне жизнеспособ­ным, мул бесплоден из-за нарушения мейоза: негомологич­ные хромосомы не конъюгируют. Перечисленные механиз­мы, предотвращающие обмен генами между видами, имеют неодинаковую эффективность, но в комплексе в природных условиях они создают непроницаемую генетическую изоля­цию между видами. Следовательно, вид реально сущест­вующая, генетически неделимая единица органического

мира.

Каждый вид занимает более или менее обширный ареал (от лат. area — область, пространство). Иногда он сравни­тельно невелик: для видов, обитающих в Байкале, он огра­ничивается этим озером. В других случаях ареал вида охва­тывает огромные территории. Так, черная ворона почти по­всеместно распространена в Западной Европе. Восточная Европа и Западная Сибирь населены другим видом — серой вороной. Существование определенных границ распростра­нения вида не означает, что все особи свободно перемещают­ся внутри ареала. Степень подвижности особей выражается расстоянием, на которое может перемещаться животное, т. е.радиусом индивидуальной активности. У растений этот радиус определяется расстоянием, на которое распростра­няется пыльца, семена или вегетативные части, способные Дать начало новому растению.

Для виноградной улитки радиус активности составляет несколько десятков метров, для северного оленя — более ста километров, для ондатры — несколько сот метров. Вследствие ограниченности радиусов активности лесные полевки, обитающие в одном лесу, имеют немного шансов встретиться в период размножения с лесными полевками, населяющими соседний лес. Травяные лягушки, мечущие икру в одном озере, изолированы от лягушек другого озера, расположен­ного в нескольких километрах от первого. В обоих случаях изоляция неполная, поскольку отдельные полевки и лягуш­ки могут мигрировать из одного местообитания в другое.

Особи любого вида распределены внутри видового ареала неравномерно. Участки территории с относительно высокой плотностью населения чередуются с участками, где числен­ность вида низкая или особи данного вида совсем отсутствуют. Поэтому вид рассматривается как совокупность отдельных групп организмов — популяций.

Популяция это совокупность особей данного вида, занимающих определенный участок территории внутри ареала вида, свободно скрещивающихся между собой и час­тично или полностью изолированных от других популя­ций. Реально вид существует в виде популяций. Генофонд вида представлен генофондами популяций. Популяция это элементарная единица эволюции.

3. Приспособление животных организмов к жизни в засушливых местах.

Верблюд- шерсть(защищающая от солнечных лучей), долго может обходиться без пищи и воды(горб),мозолистые подушечки на стопах(не проваливается в песке, от горячего песка), может есть колючки.

Могут изменят температуру своего тела.

Тушканчик- накапливает жир.

Черепахи в жаркий период впадают в спячку.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Билет №13

 1.Работы Г. И. Менделя.

Закон единообразия гибридов первого поколения — первый закон Менделя — называют также законом домини­рования, так как все особи первого поколения имеют оди­наковое проявление признака. Сформулировать его можно следующим образом: при скрещивании двух организмов, относящихся к разным чистым линиям (двух гомози­готных организмов), отличающихся друг от друга по одной паре альтернативных признаков, все первое поко­ление гибридов (F1) окажется единообразным и будет нести признак одного из родителей.

Второй закон Менделя можно сформу­лировать следующим образом: при скрещивании двух потом­ков первого поколения между собой (двух гетерозиготных особей) во втором поколении наблюдается расщепление в определенном числовом соотношении: по фенотипу 3:1, по генотипу 1:2:1.

Третий закон Менделя: при скрещивании двух гомозиготных особей, отличающих­ся друг от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки на­следуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

2. Экологический фактор и экологический оптимум.

Экологические факторы. Природа, в которой обитает живой организм, является средой его обитания. Окружающие условия многообразны и изменчивы. Не все факторы среды с одинако­вой силой воздействуют на живые организмы. Одни могут быть необходимы для организмов, другие, наоборот, вредны; есть та­кие, которые вообще безразличны для них. Факторы, среды, ко­торые воздействуют на организм, называют экологическими факторами.

По происхождению и характеру действия все экологические факторы разделяют на абиотические, т. е. факторы неоргани­ческой (неживой) среды, и биотические, связанные с влиянием живых существ. Эти факторы подразделяют на ряд частных фак­торов.

Экологические факторы

Абиотические-Свет, температура, влага, ветер, воздух, давление, течения, долгота дня и т. д. Механический состав почвы,  ее водопроницаемость и влагоемкость Содержание в почве или воде эле­ментов питания, газовый состав, со­леность воды, естественный фон ра­диоактивности.

Биотические- Влияние растений на других членов биоценоза

Влияние животных на других чле­нов биоценоза Антропогенные факторы, возникаю­щие в результате деятельности чело­века, например выбросы тяжелых ме­таллов, радионуклидов.

Биологический оптимум. Часто в природе бывает так, что одни экологические факторы находятся в изобилии (например, вода и свет), а другие (например, азот) — в недостаточных количествах. Факторы, снижающие жизнеспособность организ­ма, называют ограничивающими. Например, ручьевая форель живет в воде с содержанием кислорода не менее 2 мг/л. При содержании в воде кислорода менее 1,6 мг/л форель гибнет. Кислород — ограничивающий фактор для форели.

Ограничивающим фактором может быть не только его недо­статок, но и избыток. Тепло, например, необходимо всем расте­ниям. Однако если продолжительное время летом стоит высо­кая температура, то растения даже при увлажненной почве мо­гут пострадать из-за ожогов листьев.

Следовательно, для каждого организма существует наиболее подходящее сочетание абиотических и биотических факторов, оптимальное для его роста, развития и размножения. Наилуч­шее сочетание условий называют биологическим оптимумом.

Выявление биологического оптимума, знание закономернос­тей взаимодействия экологических факторов имеют большое практическое значение. Умело поддерживая оптимальные усло­вия жизнедеятельности сельскохозяйственных растений и жи­вотных, можно повышать их продуктивность.


3. Приспособление животных к хищничеству.

Тигр- зубы подразделяются на резцы, клыки и коренные. Резцы мелкие, а клыки крупные. Среди коренных зубов выделяются 4 коренных зуба, кот. в отличие от др. коренных зубов наз. хищными. Клыками хищники убивают добычу, а коренными зубами перегрызают мышцы и сухожилия. Кишечник короткий, что связано с питанием легко перевариваемой высококалорийной животной пищей. Ключицы отсутствуют. Мозг этих животных отличается сильным развитием извилин и борозд. Питается животной пищей. Имеет острые когти. Подушечки на лапах, благодаря которым могут бесшумно подкрадываться.

Орел- мощный клюв, хорошее зрение, острые и цепкие когти, питается животной пищей.



                                                   























Билет №14

 1. Хромосомная теория наследственности.

Мендель проследил наследование только семи пар при­знаков у душистого горошка. В дальнейшем многие исследо­ватели, изучая наследование разных пар признаков у самых разных видов организмов, подтвердили законы Менделя. Было признано, что эти законы носят всеобщий характер. Однако позже было замечено, что у душистого горошка два признака — форма пыльцы и окраска цветков не дают неза­висимого распределения в потомстве: потомки остались по­хожими на родителей. Постепенно таких исключений из третьего закона Менделя накапливалось все больше. Стало ясно, что принцип независимого распределения в потомстве и свободного комбинирования распространяется не на все гены. В самом деле, у любого организма признаков очень много, а число хромосом невелико. Следовательно, в каж­дой хромосоме должно находиться много генов. Каковы же закономерности наследования генов, локализованных в одной хромосоме? Этот вопрос был изучен выдающимся американ­ским генетиком Т. Морганом.

Предположим, что два гена — А и В находятся в одной хромосоме, и организм, взятый для скрещивания, гетерози­готен по этим генам.

В анафазе первого мейотического деления гомологичные хромосомы расходятся в разные клетки и образуются два сорта гамет вместо четырех, как должно было бы быть при дигибридном скрещивании в соответствии с третьим зако­ном Менделя. При скрещивании с гомозиготным организ­мом, рецессивным по обоим генам — аа и bb, получается рас­щепление 1:1 вместо ожидаемого при дигибридном анали­зирующем скрещивании 1:1:1:1.

Такое отклонение от независимого распределения озна­чает, что гены, локализованные в одной хромосоме, наследу­ются совместно.

