РУБРИКИ |
Основи мікробіології |
РЕКЛАМА |
|
Основи мікробіологіїОснови мікробіологіїПредмет, історія розвитку і завдання мікробіології Мікробіологія – наука про мікроорганізми, про найдрібніші істоти біосфери, про форми живої матерії, що вони невидимі неозброєним оком. Загальними ознаками мікроорганізмів є їх малий розмір, висока інтенсивність і пластичність метаболізму. Мікроорганізми перебувають скрізь, їх загальна біомаса перевершує масу рослин і тварин і складає 740 млрд. тонн. Мікроорганізми вивчають за допомогою оптичного або електронного мікроскопу. Розмір вірусів коливається в діапазоні 16-200 нм, а розмір інших досягає 0,01- 50. Наприкінці 20-го століття була розроблена класифікація, згідно якій, всі живі істоти біосфери поділяються на три надцарства: - акаріоти (без’ядерні) – царство вірусів; - прокаріоти (доядерні) – царства архебактерій, ціанобактерій та еубактерій; - еукаріоти (ядерні) – царства рослин, тварин і грибів. В історії розвитку розділяють 4 періоди: Морфологічний. Історія мікробіології починається з кінця 17-го століття, коли голландський натураліст Антоній Ван Левенгук (1632-1723) відкрив світ мікроорганізмів. А.Левенгук створив перші мікроскопи, які збільшували предмети в 160-300 разів. Він з великою точність описав і зарисував зовнішній вигляд (морфологію) «живих звіряток». Цей період був періодом накопичення фактичного матеріалу. Еколого-фізіологічний. З другої половини 19-го століття завдяки роботам великого французького мікробіолога Луї Пастера (1822-1895) було пов’язане створення мікробіології як науки. Основні відкриття Л.Пастера та його внесок такі: - встановив, що мікроорганізми є причинами інфекційних хвороб; - аеробне і анаеробне бродіння це функції діяльності мікроорганізмів; - запропонував метод пастеризації для лікування “хвороб” вин; - розробив методи виготовлення живих вакцин проти сибірки і сказу; - заклав основи науки імунології; - встановив здатність мікроорганізмів засвоювати і перетворювати різноманітні хімічні сполуки. Роберт Кох (1843-1910 розробив основи дезинфекції, метод виділення чистої культури мікроорганізмів на твердому поживному середовищі, способи забарвлення мікробів аніліновими барвниками, застосував імерсійну систему у мікроскопуванні та ін. Р.Кох відкрив збудників туберкульозу (паличка Коха) та холери. Імунологічний. Видатний російський вчений І.І.Мечников (1845-1916) розробив теорію фагоцитарного імунітету, відкрив і теоретично обґрунтував антагонізм мікробів. І.І.Мечников є автором відомої теорії боротьби з передчасним старінням людського організму, для боротьби з яким він рекомендував вживати молочнокислі бактерії як антагоністи гнильних мікробів. М.Ф. Гамалія (1859-1949) відкрив станцію щеплення проти сказу. Д.Й. Івановський (1864-1920) став засновником вірусології. С.Н. Виноградський (1856-1953) відкрив хемосинтез. Видатний український мікробіолог Д.К.Заболотний (1866-1929)організував першу в світі кафедру епідеміології при Одеському медичному інституті. Багато зусиль віддав він вивченню чуми, холери, сифілісу, дифтерії, тифу тощо. Молекулярно-генетичний. У цей період був вивчений механізм взаємодії облігатного паразиту і людини, рослини. Встановлено, що ДНК є носієм спадкової інформації. Відбулося створення біотехнології. Основні напрямки сучасної мікробіології Мікробіологія як наука поділяється на низку самостійних дисциплін – загальну, сільськогосподарську, медичну, ветеринарну, технічну, геологічну та космічну мікробіологію. Загальна мікробіологія досліджує загальні закономірності життєдіяльності мікроорганізмів (анатомію, фізіологію, біохімію, генетику, екологію, систематику і еволюцію мікробів). Сільськогосподарська мікробіологія розробляє методи та препарати для підвищення родючості грунту; фітопатогенів та розробляє методи боротьби з ними. Медична мікробіологія вивчає мікроорганізми, що викликають захворювання у людей, та способи боротьби з цими захворюваннями. Ветеринарна мікробіологія досліджує збудників захворювань у тварин та птахів і розробляє методи боротьби з ними. Геологічна мікробіологія вивчає роль і значення мікробів у геологічних процесах. Морська мікробіологія вивчає мікробів, які живуть в водних басейнах та їх вплив на водні екологічні системи. Космічна мікробіологія досліджує вплив на мікроорганізми невагомості та інших чинників. Технічна мікробіологія розробляє наукові основи використання мікроорганізмів у різних виробничих процесах. Винятково важливе значення мають мікробіологічні процеси в виробництві харчових продуктів. Біотехнологія базується на інтегрованому використанні досягнень біохімії, мікробіології та інженерних наук. Завдяки застосуванню методів генної інженерії створюють трансгенні мікроорганізми, які є високопродуктивними продуцентами різноманітних біологічно активних речовин. Систематика вивчає відношення між групами мікроорганізмів. За період становлення мікробіології в основу класифікації різноманітних організмів були закладені морфологічні, фізіологічні, біохімічні та інші ознаки. Один з перших відомих поділів мікроорганізмів на групи базується на відношенні їх до субстрату життєдіяльності. За цим критерієм всі мікроорганізми поділяють на сапрофіти і патогенні.