РУБРИКИ

Ихтиология

   РЕКЛАМА

Главная

Зоология

Инвестиции

Информатика

Искусство и культура

Исторические личности

История

Кибернетика

Коммуникации и связь

Косметология

Криптология

Кулинария

Культурология

Логика

Логистика

Банковское дело

Безопасность жизнедеятельности

Бизнес-план

Биология

Бухучет управленчучет

Водоснабжение водоотведение

Военная кафедра

География экономическая география

Геодезия

Геология

Животные

Жилищное право

Законодательство и право

Здоровье

Земельное право

Иностранные языки лингвистика

ПОДПИСКА

Рассылка на E-mail

ПОИСК

Ихтиология


Стадия не повторяется (бывает один раз в жизни)


II

Яичники представлены стекловидными тяжами; мягкие, розовато-желтоватого оттенка. Сквозь оболочку яичника видны невооруженным глазом или под лупой очень мелкие прозрачные овоциты. Яичник кажется зернистым. По стенкам тянутся крупные кровеносные сосуды. Яйценесущие пластинки при разрезе стенок яичника отделимы друг от друга, видно их расположение 

Многочисленны овоциты периода малого (протоплазматического) роста, старшая генерация которых находится в фазе однослойного фолликула. Они округлой или многоугольной формы, плотно прилегают друг к другу. Имеются половые клетки предыдущих фаз развития 


У неполовозрелых рыб эта стадия следует за I; в яичниках половозрелых самок II стадия наступает после того, как исчезают признаки прошедшего нереста, т. е. после VI стадии


III

Яичники округлой формы, жёлтовато-оранжевого цвета, занимают около 1/3– 1/2 длины полости тела. Они наполнены мелкими непрозрачными желтоватыми или беловатыми икринками, хорошо видными невооруженным глазом. При разрезе яичника икринки держатся комками; яйценесущие пластинки ещё видны. По стенкам яичника проходят крупные ветвящиеся кровеносные сосуды 

Овоциты лежат более густо вследствие увеличения их размеров. Они находятся в начале периода большого (трофоплазматического) роста: основная масса овоцитов проходит фазы ва куолизации цитоплазмы и начала желткообразования. Имеются младшие генерации. У уже нерестовавших самок могут встретиться резорбирующиеся невыметанные икринки 

IV

Яичники сильно увеличены в объёме и занимают больше половины – иногда до 2/3 полости тела. Они светло-оранжевого цвета, туго набиты непрозрачными икринками. Стенки яичника прозрачны. При разрезе их выпадают отдельные икринки. Яйценесущие пластинки неразличимы. Макроскопически легко заметить переход овоцитов старшей генерации в следующую фазу: в яичнике, близком к зрелости, среди желтых мутных овоцитов появляются одиночные более крупные и прозрачные икринки. Количество таких икринок увеличивается. 

Овоциты старшей генерации находятся в конце периода трофоплазматического роста, т. е. в фазе наполнения желтком. Имеются овоциты младших генераций. Иногда встречаются остатки дегенерирующих зрелых икринок (у половозрелых рыб) 

V

Яичники достигают максималь ных размеров, они наполнены икринками, вытекающими при слабом поглаживании брюшка (а после гипофизарных инъекций – и без какого-либо надавливания). Овулировавшие икринки прозрачны, шаровидны 

Овоциты старшей генерации достигли дефинитивных размеров. Глыбки желтка сливаются (у большинства видов). Ядро неразличимо. Овоциты выходят из фолликулов. Присутствуют овоциты младших генераций 

VI

Выбой, яичник после нереста. Стенки яичника спадаются, становятся дряблыми, непрозрачными, складчатыми, красновато-синеватого цвета. Опустошенный яичник сильно уменьшается в объёме

Опустевшие фолликулы, дегенерирующие оставшиеся невыметанными зрелые икринки, овоциты молодых генерации


Через некоторое время воспаление проходит, яичник постепенно светлеет, становится светло-розовым и переходит в стадию II.


Таблица 5 Шкала зрелости гонад. Самцы .

Стадия

Внешний вид гонад

Микроскопическое строение

I ювенильная (juvenis)

Половые железы развиты очень слабо, имеют вид тоненьких ниточек. Невооруженным глазом пол различить нельзя

В ткани семенника разбросаны половые клетки – сперматогонии (сперматогониальный период); по форме и размерам они сходны с овогониями ювенильных самок. Для распознавания пола нужно обращать внимание на анатомическое строение гонады в целом

Стадия не повторяется

II

Семенники представлены тонкими беловатыми или чуть розоватыми тяжами. Кровеносные сосуды на их поверхности не видны 

Наряду со сперматогониями обнаруживаются сперматоциты I порядка

III

Семенники на всем протяжении уплощены, в концевом отделе сужены, плотные, упругие, беловатого или розоватого цвета от множества мелких кровеносных сосудов. На поперечном разрезе семенник выглядит остроугольным, края его не сплываются; молоки не выделяются

Микроскопическая картина очень пестрая. В семенниках, например, циприноидного типа наряду с ампулами, заполненными сперматоцитами I и II порядков и сперматидами, встречаются ампулы, содержащие сперматозоиды. Имеются и сперматогонии – на периферии.

IV 

Семенники большие, молочно- белого цвета, менее упруги. При надавливании на брюшко выделяются небольшие капли молок. При разрезе семенников края сплываются от выделяющейся спермы. 

Резко увеличено количество ампул со сформированными сперматозоидами. Другие ампулы содержат сперматиды, т. е. продолжается асинхронность в развитии клеток, подготавливаемых к нересту. 