Рассмотрим конкретный пример. Если скрестить муш­ку дрозофилу, имеющую серое тело и нормальные крылья, с мушкой, обладающей темной окраской тела и зачаточны­ми крыльями, то в первом поколении гибридов все мухи будут серыми с нормальными крыльями. Это гетерозиготы по двум парам аллельных генов, причем ген, определяющий серую окраску брюшка, доминирует над темной окраской, а ген, обусловливающий развитие нормальных крыльев, — над геном недоразвитых крыльев.

При анализирующем скрещивании гибрида Ft с гомози­готной рецессивной дрозофилой (темное тело, зачаточные крылья) подавляющее большинство потомков F2 будет сходно с родительскими формами.


2. Сходство и различие между человеком и другими животными.

Рвзличия

а) Обусловленные прямохождением: - S - образный позвоночник; - широкий таз и грудная клетка; - сводчатая стопа; - мощные кости нижних конечностей; б) Обусловленные трудовой деятельностью: - противопоставление большего пальца на руке остальным; в) Обусловленные развитым мышлением: - преобладание мозговой части черепа над лицевой; - развитый головной мозг.

Сходство прослеживается в строении человека и других позвоночных животных. Человек относится к млекопитающим, так как имеет диафрагму, молочные железы, дифференцированные зубы (резцы, клыки и коренные), ушные раковины, зародыш его развивается внутриутробно. У человека есть такие же органы и системы органов, как и у других млекопитающих: кровеносная, дыхательная, выделительная, пищеварительная и др.

О родстве человека с животными свидетельствуют также рудименты и атавизмы. У человека свыше 90 рудиментарных органов: копчик, аппендикс, зубы мудрости и др. Среди атавизмов можно назвать сильно развитый волосяной покров на теле, дополнительные соски, хвост. Эти признаки были развиты у предков человека, но изредка встречаются и у современных людей.

Сходство прослеживается и в развитии зародышей человека и животных. Развитие человека начинается с одной оплодотворенной яйцеклетки. За счет ее деления образуются новые клетки, формируются ткани и органы зародыша. На стадии 1,5-3 месяцев внутриутробного развития у человеческого плода развит хвостовой отдел позвоночника, закладываются жаберные щели. Мозг месячного зародыша напоминает мозг рыбы, а семимесячного - мозг обезьяны. На пятом месяце внутриутробного развития зародыш имеет волосяной покров, который впоследствии исчезает. Таким образом, по многим признакам зародыш человека имеет сходство с зародышами других позвоночных.

Поведение человека и высших животных очень сходно. Особенно велико сходство человека и человекообразных обезьян. Им свойственны одинаковые условные и безусловные рефлексы. У обезьян, как и у человека, можно наблюдать гнев, радость, развитую мимику, заботу о потомстве. У шимпанзе, например, как и у человека, различают 4 группы крови. Люди и обезьяны болеют болезнями, не поражающими других млекопитающих, например холерой, гриппом, оспой, туберкулезом. Шимпанзе ходят на задних конечностях, у них нет хвоста. Генетический материал человека и шимпанзе идентичен на 99%.

3. Составить схему пищевой цепи в лесу

Пищевую цепь, например, составляют растительноядные мышевидные грызуны и зайцы, а также копытные за счет которых существуют хищники: ласка, горностай, куница, волк. Все виды позвоночных служат средой обитания и источником питания для различных наружных паразитов.


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Билет №15

 1. Сцепление и кроссинговер. Кроссинговер как источник изменчивости.

Группы сцепления. Число генов у каждого организма, как мы уже отмечали, гораздо больше числа хромосом. Следователь­но, в одной хромосоме расположено много генов. Как насле­дуются гены, расположенные в одной паре гомологичных хро­мосом?

Большую работу по изучению наследования неаллельных ге­нов, расположенных в паре гомологичных хромосом, выполни­ли американский ученый Т. Морган и его ученики. Ученые ус­тановили, что гены, расположенные в одной хромосоме, насле­дуются совместно, или сцепленно. Группы генов, расположен­ные в одной хромосоме, называют группами сцепления. Сцеп­ленные гены расположены в хромосоме в линейном порядке. Число групп сцепления у генетически хорошо изученных объ­ектов равно числу пар хромосом, т. е. гаплоидному числу хро­мосом. У человека 23 пары хромосом и 23 группы сцепления, у гороха 7 пар хромосом и 7 групп сцепления и т. д.

Сцепленное наследование и явление перекреста. Рассмотрим, какие типы гамет будет производить особь, два гена которой находятся в одной хромосоме:------(А)-----(В)------

                    ------(а)------(b)------                                 

Особь с таким генотипом производит два типа гамет: -----(а)----(b)----- и            -----(А)-----(B)----- в равных количе­ствах, которые повторяют комбинацию генов в хромосоме роди­теля.  Было установлено,  однако,  что,  кроме  таких  обычных гамет, возникают и другие, новые

-----(А)-----(b)----- и -----(а)----(B)-----, с но­выми комбинациями генов, отличающимися от родительских хромосом. Было доказано, что причина возникновения но­вых гамет заключается в перекресте гомологичных хромосом.

Гомологичные хромосомы в процессе мейоза перекрещивают­ся и обмениваются участками. В результате этого возникают ка­чественно новые хромосомы. Частота перекреста между двумя сцепленными генами в одних случаях может быть большой, в других — менее значительной. Это зависит от расстояния меж­ду генами в хромосоме. Частота (процент) перекреста между дву­мя неаллельными генами, расположенными в одной хромосоме, пропорциональна расстоянию между ними. Чем ближе располо­жены гены в хромосоме, тем теснее сцепление между ними и тем реже они разделяются при перекресте. И наоборот, чем даль­ше гены отстоят друг от друга, тем слабее сцепление между ни­ми и тем чаще осуществляется перекрест. Следовательно, о рас­стоянии между генами в хромосоме можно судить по частоте перекреста.

Итак, сцепление генов, локализованных в одной хромосоме, не бывает абсолютным. Перекрест, происходящий между гомо­логичными хромосомами, постоянно осуществляет «перетасов­ку» — рекомбинацию генов. Т. Морган и его сотрудники пока­зали, что, изучив явление сцепления и перекреста, можно по­строить карты хромосом с нанесенным на них порядком распо­ложения генов. Карты, построенные по этому принципу, созда­ны для многих генетически хорошо изученных объектов: куку­рузы, мыши, дрожжей, гороха, пшеницы, томата, пло­довой мушки дрозофилы.

Как геологу или моряку совершенно необходима географи­ческая карта, так и генетику крайне необходима генетическая карта того объекта, с которым он работает. В настоящее время создано несколько эффективных методов построения генетичес­ких карт. В результате возникла возможность сравнивать стро­ение генома, т. е. совокупности всех генов гаплоидного набора хромосом, у различных видов, что имеет важное значение для генетики, селекции, а также эволюционных исследований.

2. Симбиотические отношения.

Лишайник всеми воспринимается как единый орга­низм. На самом же деле он состоит из гриба и водоросли. Основу его составляют переплетающиеся гифы (нити) гриба. В рыхлом слое под поверхностью среди гиф гнездят­ся водоросли. Чаще всего это одноклеточные зеленые водоросли. Совместное существование выгодно и грибу, и водорослям. Гриб дает водорослям воду с растворенными минеральными солями, а получает от водоросли органи­ческие соединения, вырабатываемые ею в процессе фото­синтеза, главным образом углеводы. Симбиоз так хорошо помогает лишайникам в борьбе за существование, что они способны поселятся на песочных почвах, на бесплодных скалах, там, где другие растения существовать не могут.

3. Основные биологические события палеозоя.

Палеозой

Кембрийский, ордовикский периоды- Процветание морских позвоночных, Широкое распространение трилоби­тов, водорослей.

Силурийский- Развитие кораллов, трилобитов; по явление бесчелюстных позвоночных. Выход растений на сушу.

Девонский- Появление кистеперых рыб, появле­ние стегоцефалов. Распространение на суше высших споровых растений.

Каменноугольный- Расцвет земноводных, возникновение пресмыкающихся, появление члени­стоногих; уменьшение числа трибо-литов. Расцвет папоротникообразны появление семенных папоротников.

