РУБРИКИ

Фотосинтез и урожай

   РЕКЛАМА

Главная

Зоология

Инвестиции

Информатика

Искусство и культура

Исторические личности

История

Кибернетика

Коммуникации и связь

Косметология

Криптология

Кулинария

Культурология

Логика

Логистика

Банковское дело

Безопасность жизнедеятельности

Бизнес-план

Биология

Бухучет управленчучет

Водоснабжение водоотведение

Военная кафедра

География экономическая география

Геодезия

Геология

Животные

Жилищное право

Законодательство и право

Здоровье

Земельное право

Иностранные языки лингвистика

ПОДПИСКА

Рассылка на E-mail

ПОИСК

Фотосинтез и урожай

Фотосинтез и урожай

СОДЕРЖАНИЕ


ФОТОСИНТЕЗ И УРОЖАЙ                                                                   2


ФОТОСИНТЕЗ, РОСТ И ПРОДУКТИВНОСТЬ РАСТЕНИЙ        6


































ФОТОСИНТЕЗ И УРОЖАЙ

Жизнь современного человека

немыслима без выращивания различных культурных расте­ний. Органические вещества, образуемые ими в ходе фото­синтеза, служат основой пита­ния человека, производства лекарств, они нужны для из­готовления бумаги, мебели, строительных  материалов и т. п.

Культурные растения спо­собны быстро размножаться, покрывать зеленым экраном своей листвы громадные пло­щади, улавливать колоссаль­ное   количество   солнечной энергии и образовывать вели­кое множество разнообразных органических веществ. В ре­зультате фотосинтеза создает­ся 95 процентов сухого ве­щества растений. Поэтому мы с полным правом можем ут­верждать,   что  управление этим процессом — один из наиболее эффективных путей воздействия на  продуктив­ность растений, на их урожай. Физиологи растений совер­шенно правильно считают, что основная задача  работ в области фотосинтеза — сохра­нение и поддержание на более высоком уровне фотосинтети­ческой деятельности естест­венной растительности Земли, максимальное повышение фо­тосинтетической   продуктив-. ности культурных растений.

Каковы же пути управления человеком фотосинтетической деятельностью растений?

Часто сдерживающим фак­тором фотосинтеза является недостаток углекислого газа. Обычно в воздухе присутству­ет около 0,03 процента С02. Однако над интенсивно фото-синтезирующим полем его со­держание уменьшается иногда в три-четыре раза по сравне­нию с приведенной цифрой. Вполне естественно, что из-за этого фотосинтез тормозится. Между тем для получения среднего урожая сахарной свеклы один гектар ее посевов должен усваивать за сутки около 300—400 килограммов углекислого газа. Такое коли­чество содержится в колос­сальном объеме воздуха.

Опыты известного отечест­венного физиолога растений В. Н. Любименко показали, что увеличение количества углекислого газа в атмосфере до 1,5 процента приводит к прямо пропорциональному возрастанию интенсивности фото­синтеза. Таким образом, один из путей повышения продук­тивности фотосинтеза — уве­личение концентрации углекис­лого газа в воздухе.

Современный уровень тех­нологии, в целом, позволяет решить эту задачу в глобаль­ных масштабах. Однако весь­ма сомнительно, чтобы чело­век решился на практике осу­ществить этот проект. Дело в том, что более высокий уровень содержания углекис­лого газа в воздухе приведет к изменению теплового балан­са планеты, к ее перегреву вследствие так называемого «парникового эффекта». «Пар­никовый эффект» обусловлен тем, что при наличии большого количества углекислого газа атмосфера начинает сильнее задерживать испускаемые по­верхностью Земли тепловые лучи.

Перегрев планеты может привести к таянию льдов в полярных областях и в высо­когорьях, к поднятию уровня Мирового океана, к сокраще­нию площади суши, в том числе занятой культурной рас­тительностью. Если учесть, что население Земли увеличи­вается еженедельно на 1 мил­лион 400 тысяч человек, то понятна крайняя нежелатель­ность таких изменений.

Человечество весьма обе­спокоено естественным ростом концентрации углекислого га­за в атмосфере, наблюдаемым в последние годы в результате интенсивного развития про­мышленности, автомобильно­го, железнодорожного и авиа­ционного транспорта. Поэтому оно едва ли решится когда-либо сознательно стимулиро­вать этот процесс в глобаль­ных масштабах.

В теплицах и на поле уве­личение содержания углекис­лого газа имеет важное зна­чение для повышения урожай­ности культурных растений. С этой целью в теплицах сжи­гают опилки, раскладывают сухой лед на стеллажах, вы­пускают углекислый газ из баллонов. Основной способ повышения концентрации СОа над полем — активизация жизнедеятельности почвенных микроорганизмов путем внесе­ния в почву органических и минеральных удобрений. В процессе дыхания микробы выделяют большое количество углекислого газа. В последние годы для обогащения почвы и припочвенного воздуха СОз поля стали поливать водой, насыщенной углекислым га­зом.