V

Нерестовое состояние; сперма обильно выделяется при самом слабом поглаживании брюшка или даже без прикосновения Семенники наибольшего размера, они эластичны, молочно-белые или чуть кремового оттенка 

Ампулы семенников в периферической и в центральной частях заполнены сперматозоидами, лежащими на периферии как бы волнами 

VI

Выбой, состояние после нереста. Семенники, освобожденные от спермы, малы, мягки, розоватые с буроватым оттенком, на разрезе резко угловаты

Стенки семенных канальцев спавшиеся, утолщенные. Просветы канальцев узкие, в них встречаются отдельные невыметанные сперматозоиды. В пристенных участках лежат сперматогонии

У многократно нерестующих рыб железа переходит затем во II стадию

Нервная система и органы чувств

·       Нервная система рыб представлена центральной нервной системой и связанной с ней периферической и вегетативной (симпатической) нервной системой. Центральная нервная система состоит из головного и спинного мозга. К периферической нервной системе относятся нервы, отходящие от головного и спинного мозга к органам. Вегетативная нервная система в основе имеет многочисленные ганглии и нервы, иннервирующие, мышцы внутренних органов и кровеносных сосудов сердца. Нервная система рыб по сравнению с нервной системой высших позвоночных характеризуется рядом примитивных черт.

·       Центральная нервная система имеет вид нервной трубки, тянущейся вдоль туловища; часть ее, лежащая над позвоночником и защищенная верхними дугами позвонков, образует спинной мозг, а расширенная передняя часть, окруженная хрящевым или костным черепом, составляет головной мозг. Трубка имеет внутри полость (невроцель), представленную в головном мозгу желудочками мозга. В толще мозга различают серое вещество, слагающееся из тел нервных клеток и коротких отростков (дендритов), и белое вещество, образованное длинными отростками нервных клеток – нейритами или аксонами.

·       Общая масса мозга у рыб мала: она составляет в среднем у современных хрящевых рыб 0,06 – 0,44%, у костных – 0,02 – 0,94% от массы тела, в том числе у налима 1/700 массы тела, щуки 1/3000, акулы – 1/37000 , в то время как у летающих птиц и млекопитающих 0,2 – 8,0 и 6,3 – 3,0%.

·       В строении головного мозга сохраняются примитивные черты: отделы мозга располагаются линейно. В нем выделяют передний мозг, промежуточный, средний, мозжечок и продолговатый, переходящий в спинной мозг (рис. 27). Полости переднего, промежуточного и продолговатого мозга называются желудочками: полость среднего мозга–сильвиевым водопроводом (она соединяет полости промежуточного и продолговатого мозга, т. е. третий и четвертый желудочки).

·       Передний мозг благодаря продольной борозде имеет вид двух полушарий. К ним прилегают обонятельные луковицы (первичный обонятельный центр) или непосредственно (у большинства видов), или через обонятельный тракт (карповые, сомовые, тресковые).

·       В крыше переднего мозга нет нервных клеток. Серое вещество в виде полосатых тел сосредоточено главным образом в основании и обонятельных долях, выстилает полость желудочков и составляет главную массу переднего мозга. Волокна обонятельного нерва связывают луковицу с клетками обонятельной капсулы.

·       Передний мозг является центром обработки информации, поступающей от органов обоняния. Благодаря своей связи с промежуточным и средним мозгом он участвует в регуляции движения и поведения. В частности, передний мозг принимает участие в формировании способности к таким актам, как икрометание, охрана икры, образование стаи и т. д.

·       В промежуточном мозге развиты зрительные бугры. От них отходят зрительные нервы, образующие хиазму (перекрест, т. е. часть волокон правого нерва переходит в левый нерв и наоборот). На нижней стороне промежуточного мозга (гипоталамус) имеется воронка, к которой прилегает гипофиз, или питуитарная железа; в верхней части промежуточного мозга развивается эпифиз, или пинеальная железа. Гипофиз и эпифиз являются железами внутренней секреции.

·       Промежуточный мозг выполняет многочисленные функции. Он воспринимает раздражения от сетчатки глаза, участвует в координации движений, в переработке информации от других органов чувств. Гипофиз и эпифиз осуществляют гормональную регуляцию обменных процессов. Средний мозг наибольший по объёму. Он имеет вид двух полушарий (зрительные доли). Зрительные доли являются первичными зрительными центрами, воспринимающими возбуждение. Из этих долей берут начало волокна зрительного нерва. В среднем мозгу обрабатываются сигналы, идущие от органов зрения и равновесия; здесь помещаются центры связи с мозжечком, продолговатым и спинным мозгом.

·       Мозжечок расположен в задней части мозга и может иметь форму или маленького бугорка, прилегающего сзади к среднему мозгу, или большого мешковидно-вытянутого образования, примыкающего сверху к продолговатому мозгу. Особенно большого развития достигает мозжечок у сомов, а у мормируса относительная его величиная вляется наибольшей среди остальных позвоночных. В мозжечке рыб, как и высших позвоночных, имеются клетки Пуркинье. Мозжечок является центром всех моторных иннервации при плаваниии, схватывании пищи. Он обеспечивает координацию движений, поддержание равновесия, мышечную деятельность, связан с рецепторами органов боковой линии.

·       Пятый отдел головного мозга, продолговатый мозг, без резкой границы переходит в спинной мозг. Полость продолговатого мозга –четвертый желудочек – продолжается в полость спинного мозга – невроцель. Значительная масса продолговатого мозга состоит из белого вещества.