Пермский- Развитие пресмыкающихся. Распро­странение голосеменных. Вымирание трилобитов.


                                                 

















Билет №16

1. Мутации и наследственная изменчивость.

Мутации имеют ряд свойств.

1)  возникают внезапно, и мутировать может любая часть ге­нотипа;

2)  чаще бывают рецессивными и реже — доминантными;

3)  могут быть вредными (большинство мутаций), нейтраль­ными и полезными (очень редко) для организма;

4)  передаются из поколения в поколение;

5)  представляют собой стойкие изменения наследственного

материала;

6)  это качественные изменения, которые, как правило, не об­разуют непрерывного ряда вокруг средней величины при- g знака;

7)  могут повторяться.

Мутации могут происходить под влиянием как внешних, так и внутренних воздействий. Различают мутации генеративные — они возникают в гаметах, и соматические — они воз­никают в соматических клетках и затрагивают лишь часть те­ла; такие мутации будут передаваться следующим поколениям только при вегетативном размножении.

По характеру изменений в генотипе мутации подразделя­ются на несколько видов. Точечные, или генные мутации представляют собой изменения в отдельных генах. Это может произойти при замене, выпадении или вставке одного или не­скольких нуклеотидов в молекуле ДНК.

Хромосомные мутации представляют собой изменения частей хромосом или целых хромосом. Такие мутации могут происходить в результате делеции — утраты части хромосо­мы, дупликации — удвоения какого-либо участка хромосомы, инверсии — поворота участка хромосомы на 180°, транслока­ции — отрыва части хромосомы и перемещения ее в новое положение, например, присоединения к другой, негомологич­ной, хромосоме. Структурные хромосомные мутации, как пра­вило, вредны для организма.

Геномные мутации заключаются в изменении числа хро­мосом в гаплоидном наборе. Это может происходить за счет уменьшения или увеличения числа хромосом в гаплоидном наборе. Частный случай геномных, мутаций — полиплоидия — увеличение числа хромосом в генотипе, кратное п. Это яв­ление возникает при нарушении веретена деления при мейозе или митозе. Полиплоиды отличаются мощным ростом, боль­шими размерами. Большинство культурных растений полиплоиды. Тетероплоидия связана с недостатком или избытком хромосом в одной гомологичной паре. Эти мутации вредны для организма; примером может служить болезнь Дауна, при которой в 21-й паре появляется лишняя хромосома.

Комбинативная изменчивость — также относится к на­следственным формам изменчивости. Она обусловлена пере­группировкой генов в процессе слияния гамет и образования зиготы, то есть при половом процессе. Сходство между комбинативной и мутационной изменчивостью заключается в том, что в обоих случаях потомство получает набор генов каждого из родителей. Однако между этими видами изменчивости есть принципиальные отличия.

При комбинативной изменчивости в результате слияния родительских гамет возникают новые комбинации генов, од­нако сами гены и хромосомы остаются неизменными.

При мутационной изменчивости обязательно происходит изменения в самом генотипе: меняются отдельные гены, из­меняется строение хромосом и их число.

Академик Н.И. Вавилов в течение многих лет исследовал закономерности наследственной изменчивости у дикорасту­щих  и  культурных растений  различных  систематических групп. Эти исследования позволили сформулировать закон гомологических рядов наследственной изменчивости, или закон Вавилова. Формулировка этого закона следующая: генетиче­ски близкие роды и виды характеризуются сходными рядами наследственной изменчивости. Таким образом, зная, какие му­тационные изменения возникают у особей какого-либо вида, можно предвидеть, что такие же мутации в сходных условиях будут возникать у родственных видов и родов.

Н.И. Вавилов проследил изменчивость множества призна­ков у злаков. Из 38 различных признаков, характерных для всех растений этого семейства, у ржи было обнаружено 37 признаков, у пшеницы — 37, у овса и ячменя — по 35, у куку­рузы — 32. Знание этого закона позволяет селекционерам за­ранее предвидеть, какие признаки изменятся у того или иного вида в результате воздействия на него мутагенных факторов.

2. Вымершие предки человека.

Австралопитек Рост 120—140 см; объем черепа 500—600 см3

Стадный образ жизни. Жили среди скал в от­крытых местах, употребляли мяс­ную пищу.

Камни, палки, кости животных.

Человек умелыйРост 135—150 см; объем черепа 650—680 см.

Стадный образ жизни, совместная охота; мяс­ная пища, ходи­ли на двух но­гах.

Орудия труда из природных объ­ектов.

Древнейший че­ловек — питекан­троп Рост 150 см; объем мозга 900—1000 см3, лоб низкий, с надбровным ва­ликом; челюсти без подбородоч­ного выступа.

Общественный образ жизни; жили в пещерах, пользовались ог­нем.

Примитивные ка­менные орудия труда, палки.

СинантропРост 150—160 см; объем мозга 850-1220 см3, лоб низкий, с надбровным ва­ликом, нет под­бородочного выс­тупа.

Жили стадами, строили прими­тивные жилища, пользовались ог­нем, одевались в шкуры.

Орудия из камня и костей.

Древний чело­век — неандерта­лец Рост 155—165 см; объем мозга 1400 см'; извилин ма­ло; лоб низкий, с надбровным ва­ликом; подборо­дочный выступ развит слабо.

Общественный образ жизни, строительство очагов и жилищ, использование огня для приго­товления пищи, одевались в шку­ры. Использова­ли жесты и при­митивную речь для общения. Появилось разде­ление труда. Первые захороне­ния.

Орудия труда из дерева и камня, (нож, скребок, многогранные ос­трия и др.).

Первый совре­менный чело­век — кроманьо­нец Рост до 180 см; объем мозга 1600 см8, лоб высокий; извили­ны развиты; нижняя челюсть с подбородочным выступом.

Родовая община. Строительство поселений. Появ­ление обрядов. Возникновение искусства, гон­чарного дела, земледелия. Раз­витая речь. При­ручение живот­ных, окультуривание растений.

Разнообразные орудия труда из кости, камня, дерева

3. Основные биологические события мезозоя.

Мезозой

Триасовый- Расцвет пресмыкающихся, появле­ние костистых рыб, первых млеко­питающих.

Юрский- Появление археоптерикса, процвета­ние головоногих моллюсков, господ­ство пресмыкающихся. Господство голосеменных.

Меловой- Вымирание динозавров, появление птиц и высших млекопитающих. Появление и распространение покрытосеменных.


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Билет №17

 1. Модификационная изменчивость. Проблема наследования благоприобретенных признаков.

Разнообразие фенотипов, возникающих у организмов одинакового генотипа под влияни­ем условий среды, называют модификационной изменчивостью. Спектр модификационной изменчивости определяется нормой реакции. Примером модификационной изменчивости может слу­жить изменчивость генетически сходных (идентичных) особей.

Количество и набор микроэлементов в почве мо­гут сильно менять (модифицировать) активность ферментов и, следовательно, сказываться на росте и развитии растений. Од­нако эти модификации не наследуются, потому что гены, отве­чающие за развитие растений, не меняются в ответ на измене­ния температуры, влажности, характера питания. Вывод, что признаки, приобретенные в течение жизни организмов, не на­следуются, сделал крупный немецкий биолог А. Вейсман.

Иногда модификационная изменчивость называется ненаслед­ственной. Это верно в том смысле, что модификации не насле­дуются. Следует помнить, однако, что сама способность живых организмов к адаптивным модификациям — приспособительным изменениям —генетически обусловлена, выработана в резуль­тате естественного отбора.

Типы наследственной изменчивости. Наследственная измен­чивость — основа разнообразия живых организмов и главное условие их способности к эволюционному развитию. Механиз­мы наследственной изменчивости разнообразны. Основной вклад в наследственную изменчивость вносит генотипическая измен­чивость; существует также и цитоплазматическая изменчи­вость. Генотипическая изменчивость в свою очередь слагается из мутационной  и комбинативной изменчивости. Ком­бинативная изменчивость — важнейший источник того беско­нечно большого наследственного разнообразия, которое наблю­дается у живых организмов.

В основе комбинативной изменчивости лежит половое раз­множение организмов, вследствие которого возникает огромное разнообразие генотипов. Генотип потомков, как известно, пред­ставляет собой сочетание генов, которые были свойственны ро­дителям. Число генов у каждого организма исчисляется тыся­чами. При половом размножении комбинации генов приводят к формированию нового уникального генотипа и фенотипа.

