РУБРИКИ |
Медицинская генетика |
РЕКЛАМА |
|
Медицинская генетикаВозможно, в будущем человечество сумеет влиять на баланс своего потомства. §5. Диагностика генетических болезней.Аристотель в своей “Истории животных” упоминает о возможности предсказать пол неродившегося плода с помощью таких критериев, как учет стороны, на которой ощущается движение плода, или даже оценка общего состояния матери. В действительности только в сравнительно недавнее время были разработаны точечные методы для изучения плода человека in utero. В середине 1950-х годов несколько лабораторий почти одновременно сообщили, что пол плода может быть определен исследованием полового хроматина в клетках амниотической жидкости. Около 10 лет спустя несколько групп исследователей почти одновременно сообщили о том, что путем изучения клеток амниотической жидкости можно не только определить пол плода, но и, выращивая клетки в культуре, исследовать их хромосомы. Таким образом могут быть оценены особенности хромосом плода. Позднее Надлер (1968) показал, что культивируемые клетки амниотической жидкости могут быть также использованы для дородовой диагностики некоторых биохимических нарушений. Эти публикации проложили путь последующим исследованиям, в результате чего в последние 3-4 года в этой области достигнуты значительные успехи. Методы, которые используются или могут быть полезны в дородовой диагностике генетических болезней, можно разделить на те, при помощи которых изучают непосредственно плод, и методы, по результатам которых плод изучают косвенно, например, по изменениям в крови и моче матери: §5.1. Методы дородовой диагностикиА. Прямые (плодные) 1. Рентгенография: 1) скелета 2) мягких тканей (амниография, фетография) 2. Сонография (исследование ультразвуком) 3. Электрокардиография 4. Фетоскопия 5. Биопсия 1) амниона 2) плаценты 3) плода Б. Косвенные (материнские) 1. Кровь, например, лимфоциты плода. 2. Моча, например, экскреция эстриола. Так, было установлено, что в материнском кровотоке имеется небольшое количество лимфоцитов, содержащих ХУ половые хромосомы, если развивается плод мужского пола. Какое значение имеют эти данные и могут ли они быть использованы в дородовой диагностике, еще не известно. Изучение продуктов обмена веществ в моче матери уже можно рассматривать с точки зрения их ценности в дородовой диагностике. Методы исследования непосредственно плода включают рентгенографию для установления патологии скелета, амниографию, при которой контрастный материал вводится в амниотическую полость и очерчивает плаценту и мягкие ткани плода, и фетографию, когда используется контрастное вещество, имеющее сходство с vernix caseosa, и поэтому очерчивающее мягкие ткани плода. Такие методы, как сонография, с помощью которой можно также установить врожденные нарушения, и элекардиография плода, которая может быть использована в диагностике врожденной блокады сердца in utero, оказываются полезными только в поздние сроки беременности. Фетоскопия – новый прием, который позволяет производить раннее определение врожденных аномалий. Возможность биопсии амниотических оболочек или плаценты находится еще на этапе экспериментального изучения. Наиболее широко исследуются амниотическая жидкость и содержащиеся в ней клетки, получаемые путем амниоцентеза обычно через переднюю брюшную стенку. Эта книга касается почти исключительно результатов подобных исслндований, направленных на дородовую диагностику наследственных болезней. Создание методов молекулярной диагностики на уровне генных мутаций было революционным прорывом в области обще и прикладной генетики. Классической основой современных молекулярно-генетических методов стала технология блот-гибридизации по (1975). Основными методическими приемами, используемыми при молекулярной диагностике, являются: получение (клонирование) зондов фрагментов ДНК с точно установленными нуклеотидными последовательностями и меченых радиоизотопами или флуоресцирующими соединениями; разрезание исследуемой молекулы ДНК (больного) на фрагменты с помощью ферментов – рестриктаз; электрофоретическое разделение полученных фрагментов в геле; гибридизация исследуемых и разделенных в электрическом поле фрагментов и меченого ДНК-зонда; перенос гибридных фрагментов из геля на целлюлозу (что достигается путем “промокания” блоттинга) (to blot по - английски – промокать) количественный анализ интенсивности зон гибридизации методом аутодиографии или измерения флуоресценсии. Так как количество доступной для анализа ДНК может быть очень велико (например ДНК, выделенной из клеток амниотической жидкости или всего лишь из одной клетки), выход был найден, благодаря разработке полимеразной цепной реакции (polymerase chain rection или PCP), которая позволяет получить множество – до 1000 копий единственной молекулы ДНК. Это позволяет производить молекулярную диагностику на ДНК, полученной даже из единственной клетки эмбриона или выделенной из сперматозоида. При ДНК – диагностике наследственнных болезней используются различные подходы, в зависимости от того, известен или неизвестен ген, с мутацией которого связано заболевание, известен ли ее харакер. В тех ситуациях, когда ген известен, установлена молекулярная природа мутации, возможна прямая ее идентификация с помощью соответствующего зонда ил пробы *они должны включать известную мутацию, чтобы произошла гибридизация зонда с исследуемой ДНК). При ДНК – диагностике неизвестных генных мутаций исследуется семейное распределение рестикционных фрагментов или полиморфизм дляны рестикционных фрагментов (ПДРФ). Такой полиморфизм является хорошим генетическим маркером наследования болезни. Об этом говорилось выше. При ДНК – диагностике болезней, при которых неизвестен ни ген, ни первичный биохимический дефект, также исследуется полиморфизм длин рестрикционных фрагментов и осуществляется анализ сцепления определенных фрагментов ДНК с признаками болезни. За последние годы на основе анализа сцепления удалось картировать (т.