Другой путь преодоления отрицательного влияния низ­кой концентрации углекислого газа в атмосфере на урожай — распространение таких форм растений, которые очень интен­сивно фотосинтезируют даже при ничтожно малом его содер­жании. Это — С4 — растения. У них рекордные показате­ли интенсивности фотосинтеза.

Распространение таких расте­ний, дальнейшее изучение осо­бенностей их   фотосинтеза представляется весьма нуж­ным и перспективным.

Растительность земного ша­ра довольно неэффективно ис­пользует солнечную энергию. Коэффициент полезного дей­ствия у большинства дикорас­тущих растений составляет всего 0,2 процента, у культур­ных он равен в среднем одно­му проценту. При оптималь­ном снабжении культурных растений водой, минеральны­ми солями коэффициент по­лезного использования света повышается до четырех — шести процентов. Теоретичес­ки же возможен КПД, равный восьми — десяти  процентам. Сопоставление   приведенных цифр говорит о больших воз­можностях в увеличении фо­тосинтетической   продуктив­ности растений. Однако прак­тическая их реализация встре­чает большие трудности.

Повысить   эффективность использования солнечной энер­гии в ходе фотосинтеза можно, расположив растения на опти­мальном расстоянии друг от друга. В изреженных посевах значительная часть света про­падет зря, а вот в загущен­ных растения затеняют друг друга, их стебли становятся длинными и ломкими, легко полегающими от дождя и вет­ра. В том и другом случае происходит снижение урожая. Вот почему очень важно выбрать для каждой культуры наиболее оптимальное рас­стояние. При этом следует учи­тывать, что оптимальная плот­ность посевов может быть раз­личной в зависимости от обес­печенности растений водой, элементами минерального пи­тания и от их особенностей. К сожалению, многие агроно­мы не принимают во внима­ние названные факторы, по­этому так медленно растет продуктивность наших полей. Наиболее часто растения не­эффективно фотосинтезируют из-за недостатка воды и эле­ментов минерального питания. Если улучшить условия водо­снабжения и питания, то раз­меры листовой поверхности увеличатся, а между ними и величиной урожая обычно су­ществует прямая зависимость.

Однако существует некото­рый предел роста эффектив­ности фотосинтеза,    когда дальнейшее улучшение водо­снабжения и минерального питания не дает результатов. Дело в том, что при опреде­ленном размере листовой по­верхности (обычно когда на 1 квадратный метр посевов приходится четыре-пять квад­ратных метров листьев) рас­тения поглощают практически всю энергию света. Если же на единицу площади поля при­ходится еще большая поверх­ность листьев, то в результате затенения их друг другом растения вытянутся, интенсив­ность фотосинтеза уменыпит-ся. Вот почему дальнейшее улучшение снабжения расте­ний водой и элементами мине­рального питания неэффек­тивно.

В чем же выход из создав­шегося положения? Ученые по­лагают, что в выведении но­вых сортов культурных расте­ний, отличающихся выгодным строением тела. В частности, они должны иметь компактную низкорослую крону, с верти­кально    ориентированными листьями, обладать крупными запасающими (луковицы, клуб­ни, корни, корневища) и репро­дуктивными (семена, плоды) органами.

На повышение плодородия почвы и улучшение водоснаб­жения эти сорта будут реаги­ровать усилением интенсив­ности фотосинтеза, умеренным потреблением продуктов фо­тосинтеза (ассимилятов); на рост листьев и других вегета­тивных органов, а также активным использованием ас­симилятов на формирование репродуктивных и запасающих органов.

Вот какие жесткие требо­вания предъявляются теперь к науке, занимающейся выведе­нием новых сортов культурных растений, — селекции. Из ска­занного ясно, что без тесного сотрудничества селекционеров с физиологами растений созда­ние перспективных сортов ста­новится практически невоз­можным.

Селекционеры вывели сорта, отвечающие современным требованиям. Среди них — низкорослый рис, созданный в Международном институте ри­са в Маниле, хлопчатник Дуплекс, с вертикально ориен­тированными листьями, не за­теняющими друг друга, карли­ковая пшеница мексиканской селекции. Эти сорта на фонах высокого плодородия дают в полтора раза более высокие урожаи, чем их предшествен­ники. Однако это лишь один из путей увеличения фотосин­тетической    продуктивности растений. Дальнейшие усилия должны быть направлены на повышение активности самого фотосинтетического аппарата.