Независимое расхождение гомологичных хромосом в первом мейотическом делении — первая и важнейшая основа комбина­тивной изменчивости. Именно независимое расхождение хромо­сом, как вы помните, является основой третьего за­кона Менделя. Появление зеленых гладких и желтых морщи­нистых семян во втором поколении от скрещивания растений с желтыми гладкими и зелеными морщинистыми семенами — пример комбинативной изменчивости Рекомбинация генов, основанная на явлении перекреста хро­мосом, — второй, тоже очень важный источник комбинативной изменчивости. Рекомбинантные хромосомы, попав в зиготу, вы­зывают появление комбинаций признаков, нетипичных для ро­дителей.

Третий важный источник комбинативной изменчивости — случайная встреча гамет при оплодотворении. В моногибрид­ном скрещивании возможны три генотипа: АА, Аа и аа. Каким именно генотипом будет обладать данная зигота, зависит от слу­чайной комбинации гамет.

Все три основных источника комбинативной изменчивости действуют независимо и одновременно, создавая огромное раз­нообразие генотипов. Однако новые комбинации генов не толь­ко легко возникают, но также и легко разрушаются при пере­даче из поколения в поколение. Именно поэтому часто в потом­стве выдающихся по качествам живых организмов появляются особи, уступающие родителям.

К модификационной (групповой, определенной) изменчивости относят сходные изменения всех особей потомства популяции какого-либо вида в сходных условиях существования.

Модификационная изменчивость не затрагивает гены организма и не передается из поколения в поколение. Модификации наблюдаются только на протяжении жизни организма, находящегося в определенных условиях.

Границы модификационной изменчивости, контролируемые генотипом организма, называют нормой реакции. Одни признаки (например, молоч­ность скота) — обладают широкой нормой реакции, другие (например, цвет шерсти) — узкой нормой реакции. Таким образом, можно сказать, что на­следуется не сам признак, а способность организма (определяемая его ге­нотипом) продемонстрировать признак в большей или меньшей степени в зависимости от условий существования.

Модификационная изменчивость характеризуется следующими основ­ными свойствами.

1. Ненаследуемостью.

2. Групповым характером изменений.

3.  Четкой зависимостью направленности изменений от определенного воздействия внешней среды.

4.  Нормой реакции (границы этого вида изменчивости определены ге­нотипом организма).

2. Межвидовая конкуренция и ее роль в изменении биоценозов.

Под межвидовой борьбой следует пони­мать взаимоотношения особей разных видов. Они могут быть как конкурентными, так и основанными на взаимной выгоде. Особой остроты межвидовая конкуренция достигает в тех слу­чаях, когда противоборствуют виды, которые живут в сходных экологических условиях и используют одинаковые источники питания. В результате межвидовой борьбы происходит либо вы­теснение одного из противоборствующих видов, либо приспособ­ление видов к разным условиям в пределах единого ареала или, наконец, их территориальное разобщение.

Иллюстрацией последствий борьбы близких видов могут слу­жить два вида скальных поползней. В тех местах, где ареалы этих видов перекрываются, т. е. на одной территории живут птицы обоих видов, длина клюва и способ добывания пищи у них существенно отличаются. В неперекрывающихся областях обитания поползней отличий в длине клюва и способе добыва­ния пищи не обнаруживается. Межвидовая борьба, таким об­разом, ведет к экологическому и географическому разобщению видов.

В качестве примеров межвидовой борьбы можно назвать взаимоотношения хищника и жертвы, хозяина и паразита, а также взаимовыгодное сожительство особей разных видов.

3. Основные биологические события кайнозоя.

Кайнозой

Палеоген- Распространение млекопитающих; появление парапитеков и дриопите­ков; расцвет насекомых. Господство покрытосеменных.

Неоген- Господство млекопитающих, птиц.

Антропоген- Эволюция человека.


                       



Билет №18

1.Генная инженерия.

ГЕННАЯ ИНЖЕНЕРИЯ - раздел молекулярной гене­тики, связанный с целенаправленным созданием новых комбинаций генетического материала, способного размно­жаться в клетке хозяина и синтезировать конечные продук­ты обмена.

Одно из достижений генной инженерии — это перенос генов, кодирующих синтез инсулина у человека, в клетки бактерий. С тех самых пор, как выяснилось, что причиной сахарного диабета является нехватка гормона инсулина, всем больным дают инсулин, который получали из подже­лудочной железы животных. Инсулин — это белок, и поэ­тому было много споров о том, можно ли встроить гены этого белка в клетку бактерий и можно ли выращивать такие бактерии в промышленных масштабах, чтобы ис­пользовать их как намного более дешевый и более удобный источник гормона. Даже при удачном переносе генов су­ществует одна скрытая трудность, которая связана с воз­можными различиями в механизмах регуляции синтеза белка у эукариот и прокариот. В настоящее время удалось успешно перенести гены человеческого инсулина, и уже началось промышленное получение этого гормона.

Другим важнейшим для человека белком является ин­терферон, который обычно образуется в ответ на вирусную инфекцию. Ген интерферона удалось перенести в клетки бактерий, и, заглядывая в будущее, можно, по-видимому, сказать, что бактерии будут широко применяться как «фаб­рики» для производства целого ряда таких продуктов эукариотических клеток, как гормоны, антибиотики, ферменты и вещества, необходимые в сельском хозяйстве. Не исклю­чено, что полезные гены азотфиксирующих бактерий удастся включить в растения сельскохозяйственных куль­тур. Это позволило бы вносить меньше азотных удобрений на поля и не загрязнять реки и водоемы.

2. Общая характеристика растений.

НИЗШИЕ РАСТЕНИЯ — водоросли, однокле­точные и многоклеточные, живущие в водной среде и местах с высокой влажностью; у много­клеточных тело (слоевище) не разделено на ор­ганы, нет тканей; содержат хлорофилл и др.

пигменты, обуславливающие их окраску. Из­вестно приблизительно 55 000 видов.

ВЫСШИЕ РАСТЕНИЯ — наземные растения, большинство имеет ткани и тело, состоящее из органов (корень, стебель и его производные).

1. Споровые — размножаются спорами. 2. Се­менные — размножаются семенами.

3. На основе сравнения строения современных животных организмов приведите свидетельства в пользу эволюции.

О родстве человека с животными свидетельствуют также рудименты и атавизмы. У человека свыше 90 рудиментарных органов: копчик, аппендикс, зубы мудрости и др. Среди атавизмов можно назвать сильно развитый волосяной покров на теле, дополнительные соски, хвост. Эти признаки были развиты у предков человека, но изредка встречаются и у современных людей. Атавизмы-  3-е веко, опендицит, копчик.



                                  

 

Билет №19

 1. Наследственные болезни человека. Возможности их профилактики и лечения. Генетическое конструирование.

Лечение наследственных аномалий обмена веществ. Повы­шенный интерес медицинской генетики к наследственным забо­леваниям объясняется тем, что во многих случаях знание био­химических механизмов развития заболевания позволяет облег­чить страдания больного. Больному вводят несинтезирующиеся в организме ферменты или исключают из пищевых рационов продукты, которые не могут быть использованы вследствие от­сутствия в организме необходимых для этого ферментов. Забо­левание сахарным диабетом характеризуется повышением кон­центрации сахара в крови вследствие отсутствия инсулина — гормона поджелудочной железы. Это заболевание вызывается рецессивной мутацией. Оно лечится введением в организм ин­сулина.

Однако следует помнить, что излечивается только болезнь, т. е. фенотипическое проявление «вредного» гена, и вылечен­ный человек продолжает оставаться его носителем и может передавать этот ген своим потомкам. Сейчас известны более ста заболеваний, в которых механизмы биохимических наруше­ний изучены достаточно подробно. В некоторых случаях совре­менные методы микроанализов позволяют обнаружить такие биохимические нарушения даже в отдельных клетках, а это, в свою очередь, позволяет ставить диагноз о наличии подобных заболеваний у еще не родившегося ребенка по отдельным его клеткам, плавающим в околоплодной жидкости беременной женщины.