·       От продолговатого мозга отходит большая часть (шесть из десяти) черепно-мозговых нервов. Он является центром регуляции деятельности спинного мозга и вегетативной нервной системы. В нем располагаются наиболее важные жизненные центры, регулирующие деятельность дыхательной, скелетно-мышечной, кровеносной, пищеварительной, выделительной систем, органов слуха и равновесия, вкуса, боковой линии, электрических органов у имеющих их рыб и т. д. Поэтому при разрушении продолговатого мозга, например при перерезке туловища позади головы, наступает быстрая смерть рыбы. Через приходящие в продолговатый мозг спинномозговые волокна осуществляется связь продолговатого и спинного мозга.

·       От головного мозга отходит 10 пар черепно-мозговых нервов:

·       I – обонятельный нерв (nervus olfactorius) – от чувствующего эпителия обонятельной капсулы доводит раздражения до обонятельных луковиц переднего мозга;

·       II – зрительный нерв (n. opticus) – тянется до сетчатки глаза от зрительных бугров промежуточного мозга;

·       III – глазодвигательный нерв (n. oculomotorius) – иннервирует мышцы глаза, отходя от среднего мозга;

·       IV – блоковый нерв (n. trochlearis), глазодвигательный, тянущийся от среднего мозга кодной из мышц глаза;

·       V – тройничный нерв (n. trigeminus), отходящийот боковой поверхности продолговатого мозга и дающий три основные ветви: глазничную, верхнечелюстную и нижнечелюстную;

·       VI –отводящий нерв (n. abducens) – тянется от дна мозга к прямой мышце глаза;

·       VII – лицевой нерв (n. facialis) – отходит от продолговатого мозга и дает многочисленные разветвления к мускулатуре подъязычной дуги, слизистой ротовой полости, коже головы (в том числе боковой линии головы);

·       VIII – слуховой нерв (n. acusticus) –связывает продолговатый мозг и слуховой аппарат;

·       IX – языкоглоточный нерв (n. glossopharingeus) – идет от продолговатого мозга к глотке, иннервирует слизистую глотки и мускулатуру первой жаберной дуги;

·       X – блуждающий нерв (n. vagus) – наиболее длинный. Связывает продолговатый мозг с жаберным аппаратом, кишечным трактом, сердцем, плавательным пузырем, боковой линией.

·       Степень развития разных отделов головного мозга различна у разных групп рыб и связана с образом жизни.

·       Передний мозг (и обонятельные доли) относительно сильнее развит у хрящевых рыб (акулы и скаты) и слабее – у костистых. У малоподвижных, например донных, рыб мозжечок мал, но сильнее развиты передний и продолговатый отделы мозга в соответствии с большой ролью обоняния и осязания в их жизни (камбалы). У хорошо плавающих рыб (пелагических, питающихся планктоном, или хищничающих), наоборот, гораздо большее развитие получают средний мозг (зрительные доли) и мозжечок (в связи с необходимостью быстрой координации движения). Рыбы, обитающие в мутной воде, имеют маленькие зрительные доли, небольшой мозжечок. Слабо развиты зрительные доли у глубоководных и слепых рыб.

·       Спинной мозг является продолжением продолговатого мозга. Он имеет форму округлого тяжа и лежит в канале, образованном верхними дугами позвонков. В спинном мозге серое вещество расположено внутри, а белое–снаружи. От спинного мозга метамерно, соответственно каждому позвонку, отходят спинномозговые нервы, иннервирующие поверхность тела, туловищные мышцы, а благодаря соединению спинномозговых нервов с ганглиями симпатической нервной системы – и внутренние органы.

·       Вегетативная нервная система у хрящевых рыб представлена разобщенными ганглиями, лежащими вдоль позвоночника. Клетки ганглиев своими отростками контактируют со спинномозговыми нервами и внутренними органами.

·       У костистых рыб ганглии вегетативной нервной системы соединяются двумя продольными нервными стволами. Соединительные ветви ганглиев связывают вегетативную нервную систему с центральной. Взаимосвязи центральной и вегетативной нервной систем создают возможность некоторой взаимозаменяемости нервных центров.

·       Вегетативная нервная система действует в определённой степени автономно, независимо от центральной нервной системы и определяет непроизвольную, автоматическую деятельность внутренних органов даже в том случае, если ее связь с центральной нервной системой нарушена.

·       Реакцию организма рыбы на внешние и внутренние раздражения определяет рефлекс. У рыб можно выработать условный рефлекс на свет, форму, запах, вкус, звук. По сравнению с высшими позвоночными у рыб условные рефлексы образуются медленнее, а гаснут быстрее. Тем не менее и аквариумные, и прудовые рыбы вскоре после начала регулярного кормления скапливаются в определённое время у кормушек. Привыкают они и к звукам во время кормления (постукивание по стенкам аквариума, звон колокольчика, свист, удары) и какое-то время подплывают на эти раздражители и при отсутствии пищи.

·       Органы восприятия окружающей среды (органы чувств) рыб обладают рядом особенностей, отражающих их приспособленность к условиям жизни.

·       Способность рыб воспринимать информацию из окружающей среды многообразна. Их рецепторы могут улавливать различные раздражения как физической, так и химической природы: давление, звук, цвет, температуру, электрические и магнитные поля, запах, вкус.

·       Одни раздражения воспринимаются в результате непосредственного прикосновения (осязание, вкус), другие–на расстоянии, дистанционно.

·       Органы, воспринимающие химические, тактильные (прикосновение) , электромагнитные, температурные и другие раздражения, имеют простое строение. Раздражения улавливаются свободными нервными окончаниями чувствующих нервов на поверхности кожи. У некоторых групп рыб они представлены специальными органами или входят в состав боковой линии.