е. установить локализации на хромосомах) гены многих заболеваний – синдромов Марфана, Элерса – Данлоса, нейропатии Шарко – Мари и многие другие. Созданы ДНК – диагностикумы для ряда аутосомно – рецессивных (муковисцидоз, фенилкетонурия, талассемия) и аутосомно – доминантных заболеваний (миотония Штейнерта, нейрофиброматоз Реклингхаузена и др.). Стала возможной прентанальная диагностика и выявление гетерозиготного носительства мутантных генов – ПМД Дюшенна, муковисцидоза, синдрома Леш – Найена, поликистоза почек, ретинобластомы, хореи Гентингтона. В то время как частота инфекционных заболеваний уменьшается и улучшаются факторы внешней среды, возрастает относительная роль генетических болезней как причины смертности и заболеваемости. Например, Картер (1963) показал, что за последние 70 лет частота врожденных аномалий как причина смертности новорожденных увеличилась приблизительно с 5 до 20%, а Робертс, Чавес и Курт (1970) обнаружили, что среди причин гибели детей в больнице свыше 40% были генетическими или частично генетическими. Общая частота генетических болезней у новорожденных обычно около 3-5%. В дополнение имеется много общих семейных болезней, таких, как шизофрения или диабет, которые проявляются позднее в течение жизни. При анализе генетического заболевания важно помнить не только о разнообразии, о типах его наследования, но и о тяжести, возрасте, при котором оно начинает проявляться, его продолжительности и отягощении для индивидуума и общества. На основании этих данных составляют план профилактических мероприятий. Тяжелая болезнь плода, сопровождающаяся смертью при рождении, как, например анэнцефалин, влечет небольшую отягощенность обществу или семье. С другой стороны, если пораженные индивидуумы выживают и нуждаются в продолжительном уходе и лечении, как при spina bifida, состояние характеризуется значительной отягощенностью для окружающих таких больных людей и становится дорогостоящим для общества. Если дефект может быть исправлен хирургически, как при трещине губы (с наличием трещины или без нее), то расходы при этом невелики, но некоторые косметические дефекты остаются у индивидуума на всю жизнь. При тяжелых заболеваниях, выводящих из строя, таких, как мышечная дистрофия Дюшенна и синдром Дауна, отягощенность для индивидуума и семьи, расходы невелики, если ребенок остается дома, и значительны, если он помещается в лечеюное учереждение. Аналогично сказанному тяжесть поздно проявляющихся болезней таких, как хорея Гентингтона и шизофрения, вызывающих значительные отягощения для пораженных индивидуумов, одинакова для их семей и общества. §5.2. Степень рискаОсновной статистический показатель в дородовой диагностике – степень риска поражения плода. Этот показатель может определить, есть ли медицинские показания для дородовой диагностики и приемлема ли она для родителей. Во многих случаях степень риска может быть легко получена на основе только знаний типа наследования данного состояния. Однако же для простых менделирующих состояний степени риска могут быть не всегда точно установлены. Для оценки риска неменделирующих состояний может быть использован эмпирический подход, но имеются новые способы для сочетания эмпирического подхода и анализа родословной, чтобы измерить степень специфического риска для каждой обследуемой мемьи. §5.3. Аутосомные нарушенияТрадиционно установленная степень риска в 25 и 50% обычно относится соответственно у рецессивным и доминантным состояниям. Однако могут быть отклонения из-за наличия генетической гетерогенности, неполной пенетрантности, фенокопий, начала болезни в различном возрасте, случаев мутаций и скрещиваний пораденных родителей. Общая проблема, которая возникает в анализе поздно проявляющихся доминантных состояний, состоит в том, что неизвестно, нормален ли индивидуум, имеющий пораженного родителя, или болезнь у него еще проявится. Возможность быть носителем можно установить по графику, на котором показано, как распределяется в популяции возраст, характерный для начала болезни. §5.4. Нарушения, сцепленные с Х-хромосомой.Если мать знает, что является носителем нарушения, сцепленного с Х-хромосомой, риск появления пораженного сына, конечно, 25%. Однако, если статус матери сомнителен, предсказать степень ее риска может быть очень сложно. Сведения из родословной (включая данные о нормальных мужчинах) и о каких-либо носителях, обнаруженных среди женщин-родственниц, могут позволить более точно измерить степень риска. Мерфи (1969) показал, как методы Беезина могут быть использованы для вычисления степени риска, в 1970 году он формализовал методы в вычислительную систему ENSU (Equivalent Normal Son Unit – эквивалентный показатель нормального сына). Могут быть также использованы сведения о биохимических исследованиях матери–носителя и других женщин-родственниц, а формулы и графики полезны для вычисления степени риска летальных состояний, сцепленных с Х-хромосомой. Очевидно, что дородовая диагностика имеет значительные возможности в предупреждении генетического заболевания как в отдельных семьях, так и в популяции в целом. В настоящее время ее использование ограничено, а