Резус-фактор. К числу хорошо изученных признаков челове­ка относится система групп крови. Для примера рассмотрим си­стему крови «резус». Ген, ответственный за наличие в крови ре­зус-фактора, может быть в двух состояниях: одно из них назы­вают «резус +», а другое — «резус -». В браках резус-отрица­тельных женщин с резус-положительными мужчинами вследст­вие доминирования резус-положительности плод приобретает это свойство и выделяет в кровеносную систему матери особое ве­щество, так называемый антиген. Против него в организме ма­тери начинают вырабатываться антитела, разрушающие крове­творную систему плода. В результате реакции между организ­мами матери и плода может развиваться отравление как мате­ринского организма, так и плода. Это может быть причиной ги­бели плода.

Выяснение характера наследования этой системы крови и ее биохимической природы позволило разработать медицинские ме­тоды, избавившие человечество от огромного количества еже­годных детских смертей.

Нежелательность родственных браков. В современном обще­стве родственные браки (браки между двоюродными братьями и сестрами) сравнительно редки. Однако есть области, где в си­лу географических, социальных, экономических или других при­чин небольшие контингенты населения в течение многих поко­лений живут изолированно. В таких изолированных популяци­ях (так называемых изолятах) частота родственных браков по понятным причинам бывает значительно выше, чем в обычных «открытых» популяциях. Статистика свидетельствует, что у родителей, состоящих в родстве, вероятность рождения детей, пораженных теми или иными наследственными недугами, или частота ранней детской смертности в десятки, а иногда даже в сотни раз выше, чем в неродственных браках. Родственные бра­ки особенно нежелательны, когда имеется вероятность гетеро-зиготности супругов по одному и тому же рецессивному вред­ному гену.

Медико-генетическое консультирование. Знание генетики че­ловека позволяет прогнозировать вероятность рождения детей, страдающих наследственными недугами в случаях, когда один или оба супруга больны или оба родителя здоровы, но наслед­ственное заболевание встречалось у предков супругов. В ряде случаев имеется возможность прогноза вероятности рождения второго здорового ребенка, если первый был поражен наследст­венным заболеванием.

По мере повышения биологической и особенно генетической образованности широких масс населения родители или молодые супружеские пары, еще не имеющие детей, чаще и чаще обра­щаются к врачам-генетикам с вопросом о величине риска иметь ребенка, пораженного наследственной аномалией. Медико-гене­тические консультации сейчас открыты во многих областных и краевых центрах России.

В ближайшие годы такие консультации прочно войдут в быт людей, как уже давно вошли детские и женские консультации. Широкое использование медико-генетических консультаций сы­грает немаловажную роль в снижении частоты наследственных недугов и избавит многие семьи от несчастья иметь нездоровых детей.

2. Грибы

Размножение- Бесполое: спорами, почкованием(дрожжи); Вегетативное: Участками мицелий; возможен половой процесс.

Питание- гетеротрофное: сапрофиты и паразиты.

Запасные вещества- животный крахмал- гликоген.

Тело гриба называют грибницей или мицелием. Образовано переплетением нитей- гиф.

Грибы-1) Плесневые(мукор, пеницилл), 2)Дрожжи, 3) Шляпочные. а)Трубчатые(белый гриб, подберезовик) б) Пластинчатые(рыжики, сыроежки.)

Строение гриба: Шляпка, пенек, плодовое тело, грибница.

3. Основные ароморфозы в эволюции наземных растений.

1.Появление проводящей системы у папоротниковообразных.

2.Появление настоящих корней.

3.Разделение тела на органы (побег и корень).

4.Появление семени.

5.Появление цветка (у покрытосеменных, голосеменных).

6.Двойное оплодотворение (у покрытосеменных).

                                                     


Билет №20

1. Генетика в сельском хозяйстве. Выведение новых сортов культурных растений и пород сельскохозяйственных животных.

Значение изменчивости для отбора. В основе селекционного процесса лежит искусственный отбор. Отбирая для размноже­ния лучших животных, наиболее продуктивные формы расте­ний или штаммы микроорганизмов, человек коренным образом изменяет генотип диких родоначальников. Учение об отборе, со­зданное Ч. Дарвином, а также знания об изменчивости и на­следственности организмов составляют основу теории и практи­ки селекции.

Человек может отобрать те генотипы, которые дают наиболее интересные для него сочетания признаков.

Отбор и его творческая роль. На первых этапах одомашни­вания человек пользовался отбором бессознательно, т. е. без осознанной цели изменить животных и растения в нужном на­правлении. Он оставлял лишь тех животных, которые способ­ны были существовать и размножаться в условиях неволи. Агрессивные и трусливые животные либо уничтожались, либо оказывались настолько подавлены, что не были в состоянии размножаться.

Бессознательному отбору подвергались, конечно, и растения. Например, дикие примитивные формы злаков характеризуются ломкостью колоса, что служит приспособлением для распрост­ранения семян. Собирая урожай растений в определенное вре­мя, человек вел бессознательный отбор на прочность колосово­го стержня, что стало характерным признаком культурных злаков.

На ранних этапах развития животноводства и растениевод­ства человек заметил, что от лучших особей, т. е. в наибольшей степени удовлетворяющих его потребностям, рождается, как правило, лучшее потомство.

Бла­годаря бессознательному отбору возникли основные мясные и молочные породы крупного рогатого скота; скаковые лошади и тяжеловозы; охотничьи, сторожевые и декоративные породы собак; местные породы кошек; почтовые, гончие и декоративные породы голубей; мясные, яичные, бойцовые и декоративные по­роды кур. Такой отбор, проводимый людьми в течение многих поколений, привел к резкому изменению целого ряда призна­ков и свойств животных и растений, нужных и полезных для человека, и сделал их непохожими на диких предков. Более то­го, многие породы животных и сорта растений, происходящие от одного общего предка, настолько сильно отличаются друг от друга, что, если бы их обнаружили в природе, их можно было бы отнести к разным видам или даже родам. Таким образом, отбор создал новые формы организмов. В этом состоит его твор­ческая роль.

Оценка наследственных качеств. Признаки, которые интере­суют селекционера, очень разнообразны. Фенотипическая измен­чивость некоторых из них в сильной степени определяется раз­нообразием генотипов и сравнительно мало зависит от условий существования. Примером может служить длина шерсти у овец.

Другие признаки, наоборот, мало зависят от генетической изменчивости и сильно подвержены влиянию внешней среды. К таким признакам относится молочная продуктивность круп­ного рогатого скота. Важнейшая задача, которая встает перед селекционерами, состоит в том, чтобы оценить наследственные качества особей и выбрать для размножения лучших не только по фенотипу, но и по генотипу.

Наиболее точный из них — оценка их племенных (наследственных) качеств по потомству. В результате оценки выделяются лучшие по тем или иным ка­чествам производители. Они интенсивно используются для по­лучения максимального количества потомства, представляюще­го для сельского хозяйства большую ценность.

Отбор, основанный на оценке наследственных качеств отдель­ных растений, используется и в растениеводстве. В этом случае оценивается потомство отдельных самоопыленных (чистых) ли­ний растений, выделенных из какого-либо сорта, а для размно­жения отбираются лучшие линии. Чистая линия — это потомство одной пары родителей, гомозиготное по определенному комплексу признаков; у растений это может быть потомст­во одной самоопыленной особи.

2. Важнейшие достижения науки в XIX веке.

Теория  происхождения видов Дарвина. Учение Дарвина об искусственном отборе, учение Дарвина о естественном отборе.  Определены основные закономерности явлений наследственности . Мендель – основоположник генетики. Были сделаны большие успехи в сравнительной анатомии и палеонтологии (Кювье).

3. Основные ароморфозы в эволюции позвоночных животных.

Рыбы: позвоночник и череп; челюсти, снабженные зубами; парные конечности — плавники; внутреннее ухо; первичные (туловищные) почки; двухкамерное сердце на брюшной стороне тела.

Земноводные: пятипалые конечности; органы воздушного дыхания — легкие; 3-камерное сердце и два круга кровообращения; среднее ухо.

Пресмыкающиеся:  зачатки коры переднего мозга, вторичные (тазовые) почки, дифференцировка дыхательных путей, ячеистые легкие, подвижное сочленение черепа и позвоночника, форми­рование грудной клетки, неполная перегородка в желудочке сердца,

скорлуповые оболочки яйца и зародышевая оболочка — амнион.