Сапрофіти – розвиваються на мертвих субстратах. Серед них розрізняють корисні – мікрофлора заквасок, молочнокислих продуктів, копчених ковбас, хліба, вина, пива. Але серед сапрофітів є велика кількість збудників псування продуктів, наприклад, гнильні бактерії. Патогенні – паразити, які живуть на живих субстратах, використовують їх білки, жири, вуглеводи та інші складові частини. Їх поділяють на: зоопатогенні – паразити тварин ; фітопатогенні – паразити рослин. Таксон є основною категорією у ситематиці мікроорганізмів. У сучасній систематиці основною структурною одиницею є вид. Порядок розташування таксонів: клон → вид → род → родина → порядок → клас → відділ → царство → надцарство. Клон – мікроорганізм, який походить від клітини. Штам – чиста культура одного виду . Штами відрізняються другорядними властивостями. Наприклад відомі штами Clostridium botulinum A, B, C, D, E, F, I. Групою вчених під керівництвом Бергі було видано визначник бактерій, який у 1997р. було перекладено російською мовою «Визначник бактерій Бергі». Розподіл мікроорганізмів за таксонами здійснюється шляхом формування сукупностей споріднених організмів за категоріями: - морфологічні ознаки. Форма клітин і характер їх розташування, розмір, забарвлення за Грамом, спороутворення, рухомість. - культуральні ознаки. Вирощування мікроорганізмів на поживних середовищах зветься культивування, а їх нащадки - культурою. Змішані культури – це сукупність мікроорганізмів різних видів, які були виділені з біоценозу в природі (грунту, води, повітря). Чисті культури – нащадки одного виду, які виділені ізольовано на стерильному поживному середовищі. Культуральні ознаки – характеристика росту мікроорганізмів на середовищах. - фізіологічні ознаки. Тип дихання, живлення, метаболізм, розмноження та ін. - біохімічні властивості. Здатність мікроорганізмів продукувати визначені ферменти. - резистентність до факторів середовища. - токсиноутворення. - антигенний склад. Антиген – речовина, яку виробляють патогенні мікроорганізми, коли потрапляють в організм хазяїна. При цьому відбуваються реакції імунітету, хазяїн продукує антитіла. Наприклад реакція аглютинації, яку записують: RA = Ag+An Досліджування всіх ознак у невідомих мікроорганізмів дозволяє за допомогою визначника Бергі ідентифікувати їх вид. Номенклатура – збірник правил найменування таксонів, список цих найменувань. В мікробіології застосовується бінарна термінологія – назва виду складається з двох : родова ( пишеться з великої літери) і видова ( пишеться з маленької літери). Родова – може носити прізвище вченого, показувати морфологію, наявність спор. Видова – може означати фізіологію, місце існування. Наприклад : Clostridium botulinum, Bacillus subtilis, Staphylococcus aureus. Морфологічні типи бактеріальних клітин Розміри бактерій коливаються від 0,2 до 10 мкм (мікрометрів). За формою клітини бактерії можна розділити на головні групи: сферичні або кулясті (коки), паличкоподібні (циліндричні) та спіралеподібні (звивисті), але відомі бактерії, які мають ниткоподібну, трикутну, зірчасту форми (див.рис.). Розміри та форма тіла бактерій можуть змінюватися під впливом різноманітних факторів зовнішнього середовища – під дією антибіотиків, дезинфікуючих засобів, при зміні умов культивування та ін. Сферичні бактерії або коки (від грецького coccus - ягода, зерно) звичайно мають форму кулі, але бувають у формі боба чи ланцеподібні. Клітини можуть розташовуватися хаотично або утворювати скупчення, форма яких залежить від характеру їх поділу. За характером взаємо розташування коки поділяють на: Мікрококи (від грецького micros - малий) діляться в одній площині, розташовуються хаотично, поодиноко. Є переважно сапрофітами. Проте у людей з імунодефіцит ним станом можуть викликати гнійно-септичні захворювання. Диплококи (від грец. diplos - подвійний) також діляться в одній площині, але утворені пари клітин не розходяться. Типовими представниками є збудники епідемічного менінгіту, гонореї, та крупозної пневмонії. Стрептококи (від грец. streptos – намисто, ланцюжок) діляться в одній площині, але зв’язок між клітинами зберігається, і утворюються ланцюжки різної довжини, які нагадують намисто. Серед стрептококів багато патогенних для людини, також є представники збудників молочно - кислого бродіння – Streptococcus lactis, Streptococcus cremosis. Тетракоки (від грец. tetra - чотири) діляться в двох взаємо перпендикулярних площинах з утворенням тетрад. Вони переважно складають мікрофлору повітря, патогенні для людини види зустрічаються дуже рідко. Сарцини (від лат. sarcina – поєдную, тюк) діляться в двох взаємно перпендикулярних площинах з утворенням “пакунків” з 8, 16, 32, 64 клітин, які розміщуються кількома ярусами. Особливо часто сарцини зустрічаються у повітрі і є пігментоутворюючими. Патогенних форм серед них немає. Стафілококи (від грец. stafile - гроно) діляться в декількох площинах, клітини розташовуються у вигляді виноградного грона. Зустрічаються у повітрі, грунті, в організмі людини і тварини. Паличкоподібні бактерії. Паличкова форма є самою численною і різноманітною групою бактерій. Клітинна стінка паличкоподібних бактерій являє собою тверду, нееластичну трубку. Тому вони ростуть переважно в довжину, а коливання товщини відносно невеликі (переважно в межах 0,5-1 мкм). По довжині паличкові поділяють на дрібні (до 1 мкм), середні (2-4 мкм), великі (більш ніж 4 мкм). По товщині паличкові бактерії поділяють на тонкі () до 1 мкм і товсті (>1 мкм). Форма кінців у паличкових буває закруглена, загострена, обрубана. По здатності до спороутворення паличкоподібні форми бактерій підрозділяються на три роди: р.Bacterium (бактерії), р.Bacillus (бацили), p.Clostridium (клостридії). p.Bacterium – це паличкоподібні бактерії, що, як правило, не утворюють спор. Типовим представником є кишкова паличка (Escherichia coli), яка завжди міститься в кишечнику людини та тварин. p.Bacillus – це споротворні паличкоподібні бактерії. Діаметр спор не перевищує у них поперечного розтину палички тому спороутворення у бацил не призводить до зміни форми клітини. За типом дихання бацили, як правило, відносяться до аеробів (потребують кисень для свого розвитку). Прикладом сапрофітних форм бацил є Bacillus subtilis (“сінна” паличка), Bacillus licheniformis (“картопляна” паличка). p.Clostridium – це споротворні паличкоподібні бактерії, у яких спора за своїм розміром перевищує поперечний розтин палички. При цьому змінюється зовнішня форма палички і вона може нагадувати веретено або ракетку. За типом дихання відносяться. Як правило, до облігатних анаеробів. За взаємним розташуванням паличкові розподіляються на три підгрупи: а) поодинокі палички – розміщуються хаотично. Така форма взаємного розташування клітин характерна для переважної більшості паличкових. б) диплобактерії та диплобацили – клітини бактерій або бацил розташовані попарно. в) стрептобактерії та стрептобацили – клітини бактерій або бацил утворюють ланцюжки різної довжини. Звивисті бактерії. Вони як правило грамнегативні, рухомі, більшість належить до сапрофітів. Але зустрічаються і патогенні форми – збудники інфекційних хвороб. Звивисті бактерії відрізняються між собою кількістю завитків та товщиною тільця. В залежності від цього відрізняють: - вібріони. Клітини мають один завиток і товсте тільце. Представником є холерний вібріон – збудник холери, водні вібріони. - спірили. Клітини мають від 4 до 6 завитків спіралі і товсте тільце. - спірохети. Клітини мають від 6 до 15 і більше завитків спіралі та тонке тільце. Довжина їх може бути великою (300-500 мкм). Представником є збудник венеричного захворювання – сифілісу (Treponema pallidum). Ультраструктура бактеріальної клітини В 1937 р. Е.