ее влияние небольшое, но так как исследования углубляются, и создаются новые методики для дородовой диагностики большого количества генетических болезней, она может быть использована шире, и ее влияние на генетические болезни может увеличиться. Важно, что клиницисты установили природу и степень любых рисков, вызванных различными методами и способами дородовой диагностики, так что теперь можно определить только воздействие этой процедуры на здоровье. Регистр амниоцентеза уже создан. В общем дородовая диагностика, вероятно, оказывает целебное (евгеническое) воздействие на генофонд. Только, если имеется полная репродуктивная компенсация при потере пораженных плодов, и если больные индивидуумы не будут давать потомство, будет оказано вредное (дисгеническое) воздействие на популяцию, но даже тогда оно будет небольшим, могущим измениться. Чтобы внедрить дородовую диагностику в практику, должны быть разработаны методы для установления степени риска либо в отдельных семьях, либо путем скринирования всех родителей. Это изменит назначение медицинской генетики от генетики, консультирующей ретроспективно, к службе генетического предупреждения на перспективной основе. Может возникнуть новое отношение к ответственности родителей к воспроизводству потомства, которое вместе с одобрением планирования семьи обеспечит насколько это возможно благополучие их детей и генетическое, и со стороны внешней среды. Полезно заметить, что дальнейшая либерализация законодательства, позволяющая осущетсвлять легкую гибель больным новорожденным, сделает дородовую диагностику в основном ненужной. Однако это маловероятно в ближайшее время, так что дородовая диагностика должна остаться полезным методом по предупреждению генетических заболеваний. §6. Генетические болезни.Середина и вторая половина XX столетия ознаменовались значительным уменьшением частоты и даже полной ликвидацией ряда инфекционных заболеваний, снижением младенческой смертности, увеличением средней продолжительности жизни. В развитых странах мира центр внимания служб здравоохранения был перемещен на борьбу с хронической патологией человека, болезнями сердечно-сосудистой системы, онкологическими заболеваниями. Стало очевидным, что прогресс в области медицинской науки и практики тесно связан с развитием общей и медицинской генетики, биотехнологии. Потрясающие достижения генетики позволили выйти на молекулярный уровень познания генетических структур организма, и наследования, вскрыть сущность многих серьезных болезней человека, вплотную подойти к генной терапии. Получила развитие клиническая генетика – одно из важнейших направлений современной медицины, приобретающих реальное профилактическое значение. Выяснилось, что множество хронических болезней человека есть проявление генетического груза, риск их развития может быть предсказан задолго до рождения ребенка на свет, и уже появились практические возможности снизить давление этого груза. Генетический груз включает, с одной стороны, патологические генные мутации, наследуемые от родителей и прародителей, и называемые серегационным грузом, если в виде болезни проявляются рецессивные или нелетальные доминантные мутации генов (от латинского segregatio – выщепление). С другой стороны, определенную часть этого груза составляют новые, вновь возникшие генные мутации (в результате мутагенных влияний внешней среды). Они не прослеживаются в восходящих поколениях и составляют так называемый мутационный генетический груз. Согласно данным Н.П.Дубинина, частота спонтанных генных мутаций установлена в пределах 10-10 на геном на поколение. В геноме человека имеется около 100000 генов. Расчеты показывают, что примерно у 10% людей возникают новые мутации, вызванные мутагенным воздействием факторов окружающей среды (радиационный фон Земли, действие продуктов сжигания топлива, влияния вирусов). Безусловно, частота мутаций будет значительно выше в условиях антропогенного загрязнения внешней среды. Каждый человек наследует, как минимум, 10 скрытых мутаций, опасных для здоровья. В целом по А. Кнудсону (1986), величина постнатального генетического груза составляет 0.2 т.е. у 20% членов популяции существует вероятность развития наследственных болезней (моногенных, полигенных или связанных с мутациями генов соматических клеток). Генетический груз проявляется, как бесплодие и спонтанные аборты, выкидыши и мертворождения, врожденные пороки и умственная отсталость. Он определяет риск гемолитической болезни новорожденных, проявления несовместимости матери и плода по ряду антигенов. Суммарная частота моногенных наследственных болезней пока не может быть точно оценена, она колеблется в зависимости от уровня диагностических возможностей и различна в разных этнических группах. Отдельно взятые моногенные наследственные болезни редки, но учитывая колоссальное число нозологических форм, можно определенно сказать, что наследственные болезни вносят существенный вклад в общую патологию человека. Кроме того, по выражению Г.Фанкони, редкие болезни редки до тех пор, пока они нам мало известны. В целом суммарная частота моногенных наследственных болезней в Европейских популяциях может достигать 10%, и не менее 10% приходится на полигенно наследуемые болезни. Пока не существует общепринятой классификации наследственных болезней. Новые открытия свидетельствуют о том, что наряду с классическими законами менделеевского наследования действуют иные, нераскрытые до конца правила и исключения. Стало известно, что так называемое девиантное наследование (дисомии одного родителя), мутации генов соматических клеток, служащих причиной хронических заболеваний, не передающихся потомству. Выяснилось существование внеядерного наследования болезней – митохондриальная патология. В общем виде рабочая классификация наследственных и генетически детермированных болезней может быть представлена в следующем виде: 1. Болезни, обусловленные наследуемой мутацией единственного гена (точковой мутацией – заменой основания в молекуле ДНК или делецией гена)– моногенные наследственные болезни. 