РУБРИКИ

Эукариотическая клетка

   РЕКЛАМА

Главная

Зоология

Инвестиции

Информатика

Искусство и культура

Исторические личности

История

Кибернетика

Коммуникации и связь

Косметология

Криптология

Кулинария

Культурология

Логика

Логистика

Банковское дело

Безопасность жизнедеятельности

Бизнес-план

Биология

Бухучет управленчучет

Водоснабжение водоотведение

Военная кафедра

География экономическая география

Геодезия

Геология

Животные

Жилищное право

Законодательство и право

Здоровье

Земельное право

Иностранные языки лингвистика

ПОДПИСКА

Рассылка на E-mail

ПОИСК

Эукариотическая клетка

Эукариотическая клетка

МИНИСТЕРСТВО НАУКИ И ПРОСВЕЩЕНИЯ РЕСПУБЛИКИ КАЗАХСТАН

КАФЕДРА БИОЛОГИИ

 

 

 

 

 

Контрольная работа

по предмету «Молекулярная биология»

тема «Эукариотическая клетка»

 

 

 

 

 

 

 

 

 

 

 

 

Выполнила ст-ка

гр. ЗБХ-31

КОТ Татьяна

 

 

 

 

 

 

 

 

 

 

 

 

 

 

г.Павлодар, 2002г.

План

 

1.     Структурно-функциональная организация эукариотической клетки.

а) биологическая мембрана;

б) транспорт через мембраны малых молекул;

в) мембранный транспорт молекул и частиц (экзоцитос и эндоцитоз);


       2. Преобразование энергии (митахондрии и хлоропласты).


Эукариоты появились среди обитателей планеты около 1,5 млрд. лет назад. Отличаясь от прокариот более сложной организацией, они используют в своей жизнедеятельности больший объем наслед­ственной информации. Так, общая длина молекул ДНК в ядре клетки млекопитающего составляет примерно 5 • 109 пар нуклеотидов, т. е. в 1000 раз превосходит длину молекулы ДНК бактерии.

Первоначально эукариоты имели одноклеточное строение. До­исторические одноклеточные эукариоты послужили основой для возникновения в процессе эволюции организмов, имеющих много­клеточное строение тела. Они появились на Земле около 600 млн. лет назад и дали широкое разнообразие живых существ, расселив­шихся в трех основных средах: водной, воздушной, наземной. Полезно заметить, что многоклеточность возникла в эволюции в период, когда атмосфера планеты, обогатившись, приобрела устойчивый окислительный характер.


Структурно-функциональная организация эукариотической клетки

 

Эукариотический тип клеточной организации представлен двумя подтипами. Особенностью организмов простейших (рис. 2.2) являет­ся то, что они (исключая колониальные формы) соответствуют в структурном отношении уровню одной клетки, а в отношении физиологическом — пол­ноценной особи. В связи с этим одной из черт клеток части простейших является наличие в цитоплазме ми­ниатюрных образований, выполняющих на клеточ­ном уровне функции жиз­ненно важных органов, ап­паратов и систем органов многоклеточного организ­ма. Таковы (например, у инфузорий) цитостом, цитофарингс и порошица,


Структурная организация одноклеточ­ного организма (инфузория):

/— генеративное ядро,

2— цитостом с цитофарингсом,

3—порошица,

4—сократительные вакуоли,

5— пищеварительные вакуоли,

6— вегетативное ядро,

7— гиалоплазма,

8—реснички

аналогичные пищеварительной системе, и сократительные вакуоли, аналогичные выделительной системе.

В традиционном изложении клетку растительного или живо­тного организма описывают как объект, отграниченный оболочкой, в котором выделяют ядро и цитоплазму. В ядре наряду с оболочкой и ядерным соком обнаруживаются ядрышко и хроматин. Цитоплаз­ма представлена ее основным веществом (матриксом, гиалоплазмой), в котором распределены включения и органеллы.


Принцип компартментации. Биологическая мембрана

Компартментация объема клетки с помощью мембран:

/—ядро,

2—шероховатая цитоплазматическая сеть,

3—митохондрия,

4—транспортный цитоплазматический пузырек,

5—лизосома,

6—пластинчатый комп­лекс,

7— гранула секрета


Высокая упорядоченность внутреннего содержимого эукариотической клетки достигается путем компартментации ее объема — подразделения на «ячейки», отличающиеся деталями химического (ферментного) состава. Компартментация способствует пространственному разделению веществ и процессов в клетке. Отдельный компартмент представлен органеллой (лизосома) или ее частью (пространство, отграниченное внутренней мембраной митохондрии).