Шаттоном було запропоновано поділяти всі живі істоти за будовою клітин на прокаріоти та еукаріоти. Згідно з цією класифікацією до прокаріотів (грец. procaryotae- доядерні) відносяться бактерії, до еукаріотів ( грец. eucaryotae- ядерні) – найпростіші, гриби, водорості, рослини та тварини. Основні відмінності прокаріотів та еукаріотів полягають в тому, що прокаріоти мають тільки одну внутрішню порожнину, яка утворена цитоплазматичною мембраною (ЦПМ), що розміщена під клітинною стінкою. Їхній ядерний апарат (нуклеоїд) не відособлений від цитоплазми. Він складається з однієї хромосоми, яка має вигляд замкненої в кільце молекули ДНК, та розміщена безпосередньо в цитоплазмі. Рибосоми прокаріотів мають незначні розміри та розсіяні в цитоплазмі. В клітинах еукаріотів є вторинні порожнини, утворені ЦПМ – ядро та органели. Ядро містить ДНК у вигляді однієї або більше хромосом та ядерце. Органели представлені мітохондріями, хлоропластами, лізосомами, ендоплазматичною сіткою, апаратом Гольджи та інш. структурами. Рибосоми еукаріотів більші за рибосоми прокаріотів та розміщені переважно на поверхні ендоплазматичної сітки. Анатомія бактерій вивчає за допомогою електронного мікроскопу внутрішню будову клітин. Клітина – біологічна система, у якій кожній структурі належить певна функція. Всі структури взаємопов’язані та взаємообумовлені. Основні структури клітин бактерій: - ядерний матеріал – нуклеоїд - клітинна стінка - цитоплазматична мембрана (ЦПМ) - цитоплазма з органоїдами і включеннями - структурні елементи клітини (рибосоми, мезосоми, плазміди, внутрішньоклітинні мембранні утворення, включення ) Додаткові структури: - капсула - слиз - пілі - джгутики - фімбрії Ядерний матеріал клітин бактерій У прокаріотів ядерний матеріал розміщений у центральній частині цитоплазми. Нуклеоїд бактерій на відміну від еукаріотів не має мембрани і складається з ДНК, яка замкнута у кільце. Приймає участь в передачі спадкової інформації. Без нього клітина нежиттєздатна. Багато бактерій разом з нуклеоїдом мають позахромосомні передавачі спадкової інформації. Їх називають плазміди або епісоми . За будовою це нуклеїнова кислота. Клітинна стінка Клітинна стінка – обов’язковий структурний елемент бактеріальної клітини. Клітинна стінка надає бактеріям певну форму. Вона є пружною, але разом з цим еластичною і може вигинатися. Клітинна стінка виконує роль механічного бар’єру між зовнішнім середовищем та протопластом. Вона захищає вміст клітини від впливу довкілля. В нормальних умовах концентрація солей в клітині вища, ніж у навколишньому середовищі, тому між ними існує велика різниця в осмотичному тиску. Клітинна стінка захищає клітину від проникнення до неї надлишку води. Таким чином функції клітинної стінки слідуючі: - захист від шкідливих факторів - транспорт речовин в процесі живлення - участь у формуванні капсул і антигенів Товщина клітинної стінки знаходиться в межах від 10 до 80 нм, на її долю припадає від 5% до 50% сухої речовини клітини. Хімічний склад і будова клітинної стінки є постійними для певного виду бактерій. Клітинна стінка відповідальна за сприйняття забарвлення за Грамом. До складу клітинної стінки бактерій входить мурен, він є гетерополімером, який побудований з N-ацетилглюкозамін, N-ацетилмурамової кислоти. Вони утворюють ланцюги, які пов’язані пептидними зв’язками і утворюють муреїнову сітку. У грампозитивних бактерій клітинна стінка складається з багатошарового мурену (до 9% її маси), тейхоєвих кислот, лізіну і невеликої кількості ліпідів, полісахаридів, білків. У грамнегативних бактерій клітинна стінка значно тонша, вона містить одношаровий мурен (до 10%), ліпополісахариди, ліпопротеїди, фосфоліпіди, діамінопімелінову кислоту. Деякі мікроорганізми на поверхні клітин утворюють слизовий шар або капсулу. Хімічний склад шару полісахариди, поліпептиди. Слиз можуть утворювати бактерії Leuconostoc, викликає псування фруктових сиропів. Функції слизу і капсул – захисна. У патогенів капсула надає стійкість і підвищує вірулентність – ступінь патогенності. Рухомість бактерій Рухомість бактерій пов’язана з наявністю джгутиків. Тип джгути кування є систематико – діагностичною ознакою і генетично запрограмований. Кількість і локалізація джгутиків, їх розміри – характерні визначеному виду. В залежності від розташування джгутиків рухливі бактерії поділяють на наступні групи: а) монотрихи – мають один джгутик на кінці б) амфітрити – мають два полярно розташований джгутики в) лофотрихи – мають пучок джгутиків на одному кінці г) амфілофотрихи – мають два пучки полярно розташованих джгутиків д) перитрихи – мають хаотично розташовані джгутики по всій поверхні клітини Швидкість руху бактерії залежить від кількості та характеру розташування джгутиків, від віку і факторів зовнішнього середовища. Джгутик має вигляд спіральної нитки товщиною 10-20 нм і довжиною до 10 мкм, їх хімічна природа – білок флагелін. Рухомість бактерій визначають методами «висячої» і «роздавленої» краплин. Бактерії рухаються хаотично зі швидкістю до 100 мкм/сек , але здатні до таксисів – спрямованих рухів. Відомі хемо- , аеро- , фототаксис, вони залежать від концентрації хімічних