2. Болезни, связанные с аддитивными мутациями нескольких генов, среди которых одна мутация может быть доминирующей (эффект главного гена, по Morton) – это полигенно наследуемые мультифакториальные или многофакторные заболевания. Решающую роль в их развитии играют неблагоприятные факторы внешней среды. 3. Болезни, обусловленные хромосомными и генными мутациями соматических клеток, они не наследуются, но могут проявляться, как хроническая нервно-психическая и соматическая патология. 4. Болезни, возникающие в результате сочетания мутаций генов половых и соматических клеток (мутации онкогенов, генов иммунопатологии). 5. Болезни, связанные с мутациями митохондриальных генов (внеядерное материнское наследование). 6. Болезни, характеризующиеся девиантным наеменделевским наследованием (оба рецессивнх мутантных гена наследуются от одного родителя – унипарентальное наследование дисомии, геномный импринтинг). Значительное число моногенных наследственных болезней создает серьезные трудности при их диагностике. Нередко постановка точного диагноза может быть приравнена к научному исследованию, т.к. требует использования сложнейших аналитических или молекулярногенетических методов. Основные сложности состоят в связи с существованием так называемой генетической гетерогенности наследственныз болезней. Генетическая гетерогенность заключается в сходстве клинических признаков и проявлений нескольких болезней, обусловленных различными генными мутациями. Например, по клиническим признакам не всегда возможно различить синдром Марфана и гомоцистинурию. Поликистоз почек может быть связан с мутацией аутосомно-доминантного или аутосомно-рецессивного гена. С другой стороны, дифференциальный диагноз осложняет клинический полиморфизм наследственных болезней, неполное проявление даже типичных признаков, стертые формы болезней, разная локализация патологических процессов. Например, муковисцидоз может проявиться, как мекониальный илеус у новорожденных, хронический воспалительный процесс в легких, как синдром мальбсорбции или как хроническая печеночная недостаточность. Осложняют диагностику фенокопии наследственных болезней, т.е. приобретенные заболевания со сходной клинической картиной. В частности, тяжелые формы рахита представляют собой фенокопии наследственного фосфат-диабета. В клинической генетике и педиатрии часто наблюдается так называемая имитация менделизма. Врожденные внутриутробные инфекции, токсоплазмоз, цитомегалия, краснуха, герпес-нифекция, врожденный гепатит, сифилис – могут наблюдаться у нескольких сибсов, имитируя наследование болезни. Вирус краснухи может персистировать в организме многие годы и инфекция, проявляясь у потомства (у бабушки, матери, дочери) поражениями ЦНС, органа зрения и пороками сердца, симулирует доминантное наследование. У женщин с фенилкетонурией практически всегда рождаютя дети с поражением ЦНС в связи с токсическим действием материнского фенилаланина на развивающуюся нервную систему. При этом ребенок чаще всего не наследует ген фенилкетонурии. Микроцефалия и хориоретинит, вызывнные токсоплазмой, могут быть распознаны, как аутосомно-рецессивный наследственный синдром. Синдром Вильямса – Беарна (аортальный стеноз, лицо эльфа, задержка умственного и физического развития) весьма сходен с врожденной рубеолярной эмбриопатией. Фетальный алкогольный синдром, гидантоиновый синдром могут наблюдаться у нескольких сибсов в семье, имитируя аутосомно – рецессивное наследование микроцефалии и черепно-лицевых дизостозов. Признаки значительного числа наследственных болезней редко повторяются во врачебной практике. Кроме того, огромный перечень известных наследственных болезней не может храниться в памяти врача. В связи с этим необходимы справочно-диагностические системы, хранящие в памяти ЭВМ огромный объем сведений о признаках наследственных болезней. Конечно, ЭВМ не должна ставить диагноз, но может реально помочь в выборе тактики обследования больного. В Московском НИИ педиатрии и детской хирургии разработана справочно-диагностическая система “ДИАГЕН” – диагностика генетических болезней. В память мшины введены признаки около 1400 синдромов и болезней моногенной и хромосомной природы. Система ориентирована на выделение узкого дифференциально-диагностического ряда и отдельных заболеваний. В ней предусмотрена возможность расширения и дополнения перечня болезней. В последней версии она включает не только описания, но типичные фотографии больных, демонстрируемые на дисплее персонального компьютера. §7. Генная терапия.