·       В связи с особенностями жизненной среды у рыб большое значение имеют системы химического чувства. Химические раздражения воспринимаются при помощи обоняния (ощущения запаха) или при помощи органов необонятельной рецепции, обеспечивающих восприятие вкуса, изменения активности среды и т. д. Химическое чувство называется хеморецепцией, а чувствующие органы – хеморецепторами.

·       Органы обоняния. У рыб, как и у других позвоночных, они находится в передней части головы и представлены парными обонятельными (носовыми) мешками (капсулами), открывающимися наружу отверстиями-ноздрями. Дно носовой капсулы выстлано складками эпителия, состоящего из опорных и чувствующих клеток (рецепторов) . Наружная поверхность чувствующей клетки снабжена ресничками, а основание связано с окончаниями обонятельного нерва. В обонятельном эпителии многочисленны клетки, секретирующие слизь.

·       Ноздри расположены у хрящевых рыб на нижней стороне рыла впереди рта, у костистых – на дорсальной стороне между ртом и глазами. Круглоротые имеют по одной ноздре, настоящие рыбы –по две. Каждая ноздря разделяется кожистой перегородкой на два отверстия. Вода проникает в переднее из них, омывает полость и выходит через заднее отверстие, омывая и раздражая при этом волоски рецепторов. Под влиянием пахучих веществ в обонятельном эпителии происходят сложные процессы: перемещения липидов, белково-мукополисахаридных комплексов и кислой фосфатазы.

·       Величина ноздрей связана с образом жизни рыб: у подвижных рыб они небольшие, так как при быстром плавании вода в обонятельной полости обновляется быстро; у рыб малоподвижных, наоборот, ноздри большие, они пропускают через носовую полость больший объём воды, что особенно важно для плохих пловцов, в частности обитающих у дна.

·       Рыбы обладают тонким обонянием, т. е. пороги обонятельной чувствительности у них очень низки. Это особенно относится к ночными сумеречным рыбам, а также к живущим в мутных водах, которым зрение мало помогает в отыскании пищи и общении с сородичами. Наиболее удивительна чувствительность обоняния у проходных рыб. Дальневосточные лососи совершенно точно находят путь от мест нагула в море к нерестилищам в верховьях рек, где они вывелись несколько лет назад. При этом они преодолевают огромные расстояния и препятствия – течения, пороги, перекаты. Однако рыбы верно проходят путь лишь в том случае, если у них открыты ноздри; если же обоняние выключено (ноздри заполнены ватой или вазелином), то рыбы идут беспорядочно. Предполагают, что лососи в начале миграции ориентируются по солнцу и примерно за 800 км от родной реки безошибочно определяют путь благодаря хеморецепции.

·       В опытах при омывании носовой полости этих рыб водой с родного нерестилища в обонятельной луковице мозга возникала сильная электрическая реакция. На воду из нижерасположенных притоков реакция была слабой, а на воду с чужих нерестилищ рецепторы вообще не реагировали.

·       Молодь нерки Oncorhynchus nerka может различать при помощи клеток обонятельной луковицы воду разных озер, растворы различных аминокислот в разведении 10-4, а также концентрацию кальция в воде. Не менее поразительна аналогичная способность европейского угря, мигрирующего из Европы к нерестилищам, расположенным в Саргассовом море. Подсчитано, что угорь в состоянии распознавать концентрацию, создаваемую разведением 1 г фенилэтилового спирта в соотношении 1: 3 • 10-18. Высокая избирательная чувствительность к гистамину обнаружена у карпа.

·       Обонятельный рецептор рыб кроме химических способен воспринимать механические воздействия (струи потока) и изменения температуры.

·       Органы вкуса. Они представлены вкусовыми почками, образованными скоплениями чувствующих (и опорных) клеток. Основания чувствующих клеток оплетены концевыми разветвлениями лицевого, блуждающего и языкоглоточного нервов.

·       Восприятие химических раздражителей осуществляется также свободными нервными окончаниями тройничного, блуждающего и спинномозговых нервов. Восприятие вкуса рыбами не обязательно связано с ротовой полостью, так как вкусовые почки расположены как в слизистой ротовой полости и на губах, так и в глотке, на усиках, жаберных лепестках, плавниковых лучах и по всей поверхности тела, в том числе на хвосте.

·       Сом воспринимает вкус главным образом при помощи усов: именно в их эпидермисе сосредоточены скопления вкусовых почек. У одной и той же особи количество вкусовых почек увеличивается по мере увеличения размеров тела. Рыбы различают вкусовые особенности пищи: горькое, соленое, кислое, сладкое. В частности, восприятие солености связано с ямковидным органом, помещающимся в ротовой полости.

·       Чувствительность органов вкуса у некоторых рыб очень высока: например, пещерные рыбы Anoptichthys, будучи слепыми, ощущают раствор глюкозы в концентрации 0,005%.

·       Органы чувств боковой линии. Специфическим органом, свойственным только рыбам и живущим в воде амфибиям, является орган бокового чувства, или боковой линии. Это сейсмосенсорные специализированные кожные органы. Наиболее просто органы боковой линии устроены у круглоротых и личинок карповых. Чувствующие клетки (механорецепторы) лежат среди скоплений эктодермальных клеток на поверхности кожи или в мелких ямках. У основания они оплетены конечными разветвлениями блуждающего нерва, а на участке, возвышающемся над поверхностью, имеют реснички, воспринимающие колебания воды. У большинства взрослых костистых эти органы представляют собой погруженные в кожу каналы, тянущиеся по бокам тела вдоль средней линии. Канал открывается наружу через отверстия (поры) в чешуйках, расположенных над ним (рис. 28).