речовин, кисню, ступені освітлення відповідно. На поверхні клітинної стінки деяких мікроорганізмів без джгутиків розміщуються або фімбрії, або пілі – довгі, прямі нитки діаметром 5 нм, довжиною 12 мкм. Їх кількість коливається і може досягати декількох тисяч. Вони бувають загального типу для прикріплення і «статевого» в процесі кон’юктації. Хімічна природа цих структур – білок пілін. Фімбрії також мають вигляд довгих тонких прямих ниток, а їх хімічна природа – вуглеводозв’язувальні білки лектини. Цитоплазматична мембрана Під клітинною стінкою розташована цитоплазматична мембрана (ЦПМ), яка є обов’язковим структурним елементом клітини і оточує цитоплазму. Бактеріальна клітина втрачає життєздатність при порушенні її цілісності. На долю ЦПМ припадає всього 8-15 % сухої речовини клітини. Загальна товщина приблизно 5-10 нм. У більшості прокаріотів ЦПМ єдина мембрана. ЦПМ утворена двома шарами ліпідів (ліпідний біслой), в які включені білки, а зовні розташовані периферичні білки. За хімічним складом вона містить 50-75% білків, 15-45% ліпідів та незначну кількість вуглеводів. ЦПМ грає найважливішу роль в метаболізмі бактеріальної клітини. Вона є осмотичним бар’єром і регулює осмотичний тиск в клітині, контролює транспорт речовин в клітину та виведення метаболітів назовні. У бактерій ЦПМ виконує енергетичну функцію. ЦПМ бактерій – структура, де відбуваються окисно-відновні процеси. ЦПМ – енергетичні станції з ферментами окислювального фосфорилювання. ЦПМ приймає участь в поділі нуклеоїду, оскільки молекула ДНК при цьому процесі прикріплюється до неї. Вона бере участь у синтезі компонентів клітинної стінки та капсули. Цитоплазма Цитоплазма являє собою колоїдну систему, яка складається з двох фракцій: цитозоль та структурні елементи. Цитозоль – це фракція цитоплазми, яка має гомогенну консистенцію. У молодих вегетативних клітин міститься 85% води. В воді утворюється колоїдна система з білків, нуклеотидів, БАР, вітамінів, осмотично-активних речовин, вуглеводів, мінеральних елементів, токсинів. Друга фракція включає різноманітні структурні елементи клітини: генетичний апарат, плазмідм, рибосоми, мезосоми, включення, внутрішньоклітинні структури, вакуолі. Рибосоми – це органоїди, мають 10-20 нм в діаметрі і складаються з РНК (60%) та білка (40%).Кожна бактерія містить від 5000 до 50000 рибосом, які виконують важливу фізіологічні функцію – синтез білків. Під час активного синтезу білків рибосоми утворюють специфічні ланцюги - полісоми. Синтез білка йде в 2 етапи: за один етап нова молекула білка збільшується на одну молекулу амінокислоти. Багато бактерій разом з хромосомною ДНК мають в цитоплазмі позахромосомні кільцеві або лінійні ДНК дуже невеликого розміру, які називають плазміди. В плазмідах закодована важлива інформація, що визначає життєдіяльність клітини в певних умовах, в тому числі хвороботворність, структуру ферментів, які дозволяють клітині знешкоджувати деякі антибіотики та інше. Мезосоми – це тільця розміром 100 А, вони утворюються з ЦПМ. У ЦПМ існують інвагінації - складки. Вони мають форму бульбашок, можуть нагадувати сітку, можуть бути трубчасті, пластинчасті. Там локалізовані окисно-відновні ферменти, тобто енергетичний обмін. Поруч з цим мезосоми – місце прикріплення плазмід, синтезу ферментів. Внутрішньомембранні структури виконують різноманітні функції. У прокаріот вони забезпечують дихання, захист від УФ променів, фотосинтез, окисно-відновні процеси. В них містяться бактерії, хлорофіл, каротин та інші пігменти. Включення – гранули різної форми та розмірів або краплі. Наявність їх в клітині не можна вважати за постійну ознаку мікроорганізму, оскільки включення зв’язані з фізичними та хімічними умовами середовища існування та можуть розглядатися як запасні джерела енергії та поживних речовин. Будова спори екзоспоріум зовнішня оболонка спори внутрішня оболонка спори корт екс (кора) клітинна стінка зародку цитоплазматична мембрана цитоплазма з ядерною речовиною Рис. Будова зрілої ендоспори Спори бактерій – ендоспори – внутрішньоклітинні утворення круглої або овальної форми. При забарвленні бактерій за Грамом клітина – синя, а спора прозора. Продукція спор – стадія циклу розвитку паличкоподібних грам позитивних Bacillus та Clostridium (виняток Lactobacillus), яка виробилась в процесі еволюції в боротьбі за збереження виду. Функція спор бактерій – захист. Спори знаходяться в стані анабіозу – не розвиваються, не розмножуються, але зберігають життєздатність. При попаданні в благо приємні умови одна спора проростає в одну вегетативну клітину. Спори утворюються в несприятливих умовах, під впливом фізичних та хімічних факторів: низька вологість, температура, висока концентрація речовин, радіація, УФ промені. Процес спороутворення йде від 18 до 72 годин і відбувається по стадіям. Спочатку утворюється спорогенна зона і проспора, потім йде дозрівання спори. На 1 етапі втрачається вода, розпадаються материнські білки, синтезується специфічна лише для спори діпіколінова кислота, активно поглинається кальцій, який з нею дає халатні комплекси. На 2 етапі йдуть формування багатошарової оболонки і всіх структур. Спора відрізняється від вегетативної клітини підвищеною стійкістю до несприятливих умов. Властивості спор: - термостійкість. В той час, коли вегетативні клітини гинуть при 80 °С за 10 хвилин, спори гинуть при автоклаву ванні протягом 24 хвилин при температурі 120°С при тиску 1 атм (1,61∙10³Па). У висушеному стані вони гинуть при нагріванні до 150-160°С протягом декількох годин. Спори Clostridium botulinum витримують кип’ятіння протягом 5-6 годин. Спори окремих видів бактерій відрізняються особливою термостійкістю. Спори Clostridium botulinum можуть складати залишкову мікрофлору стерилізованих консервів, також спори Clostridium botulinum являються еталонною тест – культурою при науковому обґрунтуванні режимів стерилізації. Терморезистентність спор обумовлена низьким вмістом води (до 40%, вона знаходиться у зв’язаному стані) та вмістом дипіколінату кальцію. - хімічна стійкість