Не подлежит сомнению, что радикальным методом лечения наследственных моногенных болезней должна стать генная терапия, однако, лишь в самые последние годы появились реальные предпосылки для ее практического применения. Значительно раньше появились эффективные методы консервативной терапии – они не изменяют генотип, но направлены на коррекцию метаболических или иммунологических дефектов, возникающих под влиянием мутантных генов. При раннем распознавании болезни с помощью этих методов удается моделирование нормального фенотипа путем целенаправленной диетотерапии, введения витаминов, гормонов, недостающих белков, микроэлементов. Генная терапия – это метод введения фрагмента ДНК в клетки больного человека с целью замещения функции мутантного гена и лечения наследственных болезней. Еще в конце 60-х годов выяснилось, что клетки животных и человека способны поглощать экзогенную ДНК, встраивать ее в свой геном, после чего проявляются экспрессия введенных генов, в частности, в виде синтеза отсутствовавших ранее белков и ферментов. Были разработаны методы доставки ДНК в клетки с помощью вирусов и других носителей. Впервые попытка генной терапии в клинике была предпринята М.Клайном в 1983 году., когда им было осуществлено введения нормального бета-глобинового гена больным бета-талассемией. Позднее была разработана методика генной терапии наследственной недостаточности аденозин-деаминазы (тяжелый иммунодефицит): нормальный ген был введен в клетки костного мозга больного и после их ретрансплантации восстановилась активность фермента, состояние больного улучшилось. Проведены клинические эксперименты по генотерапии рака. В лейкоциты больных злокачественной меланомой и поздними стадиями рака были введены гены, маркирующие злокачественные клетки (чтобы их могла узнавать имунная система). У половины больных размеры опухолей уменьшились в два раза и более. В настоящее время насчитывается более 40 заболеваний, при которых испытывается генная терапия – от редких форм (недостаточность аденозин-деманиазы) до распространенных, таких как рак, болезни сердечно-сосудистой системы и иммунодефициты. Весьма важно, что фрагменты ДНК и соответствующие гены были введены в клетки-мишени, которые были бы способны к последующему делению (клетки печени, стволовые клетки костного мозга и т.п.). Самая сложная проблема – перенос фрагмента ДНК (гена) в клетку. В большинстве случаев для этих целей используются генетически модифицированные вирусы или вирусные векторы, и чаще всего мышиные ретровирусы. Они способны инфицировать любую и вместе с желаемым фрагментом ДНК легко включаются в геном клетки-хозяина ДНК для того, чтобы превратить ретровирусы-векторы, из них с помощью генно-инженерных методов удаляются нуклеотиды, ответственные за их размножение, однако введенный с вирусом-вектором ген передается дочерним клеткам при клеточном делении. Однако, эти векторы не годятся для введения ДНК-фрагментов в неделящиеся клетки человека, например, в нейроны. Они мало пригодны для переноса генов в клетки, отличающиеся низкой митотической активностью в клетки эпителия дыхательных путей. Эти обстоятельства обусловили поиск других вирусных векторов, среди которых внимание привлекли аденовирусы. Из них также удаляются нуклеотиды, ответственные за репликацию. Аденовирусы могут переносить ДНК в неделящиеся клетки, чем отличаются от ретровирусов. Но в этом случае переносимая аденовирусом ДНК не встраивается в геном клетки хозяина, она остается вне хромосом, хотя и проявляет генную активность. В силу эписомальной локализации она не передается дочерним клеткам. Но с другой стороны, аденовирусные векторы позволяют вводить гены в клетки нервной системы, аденовирусные векторы позволяют вводить гены в клетки нервной системы и эпителий дыхательных путей. В качестве вектора генов используется также вирус простого герпеса - тип 1. Этот вектор легко встраивает экзогенную ДНК в нейроны, клетки печени. Как и другие вирусы-векторы, герпес-вирус подвергается генно-инженерной обработке, ведущей у утрате его способности к размножению (деления части вирусной ДНК). Испытываются в качестве векторов ДНК парвовирусы. Наряду с биологическими применяют физико-химические методы введения экзогенной ДНК в клетки хозяина. Для таких целей используется конъюганты ДНК с трансферрином или асиалогликопротеином, для которых на многих клетках имеются рецепторы (лиганд-рецепторный принцип). После связывания с рецептором конъюганты ДНК поглощаются клеткой, хотя вероятность встраивания введенной ДНК в геном хозяина очень невелика. Все же такой ген может временно выполнять свои функции. Разработана технология микроинъекций ДНК в клетки (миоциты), а также введение генов с помощью липосом. Методы генной терапии постепенно входят в арсенал современных эффективных методов лечения наследственных заболеванийчеловека, что особенно важно в тех случаях, когда других возможностей просто не существует. Семейная гиперхолестеринемия – еще одно заболевание – кандидат для генной терапии. Как известно, это заболевание представляет высокий риск для жизни молодых людей, т.к. отличается ранним инфарктом миокарда и ранним атеросклерозом. Оно связано с отсутствием на мембранах клеток рецепторов для липопротеинов низкой плотности, что обуславливает очень высокий уровень холестерина в крови. Так как рецепторы отсутствуют на клетках печени, то пока для введения генов прибегают к частичной гепатоэктомии. С помощью ретровирусного вектора в клетки печени вводится ген рецептора липопротеинов низкой плотности, после чего гепатоциты инъецируются в полую вену. В результате содержание холестерина в крови снижается на 35-50%. Конечно, пока данная технология слишком сложна, чтобы получить широкое практическое применение. Наследственный дефицит гормона роста, проявляющийся выраженной низкорослостью также может быть устранен с помощью генной терапии. Ген гормона роста удалось ввести в миоциты, которые начинали продуцировать этот гормон. В ближайшее время будут проведены клинические испытания данного метода. Ведутся интенсивные разработки методов генной