Молекулярная организация биологи­ческой мембраны:

I— бимолекулярный слой липидов,

2— белки


Важная роль в осуществлении компартментации принадлежит биологическим мембранам. Они выполняют ряд функций: отграни­чивающую (барьерную), регуляции и обеспечения избирательной проницаемости веществ, образования поверхностей раздела между водной (гидрофильной) и неводной (гидрофобной) фазами с раз­мещением на этих поверхностях ферментных комплексов. Благода­ря присутствию липидов (жировых веществ) мембраны образуют гидрофобную внутриклеточную фазу как компартмент для химиче­ских реакций в неводной среде. Молекулярный состав мембран, набор соединений и ионов, размещающихся на их поверхностях, различаются от структуры к структуре. Этим достигается функцио­нальная специализация мембран клетки. Включение в мембрану клетки молекул рецепторов делает ее восприимчивой к биологиче­ски активным соединениям, например гормонам.

Предложено несколько схем взаимоотношения в мембране ос­новных химических компонентов — белков и липидов, а также веществ, размещаемых на мембранной поверхности. В настоящее время большей популярностью пользуется точка зрения, согласно которой мембрана составлена из бимолекулярного слоя липидов. Гид­рофобные участки их молекул повернуты друг к другу, а гидрофиль­ные находятся на поверхности слоя. Разнообразные белковые молекулы встроены в этот слой или размещены на его поверхностях.

Благодаря компартментации клеточного объема в эукариотической клетке наблюдается разделение функций между разными структурами. Одновременно различные структуры закономерно вза­имодействуют друг с другом.

Транспорт через мембраны Жизненно важен по ряду причин. Он должен обес­печить поддержание в клетке соответствующего рН и надлежащей ионной концентрации, необходимых для эффективной работы клеточных ферментов; он оставляет питательные вещества, которые служат источником энергии, а также «сырьем» для образования клеточных компонентов; от него зависят выведение из клетки токсичных отходов, секреция различных полезных веществ и, наконец, создание ионных градиентов, необходимых для нервной и мышечной активности. Мы обсудим здесь транс­порт веществ через плазматическую мембрану, от­метив, что аналогичный характер носит и транспорт через мембраны клеточных органелл. Существует четыре основных механизма для поступления ве­ществ в клетку или выхода их из клетки наружу: диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, т. е. не требуют затрат энергии; два пос­ледних - активные процессы, связанные с потребле­нием энергии.

Диффузия

 

Газы, например кислород, потребляемый клетками при дыхании, и образующаяся в процессе дыхания СО2, в растворе быстро диффундируют через мем­браны, перемещаясь по диффузионному градиенту, т. е. из области с высокой концентрацией в область с низкой концентрацией. Ионы и малые полярные молекулы, такие, как глюкоза, аминокислоты, жир­ные кислоты и глицерол, обычно диффундируют через мембраны медленно. Гораздо более быстро проходят через мембраны незаряженные и жиро­растворимые (липофильные) молекулы, о чем мы уже говорили выше.

Модификацией этого механизма является так на­зываемая облегченная диффузия, при которой ве­ществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть особый канал, пропускающий вещества только одного определенного типа. Примером такого пе­ремещения служит поступление глюкозы в эрит­роциты; оно не нарушается ингибиторами дыхания и, следовательно, не является активным процессом.

Осмос

Диффузия воды через полупроницаемые мембраны называется осмосом .

Активный транспорт - это сопряженный с потреб­лением энергии перенос молекул или ионов через мембрану против градиента концентрации. Энергия требуется потому, что вещество должно двигаться, вопреки своему естественному стремлению диффун­дировать в противоположном направлении. Дви­жение это обычно однонаправленное, тогда как диффузия обратима.

Для ионов направление диффузии определяется двумя факторами: один из этих факторов - концент­рация, а другой - электрический заряд. Ионы обыч­но диффундируют из области с высокой их кон­центрацией в область с низкой концентрацией. Кро­ме того, они обычно притягиваются областью с противоположным зарядом и отталкиваются об­ластью с одноименным зарядом. Поэтому мы гово­рим, что они движутся по электрохимическим гра­диентам, в которых объединяется эффект электри­ческого и концентрационного градиентов. Строго говоря, активный транспорт ионов - это их пере­мещение против электрохимического градиента.

Показано, что в клетках между двумя сторонами плазматической мембраны поддерживается раз­ность потенциалов, иными словами, электрический заряд, и что почти во всех изученных клетках внут­реннее содержимое клетки заряжено отрицательно по отношению к внешней среде. Поэтому катионы (положительно заряженные ионы) обычно стремят­ся в клетку, тогда как анионы клеткой отталкива­ются. Однако их относительные концентрации внут­ри и вне клетки также играют роль, т.е. и от концентраций зависит, в каком направлении в дейст­вительности диффундируют ионы.

Во внеклеточных и внутриклеточных жидкостях из ионов преобладают ионы натрия (Nа+), ионы калия (К+ и хлорид - ионы (С1-).

Ионный состав в клетках обоих этих типов резко отличается от состава окру­жающего их наружного раствора. У них, например, как и у большинства клеток, концентрация калия внутри значительно выше, чем снаружи. Другая характерная особенность заключается в том, что внутриклеточная концентрация калия превышает концентрацию натрия.