·       Разветвления боковой линии имеются и на голове. На дне канала (группами лежат чувствующие клетки с ресничками. Каждая такая группа рецепторных клеток вместе с контактирующими с ними нервными волокнами образует собственно орган – невромаст. Вода свободно протекает через канал, и реснички ощущают её давление. При этом возникают нервные импульсы разной частоты. Органы боковой линии связаны с центральной нервной системой блуждающим нервом.

·       Боковая линия может быть полной, т. е. тянуться по всей длине тела, или неполной и даже отсутствовать, но в последнем случае сильно развиваются головные каналы (у сельдей). Боковая линия дает возможность рыбе ощущать изменение давления текущей воды, вибрации (колебания) низкой частоты, инфразвуковые колебания, а многим рыбам – и электромагнитные поля. Боковая линия улавливает давление струящегося, движущегося потока, изменения давления с погружением на глубину она не воспринимает. Улавливая колебания водной толщи, органы боковой линии дают возможность рыбе обнаруживать поверхностные волны, течения, подводные неподвижные предметы (скалы, рифы) и движущиеся предметы (враги, добыча), плавать днем и ночью, в мутной воде и даже будучи ослепленной. Это весьма чувствительный орган: проходные рыбы ощущают им в море даже очень слабые токи пресной речной воды.

·       Способность улавливать отраженные от живых и неживых объектов волны очень важна для глубоководных рыб, так как в темноте больших глубин невозможно обычное зрительное восприятие окружающих предметов, общение между особями.

·       Предполагают, что волны, создающиеся во время брачных игр многих рыб, воспринимаемые боковой линией самки или самца, служат для них сигналом. Функцию кожного чувства выполняют итак называемые кожные почки – клетки, имеющиеся в покровах головы и усиков, к которым подходят нервные окончания, однако они имеют гораздо меньшее значение.

·       Органы осязания. Органами осязания служат скопления чувствующих клеток (осязательные тельца), разбросанные по поверхности тела. Они воспринимают прикосновение твердых предметов (тактильные ощущения), давление воды, а также изменение температуры (тепло–холод) и боль.

·       Особенно много чувствующих кожных почек находится во рту и на губах. У некоторых рыб функцию органов осязания выполняют удлиненные лучи плавников: у гурами это первый луч брюшного плавника, у триглы (морской петух) осязание связано с лучами грудных плавников, ощупывающими дно, и т. д. У обитателей мутных вод или донных рыб, наиболее активных ночью, наибольшее количество чувствующих почек сосредоточено на усиках и плавниках. Однако у сомов усы служат рецепторами вкуса, а не осязания.

·       Механические травмы и боль рыбы, по-видимому, ощущают слабее, чем другие позвоночные: акулы, набросившиеся на добычу, не реагируют на удары острым предметом в голову; при операциях рыбы бывают часто относительно спокойны и т. д.

·       Терморецепторы. Ими являются находящиеся в поверхностных слоях кожи свободные окончания чувствующих нервов, при помощи которых рыбы воспринимают температуру воды. Различают рецепторы, воспринимающие тепло (тепловые) и холод (холодовые). Точки восприятия тепла найдены, например, у щуки на голове, восприятия холода – на поверхности тела. Костистые рыбы улавливают перепады температуры в 0,1–0,4°С.

·       Органы электрического чувства. Органы восприятия электрического и магнитного полей располагаются в коже на всей поверхности тела рыб, но главным образом в разных участках головы и вокруг нее. Они сходны с органами боковой линии – это ямки, заполненные слизистой массой, хорошо проводящей ток; на дне ямок помещаются чувствующие клетки (электрорецепторы), передающие нервные импульсы в мозг. Иногда они входят в состав системы боковой линии. Электрическими рецепторами у хрящевых рыб служат и ампулы Лоренцини. Анализ информации, получаемой электрорецепторами, осуществляет анализатор боковой линии (в про долговатом мозгу и мозжечке). Чувствительность рыб к току велика – до 1 мкВ/см2. Предполагают, что восприятие изменения электромагнитного поля Земли позволяет рыбам обнаруживать приближение землетрясения за 6–8 и даже за 22–24 ч до начала, в радиусе до 2 тыс. км.

·       Органы зрения. Органы зрения рыб устроены в основном так же, как у других позвоночных. Сходен с остальными позвоночными у них и механизм восприятия зрительных ощущений: свет проходит в глаз через прозрачную роговицу, далее зрачок – отверстие в радужной оболочке – пропускает его на хрусталик, а хрусталик передает фокусирует свет на внутреннюю стенку глаза сетчатку, где и происходит его непосредственное восприятие (рис. 29). Сетчатка состоит из светочувствительных (фоторецепторные), нервных, а также опорных клеток.

·       Светочувствительные клетки располагаются со стороны пигментной оболочки. В их отростках, имеющих форму палочек и колбочек, имеется светочувствительный пигмент. Количество этих фоторецепторных клеток очень велико –на 1 мм2 сетчатки у карпа их насчитывается 50 тыс. (у кальмара –162 тыс. , паука–16 тыс. , человека – 400 тыс. , совы – 680 тыс. ). Посредством сложной системы контактов конечных разветвлений чувствующих клеток и дендритов нервных клеток световые раздражения поступают в зрительный нерв.

·       Колбочки при ярком свете воспринимают детали предметов и цвет. Палочки воспринимают слабый свет, но детального изображения создать не могут.

·       Положение и взаимодействие клеток пигментной оболочки, палочек и колбочек меняются в зависимости от освещенности. На свету пигментные клетки расширяются и прикрывают находящиеся около них палочки; колбочки подтягиваются к ядрам клеток и таким образом передвигаются к свету. В темноте к ядрам подтягиваются палочки (и оказываются ближе к поверхности); колбочки приближаются к пигментному слою, а сократившиеся в темноте пигментные клетки прикрывают их (рис. 30).