Птицы:  4-камерное сердце; полное разделение артериальной и венозной крови; постоянная температура тела, совершенная терморегуляция; дифференцировка дыхательных путей.

Млекопитающиеся: высокоразвитая кора больших полушарий переднего мозга, внутриутробное развитие, выкармливание детенышей молоком, волосяной покров, 4-камерное сердце и полное разделение артериальной и венозной крови, теплокровность,

легкие альвеолярного строения.



Билет №21

1. Генотип и фенотип.

Аллельные гены. Итак, мы установили, что гетерозиготные особи имеют в каждой клетке два гена — А и а, отвечающих за развитие одного и того же признака. Гены, определяющие альтернативное развитие одного и того же признака и распо­ложенные в идентичных участках гомологичных хромосом, на­зывают аллельными генами или аллелями.

Схематически гетерозиготная особь обозначается так:

-----(А)-----

------(а)-----

Гомозиготные особи при подобном обозначении выглядят так: -----(А)-----

       -----(А)------        или  ------(а)------, но их можно записать и как АА и аа.                    ------(а)------

Фенотип и генотип. Рассматривая результаты самоопыления гибридов F2, мы обнаружили, что растения, выросшие из жел­тых семян, будучи внешне сходными, или, как говорят в таких случаях, имея одинаковый фенотип, обладают различной ком­бинацией генов, которую принято называть генотипом. Таким образом, явление доминирования приводит к тому, что при оди­наковом фенотипе особи могут обладать различными генотипа­ми. Понятия «генотип» и «фенотип» — очень важные в гене­тике. Совокупность всех генов организма составляет его гено­тип. Совокупность всех признаков организма, начиная с внеш­них и кончая особенностями строения и функционирования кле­ток и органов, составляет фенотип. Фенотип формируется под влиянием генотипа и условий внешней среды.

Анализирующее скрещивание. По фенотипу особи далеко не всегда можно определить ее генотип. У самоопыляющихся рас­тений генотип можно определить в следующем поколении. Для перекрестно размножающихся видов используют так называе­мое анализирующее скрещивание. При анализирующем скрещи­вании особь, генотип которой следует определить, скрещивают с особями, гомозиготными по рецессивному гену, т. е. имеющи­ми генотип аа. Рассмотрим анализирующее скрещивание на при­мере. Пусть особи с генотипами АА и Аа имеют одинаковый фе­нотип.

Из этих примеров видно, что особи, гомозиготные по доми­нантному гену, расщепления в F1 не дают, а гетерозиготные осо­би при скрещивании с гомозиготной особью дают расщепление уже в F1.

Неполное доминирование. Далеко не всегда гетерозиготные организмы по фенотипу точно соответствуют родителю, гомози­готному по доминантному гену. Часто гетерозиготные потомки имеют промежуточный фенотип, в таких случаях говорят о не­полном доминировании. Например, при скрещивании растения ночная красавица с белыми цветками (аа) с растени­ем, у которого красные цветки (АА), все гибриды F1 имеют ро­зовые цветки (Аа). При скрещивании гибридов с розовой окра­ской цветков между собой в F2 происходит расщепление в от­ношении 1 (красный):2 (розовый):1 (белый).

Принцип чистоты гамет. У гибридов, как мы знаем, объеди­няются разные аллели, привносимые в зиготу родительскими гаметами. Важно отметить, что разные аллели, оказавшиеся в одной зиготе и, следовательно, в развившемся из нее организ­ме, не влияют друг на друга. Поэтому свойства аллелей оста­ются постоянными независимо от того, в какой зиготе они по­бывали до этого. Каждая гамета содержит всегда только один аллель какого-либо гена.

Цитологическая основа принципа чистоты гамет и закона расщепления состоит в том, что гомологичные хромосомы и рас­положенные в них аллельные гены распределяются в мейозе по разным гаметам, а затем при оплодотворении воссоединяются в зиготе. В процессах расхождения по гаметам и объединения в зиготу аллельные гены ведут себя как независимые, цельные единицы.

2. Роль живых организмов в формировании и поддержании состава атмосферы Земли.

Живые организмы, регулируют круговорот веществ, служат мощным геологическим фактором , образующим поверхность Земли.

Живое вещество выполняет в биосфере следующие биологические функции:

Газовую –поглощает и выделяет газы; окислительно –восстановительную – окисляет, например, углеводы до углекислого газа и восстанавливает его до углеводов; концентрационную – организмы-концентраторы накапливают в своих телах и скелетах азот, фосфор, кремний, кальций, магний.

   Газовая и окислительно- восстановительная функции живого вещества тесно связаны с процессами фотосинтеза и дыхания. В результате биосинтеза  органических веществ автотрофными организмами было извлечено из древней атмосферы огромное количество углекислого газа. по мере увеличения биомассы зеленых растений изменялся газовый состав атмосферы – количество углекислого газа сокращалось, а кислорода – увеличивалось. Весь кислород атмосферы образован в результате процессов жизнедеятельности автотрофных организмов. Кислород используется живыми организмами для процесса дыхания, в результате чего в атмосферу поступает углекислый газ.

  Многие микроорганизмы непосредственно участвуют в окислении железа, что приводит к образованию осадочных железных руд, или восстанавливают сульфаты, образуя биогенные месторождения серы.

3. Основные ароморфозы в эволюции беспозвоночных животных

Кишечнополостные:

- дифференцировка клеток и образование тканей;

- нервная система диффузного типа;

- полостное пищеварение

Плоские черви:

- двухсторонняя симметрия тела;

- системы органов пищеварения, выделительная и половая

Круглые черви:

- первичная полость тела

- наличие заднего отдела кишечника и анального отверстия

Кольчатые черви:

- органы движения;

- органы дыхания;

- замкнутая кровеносная система

- вторичная полость тела

- сегментация тела

Моллюски:

- разделение тела на отделы

- появление сердца, почки, печени

Членистоногие:

-наружный скелет

- членистые конечности

- поперечно-полосатая мускулатура

Насекомые

Появились крылья

 

Билет №22

1. Митоз.

Способность к делению — важнейшее свойство клеток. Без деления невозможно представить себе увеличение числа одно­клеточных существ, развитие сложного многоклеточного орга­низма из одной оплодотворенной яйцеклетки, возобновление кле­ток, тканей и даже органов, утраченных в процессе жизнедея­тельности организма.

Деление клеток осуществляется поэтапно. На каждом этапе деления происходят определенные процессы. Они приводят к удвоению генетического материала (синтезу ДНК) и его распре­делению между дочерними клетками. Период жизни клетки от одного деления до следующего называется клеточным циклом.

Подготовка к делению. Эукариотические организмы, состоя­щие из клеток, имеющих ядра, начинают подготовку к деле­нию на определенном этапе клеточного цикла, в интерфазе.

Именно в период интерфазы в клетке происходит процесс биосинтеза белка, удваиваются все важнейшие структуры клет­ки. Вдоль исходной хромосомы из имеющихся в клетке хими­ческих соединений синтезируется ее точная копия, удваивается молекула ДНК. Удвоенная хромосома состоит из двух полови­нок — хроматид. Каждая из хроматид содержит одну молеку­лу ДНК.

Интерфаза в клетках растений и животных в среднем про­должается 10—20 ч. Затем наступает процесс деления клетки — митоз.

Во время митоза клетка проходит ряд последовательных фаз, в результате которых каждая дочерняя клетка получает такой же набор хромосом, какой был в материнской клетке.

Фазы митоза. Различают следующие четыре фазы митоза: профаза, метафаза, анафаза и телофаза. На рисунке 26 схема­тически показан ход митоза. В профазе хорошо видны центриоли — образования, находящиеся в клеточном центре и играю­щие роль в расхождении дочерних хромосом животных. (На­помним, что у высших растений нет центриолей в клеточном центре, который организует расхождение хромосом.) Мы же рас­смотрим митоз на примере животной клетки, поскольку присутствие центриоли делает процесс расхождения хромосом более наглядным. Центриоли удваиваются и расходятся к разным полюсам клетки. От центриолей протягиваются микротрубоч­ки, образующие нити веретена деле­ния, которое регулирует расхождение хромосом к полюсам делящейся клет­ки.