терапии рака. Одна из возможностей состоит в том, чтобы ввести в опухолевые клетки гены, продуцирующие такие белки, которые позволяют иммунной системе организма распознавать и уничтожать эти клетки (например, ген интерферона). Другой путь заключается во введении в опухолевые клетки вирусных генов, которые позволяют использовать с лечебными целями противовирусные препараты (например, ганцикловир при введении гена тимидиин-киназы вируса герпеса). Еще один путь – введение в клетки антионкогенов (генов-супрессоров опухолевого роста). Однако, все эти методы пока находятся на стадии доклинических испытаний. Ген муковисцидоза был введен трем больным в дыхательные пути с помощью аденовирусного вектора, за больными ведется наблюдение. Уже в ближайшем будущем генная терапия займет ведущее место в лечении многих болезней, считавшихся ранее неизлечимыми. Методы трансплантации тканей также могут быть отнесены к категории генной терапии, в частности, трансплантация костного мозга. Гены вводимых стволовых клеток могут активизировать дифференцировку многих клеточных линий – лимфоцитов, моноцитов, полинуклеаров, этитробластов. Это позволяет применять данный метод при лечении некоторых первичных иммунодефицитов гемоглобинопатий, болезни Гоше. Пересадка гепатоцитов открывает другую возможность лечения фенилкетонурии, гиперхолестеринемии, нодостаточности альфа-I-антитрипсина. Пересадка клеток островкового аппарата поджелудочной железы предложена для лечения ювенильной формы сахарного диабета. Сочетание возможностей генетики и клинической педиатрии позволит уже в недалеком будущем решать сложнейшие вопросы лечения и профилактики наследственных моногенных болезней. Современная медицинская и клиническая генетика представляет собой ярчайших пример единения науки и практики. Исследования, еще недавно представляющиеся сугубо теоретическими, в считанные годы получают реальный практический выход на благо здоровья настоящего и будущих поколений. §8. Методы исследования наследственности человека.Основные генетические законы и закономерности имеют универсальное значение и в полной мере приложимы к человеку. Человек как объект генетических исследований имеет ряд особенностей. Как у объекта исследования у него есть свои достоинства и свои трудности. Трудности: большое число хромосом в кариотипе человека; продолжительность цикла развития до наступления половозрелости, человека – одноплодная особь (за одну беременность как правило рождается один ребенок), исключение – рождение близнецов; малое количество детей в браке (обычно, один ребенок); невозможно формировать необходимую схему брака, так как люди свободно скрещиваются (в основе браков лежат любые мотивы, кроме научно-исследовательских целей). Однако исчерпывающие знания по анатомии и физиологии человека (т.к. начиная со времен Галена и Гарвея по настоящее время велись эти исследования), большое число мутаций, пополняемых и в настоящее время, многочисленность человеческой популяции в целом позволяют всегда выбрать нужную схему брака. Для человека характерны все известные в генетике типы наследования признаков: доминантный, кодоминантный, рецессивный, аутосомный и сцепленный с половыми хромосомами, ограниченный полом и др. §8.1. Генеалогический метод.Сущность генеалогического метода состоит в изучении родословных в тех семьях, в которых есть наследственные заболевания. Этот метод помог установить закономерности наследования очень большого числа самых различных признаков у человека, как нормальных, подобных цвету глаз, цвету и форме волос и т.п., так и сопутствующих наследственным болезням. Благодаря хорошо известной родословной удалось проследить наследование гена гемофилии от английской королевы Виктории. Виктория и ее муж были здоровы. Известно также, что никто из ее предков не страдал гемофилией. Наиболее вероятно, что возникла мутация в гамете одного из родителей Виктории. Вследствие этого королева Виктория стала носительницей гена гемофилии и передала его многим своим потомкам. Все потомки мужского пола, которые получили от Виктории Х-хромосому с мутантным геном, страдали тяжелым недугом – гемофилией. На рис. 1 изображено генеалогическое дерево семей, царствовавших в Европе, иллюстрирующее наследование гемофилии (признак рецессивен, сцеплен с Х-хромосомой). Гемофилия (от гемо… и филия…)– наследственное заболевание, обусловленное недостаточностью системы свертывания крови и проявляющееся кровоточивоточивостью. Болеют главным образом мужчины, женщины – лишь носители мутантного гена и передают гемофилию сыновьям.
§8.2. Близнецовый метод.У человека в среднем в одном проценет случаев рождаются близнецы. Они могут быть однояйцевыми и разнояйцевыми. Разнояйцевые, или неидентичные, близнецы рождаются в результате оплодотворения двух яйцеклеток двумя сперматозоидами. Они поэтому похожи друг на друга не более чем братья и сестры, рожденные неодновременно, и могут быть разнополыми. Но иногда одна оплодотворенная яйцеклетка дает начало не одному, а двум (или нескольким эмбрионам). Такие эмбрионы-близнецы развиваются всегда из единственной яйцеклетки и одного сперматозоида, они всегда либо мальчики, либо девочки. И сходство у таких близнецов почти абсолютное, так как они имеют один и тот же генотип. Таких близнецов называют однояйцевыми или идентичными, поскольку они развивались из одной яйцеклетки. Идентичные близнецы представляют собой большой интерес для изучения наследственности человека, так как различия между ними объясняются не различными генотипами, а влиянием условий развития т.е. среды.