Как известно, процесс фото­синтеза осуществляется в осо­бых органоидах — хлороплас-тах. Здесь происходит мно­жество реакций, прежде чем из углекислого газа и воды образуются молекулы органи­ческих веществ. Управлять этими процессами, безусловно, непросто, но возможно. Об этом свидетельствует тот факт, что интенсивность фотосинтеза у разных растений неодинако­ва. У одних листовая поверх­ность площадью в 1 квадрат­ный дециметр усваивает за час от четырех до семи миллиграм­мов СОг, а у других — 60— 80 и даже 100, то есть в 20 раз больше! Растения неодинаково реагируют на его низкую кон­центрацию в воздухе, интен­сивность освещения и т. д.

Изучение особенностей фотосинтеза у разных растений, безусловно, будет способствовать расширению возможнос­тей человека в управлении их фотосинтетической   деятель­ностью, продуктивностью и урожаем.


















ФОТОСИНТЕЗ, РОСТ И ПРОДУКТИВНОСТЬ РАСТЕНИЙ


Взаимоотношения роста растений и интенсивности фото­синтеза отражают непрерывную перестройку фотосинтети­ческого аппарата в ходе онтогенеза и динамику формиро­вания и активности растущих (аттрагирующих) органов, по­требляющих ассимиляты. Начальный этап развития листа осу­ществляется за счет деления и роста клеток, а затем — лишь путем растяжения. За это время делятся и развиваются хлоропласты, число которых увеличивается, пока растет объем клетки. В клетках губчатой ткани пластид образуется в 1,5-2,0 раза меньше (у картофеля около 70), чем в пали-садной (200—300 органоидов). Новообразование хлоропластов завершается довольно рано, но рост клеток опережает уве­личение числа хлоропластов, в результате чего в онтогенезе листа их количество в 1 см2 убывает вдвое. Однако содержание хлорофилла в хлоропласте продолжает увеличиваться и после достижения хлоропластом наибольшей величины. Максималь­ная интенсивность фотосинтеза наблюдается во время роста клеток листа растяжением и начинает несколько снижаться, когда площадь листа составляет 0,4—0,8 от конечной. Затем процесс фотосинтеза может уменьшаться с возрастом листа или не меняется длительное время (особенно у вечнозеленых растений).

На ранних этапах роста (до развертывания 30—45% пло­щади) лист сам потребляет ассимиляты из более зрелых листьев или из запасающих тканей. По мере роста листа уси­ливается транспорт ассимилятов из него в другие листья и органы и постепенно лист становится донором ассимилятов. Эта функция устанавливается при достижении 60—90% конечной площади листа. Взрослые листья отдают свои ассимиляты в аттрагирующие зоны растения, оставляя на собственные нуж­ды 10—40% ассимйлятов и почти не обмениваясь между собой продуктами фотосинтеза. Последнее явление, названное А. Л. Курсановым (1961) «суровым законом», способствует лучшему распределению ассимйлятов в целом растении. Ста­реющие листья со слабой фотосинтетической активностью отдают другим органам не только ассимиляты, но и про­дукты распада структур цитоплазмы.

Такого рода смена функций листа в онтогенезе важна при формировании урожая. Потребление ассимйлятов молодым листом приводит к построению добавочного фотосинтетиче­ского аппарата, чем обеспечивается увеличение фотосинтетиче­ской активности в геометрической прогрессии. Следует отме­тить также, что в онтогенезе изменяется соотношение путей фотосинтетического метаболизма. В условиях, когда внеш­ние факторы не лимитируют скорость фотосинтеза, этот про­цесс целиком детерминируется ростовой функцией (А. Т. Мок-роносов, 1981).

Современные знания о процессе фотосинтеза как на уровне растения, так и фитоценоза, позволяют видеть основные на­правления оптимизации фотосинтеза и увеличения продуктив­ности растений. Наиболее полно вопросы фотосинтетической деятельности растений в посевах, связанной с образованием хозяйственного урожая (используемого человеком), его доли в биологическом урожае (т. е. суммарной массе всех органов рас­тения), освещены в работах А. А. Ничипоровича. <_ Наи­высшие урожаи могут быть обеспечены созданием следую­щих оптимальных условий: 1) увеличением листовой поверх­ности в посевах; 2) удлинением времени активной работы фотосинтетического аппарата в течение каждых суток и вегета­ционного периода (поддержка агротехникой и минеральными удобрениями); 3) высокой интенсивностью и продуктивностью фотосинтеза, максимальными суточными приростами сухого вещества; 4) максимальным притоком продуктов фотосинтеза из всех фотосинтезирующих органов в хозяйственно важные органы и высоким уровнем использования ассимйлятов в ходе биосинтетических процессов.

Для получения высоких урожаев сельскохозяйственных куль­тур необходима селекционно-генетическая работа, направлен­ная на повышение интенсивности фотосинтеза, скорости оттока ассимйлятов, на увеличение чистой продуктивности фото­синтеза.











© 2000
При полном или частичном использовании материалов
гиперссылка обязательна.