В конце профазы ядерная оболоч­ка распадается, ядрышко постепенно исчезает, хромосомы спирализуются и

в результате этого укорачиваются и утолщаются, и их уже мож­но наблюдать в световой микроскоп. Еще лучше они видны на следующей стадии митоза — метафазе.

В метафазе хромосомы располагаются в экваториальной пло­скости клетки. При этом хорошо видно, что каждая хромосо­ма, состоящая из двух хроматид, имеет перетяжку — центро­меру. Хромосомы своими центромерами прикрепляют­ся к нитям веретена деления. После деления центромеры каж­дая хроматида становится самостоятельной дочерней хромосо­мой.

Затем наступает следующая стадия митоза — анафаза, во время которой дочерние хромосомы (хроматиды одной хромосо­мы) расходятся к разным полюсам клетки.

Следующая стадия деления клетки — телофаза. Она начи­нается после того, как дочерние хромосомы, состоящие из од­ной хроматиды, достигли полюсов клетки. На этой стадии хро­мосомы вновь деспирализуются и приобретают такой же вид, какой они имели до начала деления клетки в интерфазе (длин­ные тонкие нити). Вокруг них возникает ядерная оболочка, а в ядре формируется ядрышко, в котором синтезируются рибосо­мы. В процессе деления цитоплазмы все органоиды (митохонд­рии, комплекс Гольджи, рибосомы и др.) распределяются меж­ду дочерними клетками более или менее равномерно.

Таким образом, в результате митоза из одной клетки полу­чаются две, каждая из которых имеет характерное для данно­го вида организма число и форму хромосом, а следовательно, постоянное количество ДНК.

Весь процесс митоза занимает в среднем 1—2 ч. Продолжи­тельность его несколько различна для разных видов клеток. За­висит он также и от условий внешней среды (температуры, све­тового режима и других показателей).

Биологическое значение митоза заключается в том, что он обеспечивает постоянство числа хромосом во всех клетках орга­низма. В процессе митоза происходит распределение ДНК хро­мосом материнской клетки строго поровну между возникаю­щими из нее двумя дочерними клетками. В результате митоза все дочерние клетки получают одну и ту же генетическую ин­формацию.

2. Важнейшие достижения биологической науки в XX веке.

Вопрос о возможных путях достижения биологического прогресса был разработан Северцовым создал теорию морфологического и биологического прогресса и регресса.

 Вавиловым был сформулирован закон гомологических рядов наследственной изменчивости. Развивается селекция (Мичурин), генная инженерия, клонированы животные.

3. Составит схему пищевой цепи пресноводного водоема.

Растительными остатками и развивающимися на них бактериями питаются простейшие, которые поедают рачки. Рачков поедают рыбы. Рыбами питаются хищные рыбы. Рыбой птицы.

Растительные остатки и бактерии à простейшие-> рачки-> рыба->

Хищные рыбы -> птицы


Билет №23

 1. Мейоз и оплодотворение. Их место в жизненном цикле животных и растений, роль в сохранении постоянного числа хромосом.

Мейоз — способ деления клеток с образованием из одной материнской диплоидной клетки четырех дочерних гаплоидных клеток. Мейоз состоит из двух последовательных делений ядра и короткой интерфазы между ними.

Первое деление состоит из профазы I, метафазы I, анафазы I и телофазы I. В профазе I парные хромосомы, каждая из которых состоит из двух хроматид, подходят друг к другу (этот процесс называется конъюгацией гомологичных хромосом), перекрещиваются (кроссинговер), образуя мостики (хиазмы), за­тем обмениваются участками. При кроссинговере осуществляется переком­бинация генов. После кроссинговера хромосомы разъединяются.

В метафазе I парные хромосомы располагаются по экватору клетки; к каждой из хромосом прикрепляются нити веретена деления. В анафазе I к полюсам клетки расходятся хромосомы из каждой гомологичной пары; при этом число хромосом у каждого полюса становится вдвое меньше, чем в материнской клетке. Затем следует телофаза I — образуются две клетки с гаплоидным числом двухроматвдных хромосом; поэтому первое деление мейоза называют редукционным. После телофазы I следует короткая ин­терфаза (в некоторых случаях телофаза I и интерфаза отсутствуют). В ин­терфазе между двумя делениями мейоза удвоения хромосом не происходит, т.к. каждая хромосома уже состоит из двух хроматид.

Второе деление мейоза отличается от митоза только тем, что его прохо­дят клетки с гаплоидным набором хромосом; во втором делении иногда отсутствует профаза II. В метафазе II двухроматидные хромосомы располага­ются по экватору; процесс идет сразу в двух дочерних клетках. В анафазе П к полюсам отходят уже однохроматидные хромосомы. В телофазе II в че­тырех дочерних клетках формируются ядра и перегородки (в растительных клетках) или перетяжки (в животных клетках). В результате второго деле­ния мейоза образуются четыре клетки с гаплоидным набором хромосом (lnlc); второе деление называют уравнительным. Так образуются гаметы у животных и человека или споры у растений.

"Значение мейоза состоит в том, что создается гаплоидный набор хромо­сом и условия для комбинативной наследственной изменчивости за счет кроссинговера и вероятностного расхождения хромосом.

Отличие митоза от мейоза состоит в том, что митоз — это такое деление клетки, в результате которого получаются две клетки с исходным набором хромосом; митоз — это бесполый процесс размножения. При мейозе в ре­зультате двух последовательных митотических делений из исходной дип­лоидной клетки (2п) образуются четыре гаплоидные (п). При этом происхо­дит перекомбинация наследственных признаков вследствие кроссинговера, происходящего в профазе I мейоза.

2. Общая характеристика бактерий.

Бактерии не имеют ядра, отделенного мембраной от цитоплазмы. Большинство бактерий не содержит хлорофилла и питается готовыми органическими веществами – гетеротрофно

Размно­жение простым де­лением (воз­можен эле­ментарный половой процесс)

Питание гетеротрофное:

сапрофиты (используют органичес­кие вещества мертвых организмов); паразиты (используют органические вещества живых организмов); у некоторых - автотрофное: фотосинтезирующие (зеленые и пур­пурные бактерии, цианобактерии); хемосинтезирующие (железобактерии, серобактерии, аммонифицирующие и нитрифицирующие бактерии)

Дыхание аэробное-у живущих в кисло­родной среде; анаэробное - у живущих в бескис­лородной среде;

факультативные анаэробы спо­собны жить и в кислородной и в бескислородной среде

Бактерии могут образовывать споры - приспособление к выживанию в неблагоприятных условиях.

3. Ископаемые животные  свидетельство в пользу эволюции.

Обнаружение ископаемых останков археоптерикса позволило сделать вывод о существовании переходной формы между пресмыкающимися и птицами.

Голова напоминала голову ящерицы, на крыльях сохранились пальцы с когтями, имелся длинный хвост.

Билет №24

1. Этапы развития многоклеточного животного.

Эмбриональное развитие: 1.Зигота(оплодотворенная яйцеклетка)->2. Бластула(стадия 2-128 клеток(полый шар))-> 3.Гаструла(2 слоя клеток. Имеет 2 зародышевых листа- эктодерму и энтодерму)-> 4. Зародыш(образуется мезодерма, формируются органы)-> Пост эмбриональное развитие:1. Прямое (Организм сразу после рождения сходен со взрослым). 2.Непрямое (Организм после рождения проходит промежуточные стадии (личинка и т.п.))

Вероятный путь возникновения жизни

1.Синтез в первичном океане органических веществ из неорганических под действием небиологических факторов.-> 2. Возникновение коацерватных капель(самопроизвольное концентрирование веществ)-> 3. Возникновение самовоспроизводящихся молекул, способных к матричному синтезу.

2.Человеческие расы. Генетическое разнообразие человечества. Расы и нации.

Основные человеческие расы. В современном человечестве выделяют три основные расы: европеоидную, монголоидную и негроидную. Это большие группы людей, отличающиеся некото­рыми физическими признаками, например чертами лица, цве­том кожи, глаз и волос, формой волос.

Для каждой расы характерно единство происхождения и фор­мирования на определенной территории.