·       Количество рецепторов разного рода зависит от образа жизни рыб. У дневных рыб в сетчатке превалируют колбочки, у сумеречных и ночных – палочки: у налима палочек в 14 раз больше, чем у щуки. У глубоководных рыб, живущих в темноте глубин, колбочек нет, а палочки становятся больше и количество их резко увеличивается – до 25 млн/мм2 сетчатки; вероятность улавливания даже слабого света возрастает. Большая часть рыб различает цвета, что подтверждается возможностью выработки у них условных рефлексов на определённый цвет – синий, зеленый, красный, жёлтый, голубой.

·       Некоторые отступления от общей схемы строения глаза рыбы связаны с особенностями жизни в воде. Глаз рыбы эллипсовидный. В числе других он имеет серебристую оболочку (между сосудистой и белковой), богатую кристалликами гуанина, которая придает глазу зеленовато-золотистый блеск.

·       Роговица почти плоская (а не выпуклая), хрусталик шаровидный (а не двояковыпуклый) – это расширяет поле зрения. Отверстие в радужной оболочке – зрачок – может изменять диаметр только в небольших пределах. Век у рыб, как правило, нет. Лишь акулы имеют мигательную перепонку, закрывающую глаз как занавеска, и некоторые сельди и кефали – жировое веко – прозрачную пленку, закрывающую часть глаза.

·       Расположение глаз по бокам головы (у большинства видов) является причиной того, что рыбы обладают в основном монокулярным зрением, а способность к бинокулярному зрению весьма ограничена. Шаровидность хрусталика и перемещение его вперед к роговице обеспечивает широту поля зрения: свет в глаз попадает со всех сторон. Угол зрения по вертикали составляет 150°, по горизонтали– 168–170°. Но вместе с тем шаровидность хрусталика обусловливает близорукость рыб. Дальность их зрения ограничена и колеблется в связи с мутностью воды от нескольких сантиметров до нескольких десятков метров.

·       Видение на дальние расстояния становится возможным благодаря тому, что хрусталик может быть оттянут специальной мышцей–серповидным отростком, идущим от сосудистой оболочки дна глазного бокала.

·       При помощи зрения рыбы ориентируются и относительно предметов, находящихся на земле. Улучшение зрения в темноте достигается наличием отражательного слоя (тапетум) – кристалликов гуанина, подстилаемых пигментом. Этот слой не пропускает свет к лежащим позади сетчатки тканям, а отражает его и возвращает вторично на сетчатку. Так увеличивается возможность рецепторов использовать свет, попавший в глаз.

·       В связи с условиями обитания глаза рыб могут сильно видоизменяться. У пещерных или абиссальных (глубоководных) форм глаза могут редуцироваться и даже исчезать. Некоторые же глубоководные рыбы, наоборот, имеют огромные глаза, позволяющие улавливать совсем слабые следы света, или телескопические глаза, собирающие линзы которых рыба может поставить параллельно и обрести бинокулярное зрение. Глаза некоторых угрей и личинок ряда тропических рыб вынесены вперед на длинных выростах (стебельчатые глаза).

·       Необычна модификация глаз у четырехглазки из Центральной и Южной Америки. Ее глаза помещаются на верху головы, каждый из них разделен перегородкой на две самостоятельные части: верхней рыба видит в воздухе, нижней– в воде. В воздушной среде могут функционировать глаза рыб, выползающих на берег или деревья.

·       Роль зрения как источника информации из внешнего мира для большинства рыб очень велика: при ориентации во время движения, при отыскивании и захвате пищи, при сохранении стаи, в нерестовый период (восприятие оборонительных и агрессивных поз и движений самцами-соперниками, а между особями разных полов – брачного наряда и нерестового “церемониала”), в отношениях жертва –хищник и т. д.

·       Способность рыб воспринимать свет издавна использовалась в рыболовстве (лов рыбы на свет факела, костра и т. д. ).

·       Известно, что рыбы разных видов неодинаково реагируют на свет разной интенсивности и разной длины волны, т. е. разного цвета. Так, яркий искусственный свет привлекает одних рыб (каспийская килька, сайра, ставрида, скумбрия и др. ) и отпугивает других (кефаль, минога, угорь и т. д. ). Так же избирательно относятся разные виды к разным цветам и разным источникам света – надводным и подводным. Все это положено в основу организации промышленного лова рыбы на электросвет (так ловят кильку, сайру и других рыб).

·       Орган слуха и равновесия рыб. Он расположен в задней части черепной коробки и представлен лабиринтом; ушных отверстий, ушной раковины и улитки нет, т. е. орган слуха представлен внутренним ухом. Наибольшей сложности достигает он у настоящих рыб: большой перепончатый лабиринт помещается в хрящевой или костной камере под прикрытием ушных костей. В нем различают верхнюю часть – овальный мешочек (ушко, utriculus) и нижнюю – круглый мешочек (sacculus). От верхней части во взаимно перпендикулярных направлениях отходят три полукружных канала, каждый из которых на одном конце расширен в ампулу (рис. 31). Овальный мешочек с полукружными каналами составляет орган равновесия (вестибулярный аппарат). Боковое расширение нижней части круглого мешочка (lagena), являющееся зачатком улитки, не получает у рыб дальнейшего развития. От круглого мешочка отходит внутренний лимфатический (эндолимфатический) канал, который у акул и скатов через специальное отверстие в черепе выходит наружу, а у остальных рыб слепо заканчивается у кожи головы.