§8.2. Цитогенетический метод.Этот метод основывается на микроскопическом исследовании структуры хромосом у здоровых и больных людей. Исследования хромосом человека показали, что многие врожденные уродства и ненормальности связаны с изменением числа хромосом или изменением морфологии отдельных хромосом. У человека известно очень много различных аномалий, связанных с изменением числа или формы хромосом. Эти заболевания называются хромосомными болезнями. В последнее время совместными усилиями медиков и генетиков разработаны методы, позволяющие диагносцировать наличие у плода хромосомных и многих биохимических аномалий даже в период беременности. §8.3. Биохимические методыВ последние годы показано, что очень многие наследственные патологические состояния у человека связаны с нарушением обмена веществ. Так, известны аномалии углеводного, аминокислотного, липидного и других типов обмена. Заключение.Итак, адекватно воспринимать происходящую на наших глазах революцию в биологии и в медицине, уметь воспользоваться ее заманчивыми плодами и избежать опасных для человечества соблазнов - вот что необходимо сегодня и врачам, и биологам, и представителям других смежных специальностей, и просто образованному человеку. Уберечь генофонд человечества, всячески защищая его от рискованных вмешательств, и при этом извлечь максимальную выгоду из уже полученной бесценной информации в плане диагностики, профилактики и лечения многих тысяч наследственно обусловленных недугов - вот задача, которую необходимо решать уже сегодня и с которой мы войдем в новый 21-й век. Краткий словарь терминов.Аллель – одно из возможных состояний гена, каждое из которых характеризуется уникальной последовательностью генов.
Аллели множественные – серия различных аллелей одного гена, возникших мутационным путем и отличающихся друг от друга по своему проявлению, но принадлежащих одному и тому же локусу. Аминокислоты – мономеры белков. Амбидекстры – лица, одинаково успешно владеющие обеими руками. Амплификация – образование дополнительных копий гена. Анализирующее скрещивание – скрещивание гетерозиготы с рецессивной гомозиготой (особь-анализатор), позволяет определить число сортов гамет, образующихся у гибрида. Анафаза – одна из стадий митоза или мейоза, во время которой хромосомы расходятся к противоположным полюсам клетки. Анеуплодия – явление, при котором клетки имеют несбалансированный набор хромосом. Антиген – чужеродная белковая молекула, индуцирующая синтез антитела. Аутосомы – все хромосомы, кроме половых; в соматических клетках каждая аутосома представляет дважды. Вырожденность генетического кода – одной аминокислоте соответствует несколько кодонов. Замена третьего основания кодона не всегда приводит к замене аминокислоты.
Гамета – половая клетка, содержащая гаплоидный набор хромосом. Гаплоидный набор хромосом – это такой набор хромосом, в котором каждая хромосома уникальна, т.е. представлена один раз. Гемералопия (куриная слепота) – неспособность видеть при ночном и сумеречном освещении. Тип наследования – чаще рецессивный, сцепленный с Х-хромосомой, реже – рецессивный или доминантный аутомсомный. Гемофилия – снижение свертываемости крови, имеется несколько форм. Тип наследования – наиболее распространенный – рецессивный, сцепленный с Х-хромосомой.
Ген – участок ДНК, кодирующий синтез одной из видов РНК. В его состав входят участки: промотор, палиндром, смысловая часть, состоящая из экзонов и интронов, а также участок терминации. Геном – совокупность генов в гоплоидной клетке. Генотип – совокупность ядерных генов организма. Генофонд – совокупность аллелей, встречающихся у особей данной популяции. Гомозигота – особь, несущая одинаковые аллели в данном локусе гомологичных хромосом. Группа сцепления – совокупность всех генов, локализованных в хромосоме. Дальтонизм – цветовая слепота, тип наследования – сцепленный с полом, рецессивный. ДНК – дезоксирибонуклеиновая кислота – биологическая макромолекула, носитель генетической информации. ДНК-полимеразы – ферменты, участвующие в синтезе ДНК. Доминирование – один из аллелей, принадлежащих одному локусу, отчетливо подавляет проявление другого, рецессивного аллеля. Евгеника – область биологии, пропагандирующая возможность улучшения человека генетическими методами. Зигота – диплоидная клетка, образующаяся в результате слияния яйцеклетки и сперматозоида. Иммунитет – Устойчивость (резистентность, сопротивляемость, невосприимчвость) организма к различным факторам, позволяющая сохранить собственную целостность и биологическую индивидуальность. Интерфаза – фаза клеточного цикла между делениями клетки, подразделяемая на пресинтетический (G1), синтетический (S) и постсинтетический (G2) периоды. Кариотип – совокупность хромосом организма (диплоидный набор), определяемая