спор обумовлена непроникністю багатошарової оболонки. - стійкість до радіації, УФ-променів пов’язана зі значною концентрацією сірковмісних амінокислот (цисті, цистеїн). В зовнішньому середовищі спори можуть зберігатись тисячі років. Розрізняють декілька видів типів спороутворення (див. рис.). Якщо при утворенні спори в центрі клітини форма її не змінюється, то такий тип спороутворення називається бацилярним, він властивий представникам роду Bacillus. Коли клітина в середині потовщується та набуває вигляду веретина, то такий тип спороутворення називається клостридіальним (він характерний для збудника гниття білків Clostridium sporogenes). Іноді спора утворюється ближче до кінця клітини і тоді клітина набуває вигляду тенісної ракетки – це плектридіальний тип спороутворення (він притаманний збуднику ботулізму Clostridium botulinum). Клостридіальний та пектридіальний типи властиві бактеріям роду Clostridium. Мікроміцети Мікроміцети – це численна та різноманітна група, яка включає до 100 тисяч видів. Вони дуже поширені у природі і зустрічаються майже в усіх кліматичних зонах. Найбільш розповсюджені у грунтах, а також у водоймищах. Утворюють на поверхні субстратів цвіль різного кольору, тому їх називають плісеневими грибами. За типом дихання – аероби і розвиваються переважно на поверхні субстрату. Але є і мікроаерофіли, які розвиваються при невисоких концентраціях кисню (<5%) і здатні проростати в середину субстрату. За типом живлення гриби – хемогетеротрофи. Джерелом вуглецю для них можуть бути вуглеводи, органічні кислоти, білки. Джерелом азоту для плісеневих грибів є амінокислоти, білки, а також неорганічні речовини. Таким чином, субстратом для розвитку грибів можуть бути як харчові продукти, сировина і корми, так і технічні матеріали (целюлоза, резина, фарби). Псування продуктів, що викликають плісеневі гриби, називається пліснявінням. Більшість грибів є мезофілами і віддають перевагу середнім температурам 16-27°С. Температурний оптимум у грибів нижчий, ніж у бактерій, є холодолюбиві види, які відносяться до психрофілів. Найбільш холодостійкі види – Cladosporium gerbarum, Thamnidium elegans. Гриби здатні розвиватися при вологості повітря 70-100%. Серед них є і ксерофіти, які розвиваються при вологості до 65%.Вони псують солодку продукцію з низьким вмістом вологи (мармелад, джем, пастилу). Інтоксикації грибкової природи називають мікотоксикозами, а метаболіти грибів, які мають токсичні властивості, називають мікотоксинами. Відомо більш двохсот індивідуальних мікотоксинів. Найбільш повно вивчена хімічна природа афлатоксинів, зеараленону, трихотеценів, охратоксинів, стеригматоцистину. Більшість мікотоксинів термостійкі, канцерогенні, мають кумулятивні властивості. Мікотоксини можуть зберігатися в продуктах навіть при стерилізації. Для запобігання ураження плісеневими грибами загальноприйняті технології зберігання сировини доповняють обробкою спеціальними хімічними препаратами – плісеневими інгібіторами, які містять органічні кислоти та їх солі. Пряме сонячне світло гальмує розвиток плісеней, але чергування світла і темряви стимулює ріст і спороутворення. Багато видів грибів, що містять пігменти, є стійкими до УФ світла і радіації. Плісеневі гриби мають і позитивне значення для харчової промисловості. Деякі гриби використовують у заквасках для виробництва кисломолочних продуктів і сирів, для одержання ряду органічних кислот (лимонної, щавлевої, яблучної), антибіотиків, вітамінів, ферментів. Плісеневі гриби можуть синтезувати різні вторинні метаболіти, багато з яких володіють біологічною активністю. Метаболіти грибів, які здатні викликати токсичну дію у людей і тварин, наз. мікотоксинами. Морфологія та будова клітин мікроміцетів Вегетативне тіло грибів називається міцелієм або грибницею. Міцелій являє собою систему розгалужених ниток-гіфів, що складаються з довгих клітин, які розміщені в один ряд. Міцелій буває двох типів: септований і несептований. Септи являють собою поперечні перегородки, які поділяють міцелій на ряд окремих клітин. Септи мають центральну пору, через яку з клітини в клітину вільно перетікають цитоплазма і ядра. Більша частина гіфів розвивається над поверхнею субстрату і називається повітряним або поверхневим міцелієм. Саме тут розташовані органи розмноження.Гриби мають еукаріотну будову клітини, яка подібна до будови рослинних клітин. Зовні клітина грибів покрита багатошаровою стінкою, яка на 80-90% складається з полісахаридів (хітин, целюлоза). Під стінкою розташована ЦПМ, яка оточує цитоплазму. В цитоплазмі містяться ядра (від 1 до 30). Ядро оточене власною ядерною мембраною з порами, містить ядерце і хромосоми. В ядерці відбувається синтез попередників рибосом, які транспортуються через пори ядра в цитоплазму. В цитоплазмі містяться 30-50 тисяч рибосом. В клітинах грибів є система внутрішньо - клітинних елементарних мембран. Клітини грибів містять органоїди: ядро, мітохондрії, ендоплазматичну сітку, апарат Гольджи, лізосоми. Мітохондрії – багатокамерні трубочки з еластичними стінками. Вони є енергетичним центром клітини. Ендоплазматична сітка - мембранна система, в якій розташовані ферменти, що відповідають за біосинтез вуглеводів, ліпідів і транспорт речовин всередині клітини. Апарат Гольджі – здійснює транспортування речовин, що синтезуються в ендоплазматичній сітці, і вилучення продуктів обміну. Лізосоми – розщеплюють білки, ліпіди, полісахариди до простих сполук. У випадку пошкодження лізосом ферменти виходять в цитоплазму і здійснюють лізис (розчинення усіх органоїдів). Способи розмноження мікроміцетів Міцелі альні гриби розмножуються вегетативно та за допомогою спор. Вегетативне розмноження відбувається за допомогою шматочків гіфів та міцелію. Будь-яка частина міцелію здатна до росту. Шматочки міцелію відриваються від гриба та розносяться вітром, попадають на відповідний субстрат, проростають і утворюють новий організм. Спори в еукаріотичних організмах виконують подвійну функцію – розмноження та збереження виду. Спороутворення може відбуватися