·       Эпителий, выстилающий отделы лабиринта, имеет чувствующие клетки с волосками, отходящими во внутреннюю полость. Основания их оплетены разветвлениями слухового нерва. Полость лабиринта заполнена эндолимфой, в ней находятся “слуховые” камешки, состоящие из углекислой извести (отолиты), по три с каждой стороны головы: в овальном и круглом мешочке и лагене. На отолитах, как и на чешуе, образуются концентрические слои, поэтому отолиты, и особенно наибольший, часто используют для определения возраста рыб, а иногда и для систематических определений, так как их размеры и контуры неодинаковы у различных видов.

·       У большинства рыб наибольший отолит располагается в круглом мешочке, но у карповых и некоторых других – в лагене,

·       С лабиринтом связано чувство равновесия: при передвижении рыбы давление эндолимфы в полукружных каналах, а также со стороны отолита изменяется и возникшее раздражение улавливается нервными окончаниями. При экспериментальном разрушении верхней части лабиринта с полукружными каналами рыба теряет способность удерживать равновесие и лежит на боку, спине или брюхе. Разрушение нижней части лабиринта не ведет к утрате равновесия.

·       С нижней частью лабиринта связано восприятие звуков: при удалении нижней части лабиринта с круглым мешочком и лагеной рыбы не в состоянии различать звуковые тона (при попытках выработать условный рефлекс). В то же время рыбы без овального мешочка и полукружных каналов, т. е. без верхней части лабиринта, дрессировке поддаются. Таким образом, было показано, что рецепторами звука являются именно круглый мешочек и лагена.

·       Рыбы воспринимают как механические, так и звуковые колебания: частотой от 5 до 25 Гц – органами боковой линии, от 16 до 13 000 Гц – лабиринтом. Некоторые виды рыб улавливают колебания, находящиеся на границе инфразвуковых волн и боковой линией, и лабиринтом.

·       Острота слуха у рыб ниже, чем у высших позвоночных, и у разных видов неодинакова: язь воспринимает колебания, длина волны которых составляет 25–5524 Гц, серебряный карась – 25–3840, угорь – 36–650 Гц, причем низкие звуки улавливаются ими лучше.

·       Рыбы улавливают и те звуки, источник которых находится не в воде, а в атмосфере, несмотря на то что такой звук на 99,9% отражается поверхностью воды и, следовательно, в воду проникает только 0,1 % образующихся звуковых волн. В восприятии звука у карповых, сомовых рыб большую роль играет плавательный пузырь, соединенный с лабиринтом и служащий резонатором.

·       Рыбы могут и сами издавать звуки. Звукоиздающие органы у рыб различны: плавательный пузырь (горбыли, губаны и др. ), лучи грудных плавников в комбинации с костями плечевого пояса (сомы), челюстные и глоточные зубы (окуневые и карповые) и др. В связи с этим неодинаков и характер звуков: они могут напоминать удары, цоканье, свист, ворчанье, хрюканье, писк, кваканье, рычанье, треск, рокот, звон, хрип, гудок, крики птиц и стрекотанье насекомых. Сила и частота звуков, издаваемых рыбами одного вида, зависит от пола, возраста, пищевой активности, здоровья, причиняемой боли и т. д.

·       Звучание и восприятие звуков имеет большое значение в жизнедеятельности рыб: оно помогает особям разного пола найти друг друга, сохранить стаю, сообщить сородичам о присутствии пищи, охранять территорию, гнездо и потомство от врагов, является стимулятором созревания во время брачных игр, т. е. служит важным средством общения. Предполагают, что у глубоководных рыб, рассредоточенных в темноте на океанических глубинах, именно слух в сочетании с органами боковой линии и обонянием обеспечивает общение, тем более что звукопроводимость, более высокая в воде, чем в воздухе, на глубине возрастает. Особенно важен слух для ночных рыб и обитателей мутных вод.

·       Реакция разных рыб на посторонние звуки различна: при шуме одни уходят в сторону, другие толстолобик, семга, кефаль–выпрыгивают из воды. Это используют при организации лова рыбы (лов кефали рогожами, колокол, отпугивающий ее от ворот кошелькового невода, и т. д.). В период нереста карпа в рыбоводных хозяйствах запрещают проезд около нерестовых прудов, а в старину во время нереста леща запрещали колокольный звон.

Железы внутренней секреции

·       Железами внутренней секреции являются гипофиз, эпифиз, надпочечники, поджелудочная, щитовидная и ультимобранхиальная (подпищеводная) железы. Они выделяют гормоны в кровь. Их деятельность регулируется центральной нервной системой.

·       Наиболее изученными у рыб являются гипофиз и щитовидная железа. Гипофиз – непарное, неправильной овальной формы образование, отходящее от нижней стороны промежуточного мозга (гипоталамуса); очертания, размеры и положение его чрезвычайно разнообразны у рыб разных групп. У сазана, карпа, большинства других рыб гипофиз сердцевидной формы, лежит почти перпендикулярно мозгу; у серебряного карася он вытянут, немного сплющен с боков, лежит параллельно мозгу.

·       В гипофизе различают два основных отдела различного происхождения: мозговой (нейрогипофиз), составляющий внутреннюю часть железы, который развивается из нижней стенки промежуточного мозга (как впячивание дна III мозгового желудочка), и железистый (аденогипофиз), образующийся из впячивания верхней стенки глотки. В аденогипофизе выделяют три части (лопасти, доли): главную (переднюю, расположенную на периферии), переходную (наибольшую) и промежуточную (рис. 32). Аденогипофиз является центральной железой эндокринной системы. В железистой паренхиме его ролей вырабатывается секрет, содержащий ряд гормонов, стимулирующих рост (соматический гормон необходим для роста костей), регулирующих функции половых желез и таким образом воздействующих на половое созревание влияющих на деятельность пигментных клеток (определяют окраску тела и прежде всего появление брачного наряда) и повышающих устойчивость рыб к высокой температуре. Удаление гипофиза влечет за собой остановку роста и созревания.