К европеоидной расе относится коренное население Европы, Южной Азии и Северной Африки. Европеоиды характеризуют­ся узким лицом, сильно выступающим носом, мягкими волоса­ми. Цвет кожи у северных европеоидов светлый, у южных — преимущественно смуглый.

К монголоидной расе относится коренное население Цент­ральной и Восточной Азии, Индонезии, Сибири. Монголоиды от­личаются крупным плоским широким лицом, разрезом глаз, жесткими прямыми волосами, смуглым цветом кожи.

В негроидной расе выделяют две ветви — африканскую и австралийскую. Для негроидной расы характерны темный цвет кожи, курчавые волосы, темные глаза, широкий и плоский нос.

Расовые особенности наследственны, но в настоящее время они не имеют существенного значения для жизнедеятельности человека. По-видимому, в далеком прошлом расовые признаки были полезны для их обладателей: темная кожа негров и курчавые волосы, создающие вокруг головы воздушный слой, предохраняли организм от действия солнечных лучей, форма ли­цевого скелета монголоидов с более об­ширной носовой полостью, возможно, яв­ляется полезной для обогрева холодного воздуха перед тем, как он попадает в лег­кие. По умственным способностям, т. е. способностям к познанию, творческой и вообще трудовой деятельности, все расы одинаковы. Различия в уровне культуры связаны не с биологическими особеннос­тями людей разных рас, а с социальны­ми условиями развития общества.

Реакционная сущность расизма. Пер­воначально некоторые ученые путали уро­вень социального развития с биологичес­кими особенностями и пытались среди со­временных народов найти переходные формы, связывающие человека с живот­ными. Эти ошибки использовали расис­ты, которые стали говорить о якобы су­ществующей неполноценности одних рас и народов и превосходстве других, чтобы оправдать беспощадную эксплуатацию и прямое уничтожение многих народов в результате колонизации, захват чужих зе­мель и развязывание войн. Когда евро­пейский и американский капитализм пы­тался покорить африканские и азиатские народы, высшей была объявлена белая раса. Позднее, когда гитлеровские полчи­ща шагали по Европе, уничтожая захва­ченное население в лагерях смерти, выс­шей была объявлена так называемая арийская раса, к которой фашисты при­числяли германские народы. Расизм — это реакционная идеология и политика, направленная на оправдание эксплуата­ции человека человеком.

Несостоятельность расизма доказана настоящей наукой о расах — расоведени­ем. Расоведение изучает расовые особен­ности, происхождение, формирование и историю человеческих рас. Данные, по­лученные расоведением, свидетельствуют о том, что различия между расами недо­статочны для того, чтобы считать расы различными биологическими видами людей. Смешение рас — метисация — происходило постоянно, в результате чего на границах ареалов представителей различных рас возникали про­межуточные типы, сглаживающие различия между расами.

Исчезнут ли расы? Одно из важных условий формирования рас — изоляция. В Азии, Африке и Европе она в какой-то степени существует и сегодня. Между тем недавно заселенные регионы, такие, как Северная и Южная Америка, можно сравнить с котлом, в котором переплавляются все три расовые группы. Хотя общественное мнение во многих странах не поддерживает межрасовые браки, почти нет сомнений, что сме­шение рас неизбежно, и рано или поздно приведет к образова­нию гибридной популяции людей.

3. На конкретном примере показать возможные пути ограничения численности вредителей сельского хозяйства без использования ядовитых веществ.

   Наиболее надежный  и современный путь охраны природы – применение биоматериалов.

Например, в одном из опытных хозяйств Краснодарского края обнаружили, что душистый табак настолько привлекателен для колорадского жука, что ради него оставляет в покое картофель, томаты, баклажаны, перец. Он набрасывается на душистый табак, поедая его он становится своеобразным наркоманом, и личинки ослабленного вредителя погибаю без применения ядохимикатов в первые заморозки.  Найден новый метод борьбы с белокрылкой. Это биотехнический метод с помощью оптических раздражителей. Установлено, что любимый цвет белокрылки – желтый. Этот цвет используется в специальный цветоловушках. Совершенно безвредны для человека, но вызывают гибель картофельных жуков некоторые штампы грибов, паразитирующие на насекомых. Штаммы грибов проникают в насекомых и начинают там быстро расти. Другие насекомые при обработке полей не страдают. Для птиц поедающих таких насекомых они тоже безвредны.








Билет №25

 1.Проблема происхождения жизни.

  Проблема происхождения жизни на Земле

Гипотеза А. И. Опарина о происхождении жизни на Земле

1.   Начальный этап существования Земли. Солнце   возникло  из   пылевого   облака,   остатка взрыва сверхновой звезды 5 млрд, лет назад; об­разовались   планеты,   возраст   Земли   4,5   млрд. лет. Начальный этап характеризовался интенсив­ными термоядерными процессами, высокой тем­пературой (более  1000 градусов) и высокой хи­мической активностью. Образовавшиеся при этом газы и водяной пар (кислород, азот, углекислый газ  и др.) создали атмосферу.  Температура по­верхности упала за счет снижения радиоактивно­сти (ниже 100 градусов), на Землю при конден­сации паров хлынули потоки воды с растворен­ными  в  ней  веществами  и  образовали  моря и океаны.  При участии молний и  ультрафиолета возникли первые органические вещества.

2.  Абиогенный синтез органических веществ (сахара,   аминокислоты,   азотистые   основания, простые белки)— без участия живых организ­мов — при   использовании   энергии   электриче­ских      разрядов      непрекращавшихся      гроз, УФ-излучений, вулканической деятельности.

3.   Образование     коацерватов — многомолеку­лярных комплексов, представляющих собой ско­пления   органического   вещества,   возникающие вследствие свойства

органических соединений са­мопроизвольно концентрироваться  в  виде капе­лек, способных захватывать из окружающей среды — питательного  бульона — различные вещества и увеличиваться в размерах. Среди них шел"отбор" наиболее устойчивых в среде.

4.   Появление самовоспроизводящихся моле­кул   вследствие   формирования   сложных   ком­плексов нуклеиновых кислот и белков, возник­новение реакций матричного синтеза.

5.    Возникновение   первичных    организмов; возможно, подобно вирусам они были нуклео-протеидами;   под   действием   радиации   и   УФ-излучения возникали мутации, более совершен­ные сохранялись в процессе естественного отбо­ра. Первичные организмы были гетеротрофами, т.  к. питались первичным бульоном.  По мере их размножения между ними возникла борьба за пищу, в результате которой выживали фор­мы, имевшие наружную мембрану и белковую защиту у ДНК.

6.   Появление   автотрофного  питания — важ­нейший ароморфоз. Первыми автотрофами были хемотрофные организмы. Когда исчезла сплош­ная     облачность,     появился     новый     аромор­фоз — фотосинтез; фотосинтезирующие организ­мы выделяли кислород в воду и атмосферу. С накоплением  кислорода  в  атмосфере  появился новый ароморфоз — кислородный путь расщеп­ления глюкозы (более эффективный, чем глико­лиз), новые организмы вытеснили старые.

7.   Появление защитного озонового слоя по­зволило жизни выйти на сушу.


2.Система живых организмов. Принципы построения.

Система органического мира

Империя(неклеточные и клеточные)

Надцарство (безъядерные и ядерные)


Органический мир делят на 4 царства

I БАКТЕРИИ I      | ГРИБЫ |       | РАСТЕНИЯ !   ЖИВОТНЫЕ

Элементарная единица в систематике -вид. Каждый вид называют двумя латинскими словами: первое обозначает принадлежность к роду, второе -видовой эпитет (Campanula latifolia - колокольчик широколистный).

Сходные виды объединяют в роды , роды - в семейства , семейства – в порядки (у животных - в отряды ),порядки – в классы ,классы – в отделы (у животных – в типы ),отделы – в царства.

Основоположником систематики был К. Линней

3. Приспособления животных к жизни в почве и их роль в почвообразовании.

Крот, у него есть лапы похожие на лопаты, шерсть, которая не создает проблем в перемещении животного.

Крот разрыхляет почву.

Кольчатые черви-Сокращение кожно-мускульного мешка, слизь, упругие щетинки. Разрыхляет почву, улучшают плодородие почвы(калифорнийский червь).






Страницы: 1, 2


© 2000
При полном или частичном использовании материалов
гиперссылка обязательна.