статевим і безстатевим шляхом. Безстатеве спороутворення зв’язане з утворенням спеціалізованих репродуктивних органів без попереднього злиття клітин. Безстатеве розмноження нижчих грибів здійснюється внутрішніми спорами або ендоспорами, вищих грибів – зовнішніми спорами або екзоспорами. Ендоспори утворюються в середині особливої клітини, яка наз. спорангієм . При дозріванні оболонка під впливом ферментів грибів і вологи розпливається і спори висипаються у зовнішнє середовище. Екзоспори прийнято називати конідіями або конідієспорами, а плодоносний гіф – конідієносцем. Конідії розповсюджуються повітряними потоками і в сприятливих умовах проростають, утворюючи новий міцелій. Статеве розмноження грибів обов’язково включає злиття двох ядер. У нижчих грибів спочатку відбувається злиття двох багатоядерних гіфів міцелію. Потім відбувається попарне злиття ядер. Процес закінчується утворенням зігоспори, яка згодом проростає і утворює органи плодоношення. У вищих грибів в залежності від класу розмноження відбувається по різному. В аскоміцетів – злиття ядер і вмісту двох клітин різних гіфів, потім відбувається ділення ядра. Утворення зигоспори. Утворення аскоспор Навколо нових ядер концентрується цитоплазма і утворюється спорова оболонка. Материнська клітина покривається товстою оболонкою і перетворюється в аск (сумку). Всередині може бути від 2 до 8 аскоспор. Зверху сумка покривається переплетенням гіфів. При цьому відбувається утворення плодового тіла. Систематика мікроміцетів Мікроміцети поділяють на шість класів: хітридіоміцети, ооміцети, зигоміцети, аскоміцети, базидіоміцети та дейтероміцети. Хітридіоміцети (Chytridiomycetes). У них міцелій відсітній або слабо розвинутий, тіло гриба являє собою голу цитоплазму. Безстатеве розмноження відбувається за допомогою рухомих зооспор, які утворюються в зооспорангіях. Багато представників цього класу є водними організмами, які розвиваються на відмерлих водоростях або паразитують на них. Деякі існують в грунті, інші відомі як паразити рослин. Ооміцети (Oomycetes) являють групу організмів з характерним статевим процесом – оогамією та рухливими зооспорами з двома джутиками, які утворюються при безстатевому спороутворенні. Більшість ооміцетів є облігатними паразитами, що існують на рослині-хазяїні. Представники родів Pithium, Phytophthora викликають хвороби с/г рослин. Зигоміцети (Zygomycetes) включають декілька порядків, найбільш поширений є мукоральний (Mucorales), що містить 14 родин. Серед мукорових грибів можна відмітити роди Mucor, Thamnidium, Rhizopus. Гриби роду Mucor («головчаста плісень») можуть розвиватися на продуктах рослинного походження. а- спори б- спорангій в- спорангієносець Вони часто псують вологе зерно. Деякі види здатні викликати спиртове та молочно-кисле бродіння. У промисловості мукорові гриби використовуються для виробництва оргенічних кислот, ферментів, каротиноїдів та стеринів. Можуть рости на стінах вологих проміщень у вигляді сірого пухнастого нальоту. Гриби роду Rhizopus відрізняються тим, що їх спорангієносці ростуть групами у вигляді пучків по декілька штук зі сплетення гіфів, що називається вузлом. Спорангієносці зверху мають потовщення – апофізу. Гриб утворює ризоїди, які є органами прикріплення гриба до субстрату і нагадують коріння рослин. З їх допомогою гриб отримує поживні речовини з субстрату. Органами розселення гриба по субстрату є столони. Гриби цього роду вражають ягоди, коренеплоди, бульби, викликаючи «м’яку» гнилизну. Часто зустрічається на харчових продуктах – хлібі, рисі, борошні, плодах та овочах. Гриби роду Thamnidium відрізняються тим, що у головного спорангієносця є бокові відгалуження виделкоподібної форми, а на їх кінцях розташовані невеликі спорангії – спорангіоли.. Вони містять одну або невелику кількість спор. Вид Thamnidium elegans є найбільш холодостійким, тобто психрофітом і здатний псувати продукти навіть в холодильних камерах. Викликає глибинне псування продуктів, синтезує мікотоксин, тому м’ясо і м’ясні вироби уражені Thamnidium elegans не придатні для використання. Аскоміцети (Ascomycetes) або сумчасті гриби. До аскоміцетів, які мають особливе значення в житті людини, відносяться представники родів Aspergillus і Penicillium. Ці гриби – типові мешканці грунту, а також виявляють в повітрі, на зерні, плодах, овочах, харчових продуктах.Серед грибів цих родів відомі продуценти таких антибіотиків як пеніцилін, цитрин, фумагілін та ін. Деякі види синтезують мікотоксини. Рід Aspergillus (лієчка плісень) характеризується розгалуженим багатоклітинним септованим міцелієм. Конідієносці несептовані. На вершині відростають китички. На китичках ланцюжками розташовані конідії (див.рис.а), які часто забарвлені. Деякі види аспергилів використовуються у промисловості – для отримання лимонної кислоти, при виробництві ферментних препаратів, для освітлення соків. Серед аспергилів є збудники грибних захворювань – мікозів. Гриби роду Penicillium мають багатоклітинний, розгалужений септований міцелій. Конідієносці також септовані (див.рис.б) Конідії розносяться потоками повітря і проростають. Певні види Penicillium використовують для отримання ферментних препаратів. Базидіоміцети (Basidiomycetes). Орган спороношення – базидія. До них належать сажкові та іржасті гриби. Базидіоміцетам є шкідник деревини, їстівні гриби, а також різноманітні сапрофіти, що беруть участь у розкладі органічних залишків. Дейтероміцети (Deuteromycetes) мають добре розвинений септований багатоклітинний міцелій. Розмножуються безстатевим шляхом – конідіями. Багато представників даного порядку – Cladosporium, Alternaria, Fusarium, Botrytis. Гриби роду Fusarium мають розгалужений багатоклітинний міцелій, розмножуються конідіями і поділені септами на клітини. 