величиной, формой и числом хромосом. кДНК – одноцепочечная ДНК, синтезированная путем обратной транскрипции с мРНК при участии ревертазы. Код генетический – единая система записи наследственной информации в ДНК. Кодон (триплет) – проследовательность трех нуклеотидов в молекуле ДНК (или мРНК), кодирующая одну из аминокислот в молекуле белка или определяющая “знаки пунктуации” при считавании информации. Кодоминирование – проявление у гетерозиготных особей признаков обоих аллелей. Компауд – генотип, состоящий из двух различных аллелей одного локуса, встречается в случае множественного аллелихма. Комплементарность – последовательность соответствующих оснований в противоположных цепях ДНК (А-Т, Г-Ц). Локус – место положения гена в хромосоме. Мейоз – процесс деления клетки, приводящий к уменьшению числа хромосом в дочерних клетках вдвое (п). Митоз – тип деления клетки, при котором дочерние ядра несут такле же число хромосом, что и дочерняя клетка. Модификация – фенотипические наследственные изменения, возникающие пдо действием различных факторов среды. Мутаген – фактор, вызывающий мутацию. Мутации – изменения в структуре генетического материала данного организма. Неоплазма – опухолевая ткань. Нуклеотид – мономер ДНК ил РНК, в состав которого входят азотистые основания, углевод и остаток фосфорной кислоты. Онтогенез – индивидуальное развитие организма. Полиморфизм – одновременное присутствие в популяции нескольких форм гена или признака. Половые хромосомы – хромосомы, различающиеся у двух полов, обычно обозначаются как Х и Y. Популяция – совокупность особей определенного вида, в течение достаточно длительного времени (большого числа поколений) населяющих определенный ареал, внутри которого практически осуществляется та или иная степень панмиксии и нет заметных изоляционных барьеров, которая отдалена от соседних, таких же совокупностей данного вида, той или иной степенью давления тех или иных форм изоляции. Раса – группа людей, обладающих общими свойствами и признаками, обусловленными общими свойствами и признаками, обусловленными генетической конституцией, свободноскрещивающихся и дающих плодовитое потомство. Рецессивный ген – ген, проявление которого подавляется другими аллелями данного гена. Рибосома – органоид цитоплазмы, состоящий из большой и малой субчастиц, на которой происходит синтез полипептида. РНК – рибонуклеиновые кислоты – одноцепочные полимерные молекулы нуклеиновых кислот, участвующие в процессах биосинтеза белка. Сайт – участок молекулы нуклеиновой кислоты. Фенокопии – ненаследственное изменение фенотипа, сходное с проявлением определенных мутаций. Фенотип – совокупность внешних признаков организма на данном этапе онтогенеза, формирующихся в результате взаимодействия генотипа и внешней среды. Фертильность – плодовитость. Хроматин – представляет собой молекулу ДНК в комплексе с блоками-гистонами. В результате конденсации размеры ДНК уменьшаются, что приводит к образованию хромосом. Хроматиды – субъединицы редуплицированной хромосомы, будущие хромосомы. Хромосомы – суборганоиды ядра, видимые в период деления клетки, имеют определенную формулу и структуру, содержат большое число генов, способны к самовоспроизведению. Эукариоты – организмы, клетки которых имеют ядро, окруженное мембраной. Ядро – жизненно важный органоид эукариотических клеток, особенностью которого является наличие генетического материала (ДНК). Яйцеклетка – половая клетка, образующаяся в гаметогенезе у женщин.
Список используемой литературы.1. Н. П. Дубинин "Генетика" Кишинев, "Штиинца", 1985 г. 2. "Проблемы медицинской генетики" Москва, "Медицина",1970 г. 3. Н. П. Дубинин "Генетика - страницы истории" Кишинев, "Штиинца", 1988 г. 4. В. Н. Горбунов, В. С. Баранов, "Введение в молекулярную диагностику и генотерапию наследственных заболеваний" Санкт-Петербург, 1997 г. 5. Н. П. Дубинин "Новое в современной генетике", Москва, "Наука", 1986 г. 6. Н. П. Дубинин "Очерки о генетике", Москва, "Советсткая Россия", 1985 г. 7. Медицинская газета N 34-35 от 29.04.98 стр.9. 8. Ю. Е. Вельтищев, Л. З. Казанцева, В. П. Ветров “Клиническая Генетика и педиатрия”, Москва, 1994 г. 9. Н. Н. Приходченко, Т. П. Шкурат “Основы генетики человека”, Ростов-на-Дону, 1997 г. 10. А. Х. Эмери “Антентальная диагностика генетических болезней” 11. Ю. Е. Вельтищев “Этика, медицинская деонтология и биоэтика в педиатрии”, Москва, 1997 г. 12. Общая биология: Учеб для 10-11 кл. сред. Шк. Д.К. Беляев, А. О. Рувинский, Н. Н. Воронцов и др. – М.: Просвещение, 1991. – 271 с. 13. Ю. Е. Вельтищев, В. В. Фокеева “Экология и здоровье детей. Химическая экопатология”, Москва, 1996 г. 14. Большой энциклопедический словарь. – 2-е изд., перераб. И доп. – М.: Большая Российская энциклопедия, 1998, - 1456 с. Страницы: 1, 2 |
|
© 2000 |
|