·       Гормоны, выделяемые нейрогипофизом, синтезируются в ядрах гипоталамуса и переносятся в нейрогипофиз, а затем попадают в пронизывающие его капилляры. Таким образом, это нейросекреторная железа. Гормоны принимают участие в осморегуляции, вызывают нерестовые реакции.

·       Наиболее интенсивное развитие гипофиза приходится на период превращения личинки в малька. У половозрелых рыб активность его неравномерна в связи с биологией размножения рыб и, в частности, с характером икрометания.

·       У единовременно мечущих рыб секрет в железистых клетках накапливается почти одновременно; после выведения секрета, к моменту овуляции, гипофиз опустошается и в секреторной деятельности его наступает перерыв. В яичниках к моменту нереста заканчивается развитие овоцитов, подготавливаемых к вымету в данный сезон. Овоциты вымётываются в один прием и составляют таким образом единственную генерацию.

·       У порционно нерестующих рыб секрет в клетках образуется не одновременно. Вследствие этого после вывода секрета во время первого нереста остается часть клеток, в которых процесс образования коллоида не закончился. В результате он может выделяться порциями на протяжении всего нерестового периода.

·       В свою очередь, овоциты, подготавливаемые к вымету в данный сезон, развиваются также асинхронно: к моменту первого нереста в яичниках содержатся не только созревшие овоциты, но и те, развитие которых ещё не завершено; такие овоциты созревают через некоторое время после выведения первой генерации овоцитов, т. е. первой порции икры. Так образуется несколько порций икры.

Схема эндокринной регуляции полового цикла у половозрелых рыб:

Окружающая среда (температура, свет, присутствие особей другого пола, наличие нерестового субстрата и т. д.) --> промежуточный мозг (гипоталамус) --> гипофиз --> гонады

·       Исследования путей стимуляции созревания рыб привели почти одновременно, но независимо друг от друга, бразильских (Иеринги Кардозо) и советских ученых (Гербильский и его школа, 1932–1934) к разработке метода гипофизарных инъекций производителям для ускорения перевода их в текучее состояние.

·       Возможность перевода производителей из IV в V стадию зрелости с помощью инъекций гипофиза, использование для этих целей гипофизов, полученных как от рыб тех же видов, так и других, включая и малоценных (гетерогенная инъекция), возможность применения заготовленных заранее, ацетонированных гипофизов (действие которых сходно с действием свежих) позволило в значительной мере управлять процессом созревания рыб и тем самым увеличивать размах рыбоводных работ по воспроизводству ценных видов. Гипофизарные инъекции широко применяют при искусственном разведении осетровых и многих карповых рыб (белый амур, белый и пестрый толстолобики, карп и др. ).

·       Нейросекреторным органом у костистых рыб является и урогипофиз, находящийся в каудальной области спинного мозга и участвующий в осморегуляции.

·       Щитовидная железа расположена в области глотки, около брюшной аорты. У одних рыб (некоторые акулы, лососевые и т. д. ) она является относительно плотным парным образованием, состоящим из фолликулов, выделяющих гормоны; у других (окуневые, карповые и некоторые другие) железистые клетки не образуют оформленного органа, а лежат диффузно в соединительной ткани.

·       Секреторная деятельность щитовидной железы начинается очень рано: например, у личинок осетра на 2-й день после выклева железа, хотя и не вполне сформированная, обнаруживает активную секреторную деятельность, а на 15-й день формирование фолликулов почти заканчивается. Содержащие коллоид фолликулы обнаруживаются у 4-дневных личинок севрюги.

·       В дальнейшем железа периодически выделяет скапливающийся секрет, причем усиление ее деятельности отмечается у молоди вовремя метаморфоза, а у половозрелых рыб – в преднерестовый период, до появления брачного наряда. Максимум активности совпадает с моментом овуляции.

·       Активность щитовидной железы меняется в течение жизни, постепенно падая в процессе старения, а также в зависимости от обеспеченности рыб пищей: недокорм вызывает усиление функции. У самок щитовидная железа развита сильнее, чем у самцов, однако у самцов она более активна.

·       Как и у высших животных, у рыб щитовидной железе принадлежит важная роль в регуляции обмена веществ: процессов роста и дифференцировки, углеводного обмена, осморегуляции, поддержании нормальной деятельности нервных центров, коры надпочечников, половых желез. Некоторые авторы отмечают ее более высокую гормональную активность. Добавление препарата щитовидной железы в корм ускоряет развитие молоди. При нарушении функции железы появляется зоб, для лечения которого применяют йодистые и другие препараты.

·       Половые железы – яичники и семенники – выделяют половые гормоны. Секреция их периодична, наибольшее количество гормонов образуется в период зрелости гонад. С этими гормонами связывают появление брачного наряда.

·       В яичниках акул и речного угря, а также в плазме крови акул обнаружены гормоны 17b-эстрадиол и эстерон, локализующиеся преимущественно в яйцеклетках, меньше – в ткани яичника. У самцов акул и лосося определены дезоксикортикостерон, прогестерон и т. д.

Страницы: 1, 2, 3, 4, 5, 6, 7


© 2000
При полном или частичном использовании материалов
гиперссылка обязательна.