1- Fusarium 2-Botrytis 3-Alternaria 4-Cladosporium 5- Phoma 6- Catenularia а- конідії б- конідієносець Конідієносці відсутні, конідії формуються на кінцях гіфів міцелію. Fusarium вражає картоплю, томати, буряк, цибулю, часник, злакові культури. При вживанні хліба із зерна, враженого цими грибами, виникає захворювання, що наз. «п’яна хвороба». При цьому спостерігається слабкість, головний біль, блювання, розлад зору, біль у шлунку. Рід Botrytis має багатоклітинний міцелій, конідієносці розгалужені, септовані. Вид Botrytis є збудником сірої гнилизни овочів та ягід. Міцелій гриба утворює на поверхні вражених овочів і ягід павутиноподібний наліт білого або сірого кольору. Конідії гриба мають сірувато-зелений колір, що і дало назву псуванню. Рід Alternaria має конідії гранатоподібної форми, що мають декілька поперечних і повздовжних перегородок. Конідії мають темний колір, розташовані поодиноко або сполучені у ланцюжки, сидять на слаборозвинутих конідієносцях. Різні види Alternaria широко розповсюджені у грунтах і викликають у с/г рослин чорну гнилизну (альтернаріоз). Рід Cladosporium має прямі слаборозвинуті конідієносці. На них розвиваються ланцюжки конідій різної форми і розмірів. Зустрічаються кулясті, овальні, циліндричні конідії; конідії з однією або декількома септами, інколи без септ. Певні види добре розвиваються при низьких температурах. Цей гриб виявляється також на сирі, ковбасах, яйцях, маслі. Принципи класифікації, морфологія та будова клітин дріжджів Дріжджі – одноклітинні гриби, що не утворюють справжнього міцелію. Дуже поширені у природі, переносяться дощем, вітром, комахами і найбільш часто зустрічаються на рослинах, де є цукристі речовини. Дріжджі грампозитивні нерухомі організми. За типом живлення – хемогетеротрофи, за типом дихання – факультативні анаероби. Але є невелика група дріжджів, які розвиваються на поверхні субстратів і за типом дихання є аеробами. Клітини дріжджів мають відносно великі розміри (в середньому 2-12 мкм). Дріжджі можуть суттєво змінювати свої форми та розміри. Клітини дріжджів можуть мати різноманітну форму. Зустрічаються кулясті, овальні, еліптичні, циліндричні, лимоноподібні та інші форми. За будовою клітини дріжджі відносяться до еукаріот. Дріжджова клітина має клітинну стінку. Під клітинною стінкою розміщена цитоплазматична мембрана, що охоплює цитоплазму клітини, в якій містяться органели та включення. Рибосоми у дріжджів розміщені в цитоплазмі і на зовнішньому боці ядерної мембрани. Ядро дріжджів оточене двошаровою мембраною і містить ДНК у вигляді хромосом. Клітини дріжджів на 75% складаються з води. Суха речовина містить 90-95% органічних сполук – білків (30-75%), вуглеводів (25-50%), ліпідів (2-5%). Деякі дріжджі здатні синтезувати пігменти каротиноїди (Rhodotorula, Rhodosporidium). Способи розмноження дріжджів Дріжджі розмножуються вегетативно і за допомогою спороутворення, яке буває статевим і безстатевим. До вегетативних способів розмноження відносяться брунькування, поділ, брунькування поділом. При будь-якому вегетативному способі розмноження попередньо відбувається ділення ядра. Вегетативне розмноження. Брунькування – найбільш розповсюджений спосіб розмноження. Воно характерне для дріжджів, що мають кулясту і овальну форму. Розмноження поділом відбувається внаслідок утворення в дріжджовій клітині однієї або декількох поперечних перегородок – септ. Цей спосіб розмноження характерний для дріжджів циліндричної форми. Брунькування поділом характеризується тим, що утворення дочірніх клітин починається з брунькування, а закінчується утворенням добре помітної септи в районі перешийка. Такий спосіб характерний для дріжджів лимоноподібної форми. Спороутворення спостерігається у дріжджів при несприятливих умовах і відбувається після багаторазового розмноження шляхом брунькування. Оптимальна температура спороутворення 20-30°С. Безстатеве спороутворення відбувається без попереднього злиття дріжджових клітин. Ядро ділиться на декілька частин – відповідно числу майбутніх спор. Ці спори знаходяться всередині материнської дріжджової клітини. Клітина виконує роль аска, тому наз. аскоспорами. При дозріванні аскоспор оболонка клітини розривається і спори попадають у зовнішнє середовище і проростають у вегетативні клітини. Статеве розмноження дріжджів відбувається шляхом копуляції. Внаслідок копуляції можуть утворюватися аскоспори (у аскоміцетів) або екзогенні спори спори дії (у базидіоміцетів). В цілому, спороутворення у дріжджів має подвійну функцію: розмноження і формування стійких видів. Спори дріжджів менш стійкі, ніж спори бактерій. Вони витримують температуру тільки на 10°С більшу, ніж вегетативні клітини дріжджів. Характеристика найважливіших для промисловості родів дріжджів Найбільше значення мають «культурні» дріжджі роду Saccharomyces, які викликають енергійне спиртове бродіння. У виробництві етилового спирту, пива, квасу, при приготуванні дріжджового тіста використовуються дріжджі Saccharomyces cerevisiae. Ці дріжджі мають овальну форму. У хлібопеченні використовують раси дріжджів Saccharomyces cerevisiae, що активно виділяють вуглекислий газ, який сприяє доброму розпушенню і підніманню тіста. Дріжджі поділяються на верхові та низові. Верхові дріжджі здійснюють процес бродіння при відносно високих температурах (20-28°С). Процес бродіння відбувається бурхливо і забезпечує високий вихід спирту. У виноробстві та пивоварстві використовують низові дріжджі. Низові дріжджі здійснюють процес бродіння при відносно низьких температурах (5-10°С). Спиртове бродіння протікає більш спокійно. Вони утворюють порівняно мало піни і каламуті, формують компактний осад у вигляді пластівців. Найбільш поширені у виноробстві винні дріжджі Saccharomyces vini, які мають еліптичну фору. До «диких» дріжджів відносяться дріжджі роду Zygosaccharomyces rautensteinii. Ці дріжджі осмофільні. Розвиваються при високих концентраціях цукру і солі (60-80%). Можуть псувати мед, сироп, варення, джем, згущене молоко з цукром, засолене м’ясо та рибу. Розмножуються статевим шляхом, викликають дуже повільне бродіння і в результаті накопичують до 10% спирту. Дріжджі роду Schizosaccharomyces pombe є енергійними збудниками спиртового бродіння, але воно відбувається повільно. Можуть зброджувати глюкозу, сахарозу, мальтозу і декстрини, також яблучну кислоту в спирт і вуглекислий газ. Мають циліндричну форму із закругленими кінцями. Розмножування відбувається поділом. Використовують у виробництві рому і деяких сортів пива. Дріжджі роду Saccharomycodes мають великі розміри, розмножуються брунькуванням поділом. Молоді клітини овальної форми, а дозрілі – лимоноподібної. Здійснюють спиртове бродіння з утворенням до 10% спирту. Це шкідники виноробства, які викликають помутніння вин, утворюють оцтово-кислий ефір, що надає вину гострий неприємний прокислий запах. Рід Candida має клітини овальної і циліндричної форми. Вони є аспарогенні дріжджі. Рід Candida розмножується брунькуванням. Не викликають спиртового бродіння і тому є шкідниками бродильного виробництва. Деякі види цього роду завдають шкоди дріжджовому виробництву, тому що якість хлібопекарських дріжджів знижується. Різні види роду Candida використовуються для отримання кормового білка та білково-вітамінних концентратів. З 500кг дріжджів можна отримати 50т білка. Існують патогенні види, які викликають кандидози, тобто уражають слизові оболонки рота, а інколи шкіри. Дріжджі роду Torulopsis викликають спиртове бродіння і тому використовуються у виробництві кефіру і кумису. Мають кулясту, інколи овальну форму. Розмноження – численне брунькування. У виноробстві вважаються шкідниками, тому що утворюють слиз. Деякі дріжджі цього роду використовують для промислового одержання кормового білка. Дріжджі роду Rhodotorulа відіграють певну роль у виробництві молочнокислих продуктів. Дріжджі можуть розмножуватися у молоці і мають здатність зброджувати лактозу. Але розвиток дріжджів в молоці більш повільний, ніж молочнокислих бактерій. Молочнокислі продукти, що виробляються з використанням заквасок дріжджів, мають лікувально-профілактичні властивості, тому що дріжджі синтезують антибіотичні речовини, активні проти патогенних штамів кишкової палички і збудника туберкульозу. Віруси Відмінні ознаки вірусів, будова віріонів, морфологія вірусів В 1880 році Пастер застосував вакцини для лікування сказу, але про вірусну природу цієї інфекції, в той час було ще невідомо. Основоположником вірусології зїявися Івановський, він в 1892 р. відкрив збудника тютюнової мозаїки, якого не затримував бактеріальний фільтр. Віруси (від лат. virus - отрута) –особлива форма життя, для якої відмінними ознаками, за якими вона відрізняється від інших живих істот є те, що віруси не мають клітинної будови, містять тільки один вид нуклеїнової кислоти та не здатні репродуктувати поза живою клітиною. Віруси – облігатні паразити. Окрема зріла вірусна частка одержала назву віріон. Віріон складається з однієї молекули нуклеїнової кислоти та білкової оболонки. Оболонку віріонів називають капсидом (від сарsa – вмістилище). Капсиди утворюються з білкових субодиниць (поліпептидів), які називаються капсомерами. Їх кількість та метод укладки є постійним для кожного виду вірусів і використовується як таксономічна ознака. Капсид віконує захисні йункцї і має досить високу стабільність до різних факторів внутрішньоклітинного середовища і особливо, до дії протеолітичних ферментів. Друга функція капсида полягає у забезпеченні адсорбції вірусів лише на тих клітинах, де може відбуватись їх розмноження. У вірусів носієм генетичної інформації можуть бути як молекули ДНК, так і молекули РНК. Розміри вірусів коливаються у межах від 8 до 750нм. Вони проходять крізь бактеріальні фільтри, а побачити їх можна тільки за допомогою електронного мікроскопа. Віруси – ультрамікроорганізми. За формою віріонів віруси поділяються на: паличкоподібні (віруси тютюнової мозаїки, сказу та ін.), сферичні (віруси грипу, курячої саркоми, кору та ін.), кубовидні (віруси натуральної віспи, папіломи людини і тварин, аденовіруси, ентеровіруси тощо), ниткоподібні (віруси мозаїки пшениці, квасолі, сої, кавунів) булавовидні (віруси бактерій). Хімічний склад вірусів та їх відношення до факторів навколишнього середовища Елементарний склад віріонів в середньому може характеризуватись такими показниками (%): вуглець – 50 - фосфор – 0,4-0,5 кисень – 20 - сірка – 0,1-0,2 водень – 7 - зольні елементи – 2,5 азот – 16 До складу простих вірусів входить нуклеїнова кислота та білок. Складні віруси містять також ліпіди, вуглеводи та ферменти. Нуклеїнова кислота (ДНК або РНК) становить від 1% до 40% маси віріона. Маса білків становить 70-90%, які поділяються на структурні та не структурні. Кількість ліпідів – 15-35%, кількість вуглеводів – 10%. Віруси не чутливі до дії низьких температур. При дії високих температур більшість вірусів інактивується. Але вірус гепатиту термостійкий. Кислоти, луги, дезінфікуючі речовини активно знищують віруси. Ультрафіолетові промені проявляють сильну інактивуючу дію. Деякі віруси, інактивовані формаліном, зберігають імуногенні властивості, що дозволяє використовувати формалін для одержання вакцин. Класифікація вірусів Віруси характеризуються специфічністю, тому залежно від того, які організми вони вражають (на яких паразитують), їх поділяють на: 1) віруси рослин (фітопатогенні), які поділяються на спіральні паличкоподібні (вірус тютюнової мозаїки), спіральні ниткоподібні (х-вірус картоплі, вірус жовтухи цукрового буряка), сферичні або ікосаедричні (вірус некрозу тютюну), бацилоподібні або кулясті (вірус карликової кукурудзи, жовтої карликової картоплі, мозаїки озимиї пшениці). Генетичним матеріалом фітопатогенних вірусів найчастіше служить РНК. Вірусні хвороби рослин є хронічними і одужання не настає. 2) віруси, патогенні для тварин та людини. Відомо більше 500 видів. Вони містять або одноланцюгову РНК, або дволанцюгову ДНК. Деякі віруси вражають тільки один вид тварин. Потрапляють до організму людини контактним шляхом (вірус герпесу), через дихальні шляхи (віруси грипу, кору, віспи), з їжею або водою через кишково-шлунковий шлях (віруси поліомієліту, гепатиту А), через кров при укусах комах і тварин (віруси енцефаліту, сказу), при ін’єкціях (вірус гепатиту В, вірус набутого імунодефіциту) Страницы: 1, 2 |
|
© 2000 |
|