Если каким-либо специфическим воздействием, например, с помощью цианида, подавить дыхание эритроцитов, то их ионный состав начнет посте­пенно меняться и в конце концов сравняется с ионным составом плазмы крови. Это показывает, что данные ионы могут пассивно диффундировать через плазматическую мембрану эритроцитов, но что в норме за счет энергии, поставляемой процес­сом дыхания, идет их активный транспорт, благо­даря которому и поддерживаются концентрации. В клетках двух типов натрий активно выкачи­вается из клетки, а калий активно накачивается в нее. Путем расчета можно показать, что реальный поток хлорид - ионов из плазмы в эритроциты от­сутствует, несмотря на их, более высокую концент­рацию в плазме крови. Объясняется это тем, что содержимое клетки отталкивает хлорид - ионы, пос­кольку оно заряжено отрицательно по отношению к внешней среде; иначе говоря, движение этих ионов определяется электрохимическим градиентом, что справедливо для всех клеток.

Сравнительно недавно выяснилось, что у большей части клеток в плазматической мембране действует натриевый насос, активно выкачивающий натрий из клетки. Обычно, хотя и не всегда, натриевый насос сопряжен с калиевым насосом, активно поглощаю­щим ионы калия из внешней среды и переносящим их в клетку. Такой объединенный насос называют натрий - калиевым насосом (Nа+, К+ - насос).

Поскольку этот насос имеется в большинстве клеток и выполняет в них ряд важных функций, он представляет собой хороший пример механизма активного транспорта.

Nа+, К+-насос изучен в животных клетках и установлено, что его «приводит в движение» АТФ. О его физиологическом значении свидетельствует тот факт, что более трети АТФ, потребляемого животной клеткой в состоянии покоя, расходуется на перекачивание натрия и калия. Это необходимо для сохранения клеточного объема (осморегуляция), для поддержания электрической активности в нерв­ных и мышечных клетках и, наконец, для активного транспорта некоторых других веществ, например Сахаров и аминокислот. Высокие концентрации ка­лия требуются также для белкового синтеза, глико-лиза, фотосинтеза и для некоторых других жизненно 3 важных процессов.

Насос-это особый белок, локализующийся в мембране таким образом, что он пронизывает всю ее толщу. С внутренней стороны мембраны к нему поступают натрий и АТФ, а с наружной – калий.

Перенос натрия и калия через мембрану совершает­ся, как полагают, в результате конформационных изменений, которые претерпевает этот белок. Белок действует и как АТФаза, катализируя гидролиз АТФ с высвобождением энергии, которая и приво­дит в движение насос. Обратите внимание, что на каждые два поглощенных иона калия из клетки выводится три иона натрия. Вследст­вие этого содержимое клетки становится более от­рицательным, по отношению к внешней среде, а между двумя сторонами мембраны возникает раз­ность потенциалов.

Выкачиваемый из клетки натрий обычно пассивно диффундирует обратно в клетку. Однако мембрана мало проницаема для натрия, и потому эта диффу­зия в обратном направлении происходит очень мед­ленно. Для ионов калия мембраны приблизительно в 100 раз более проницаемы, чем для натрия; соот­ветственно и диффундирует калий гораздо быстрее.

Активный транспорт осуществляется всеми клет­ками, но в некоторых физиологических процессах он играет особо важную роль. Именно так обстоит дело в клетках эпителия, выстилающего кишечник и активный транспорт в кишечнике. Всасываясь в тон­ком кишечнике, продукты переваривания пищи должны пройти через клетки эпителия, выстилаю­щего стенку кишки. Затем глюкоза, аминокислоты и соли через клетки, образующие стенки кровеносных сосудов, поступают в кровь и доставляются кровью в печень. Вскоре после приема пищи концентрация продуктов ее переваривания достигает в кишечнике довольно высокого уровня, так что всасывание в какой-то мере является и результатом диффузии. Однако диффузия происходит здесь очень медленно, и ее должен дополнять активный транспорт. Активный транспорт со­пряжен с работой Nа+, К+ - насоса.

Натрий, выкачиваемый из клетки натрий - калие­вым насосом, стремится диффундировать обратно в клетку. В мембране находится белок, которому для выполнения его функции требуются натрий и глю­коза. Они транспортируются в клетку вместе пас­сивно. Таким образом, натрий «тянет» глюкозу вме­сте с собой в клетку. Активный транспорт амино­кислот совершается при участии аналогичного бел­кового «натрий - аминокислотного» переносчика; активной частью этого процесса является выкачи­вание натрия обратно, наружу. При отсутствии градиента концентрации натрия оба эти переносчика тоже могут работать, если только наружная концентрация глюкозы или аминокислот превышает их внутреннюю концентрацию, т. е. в таких случаях имеет место облегченная диффузия.


Активный транспорт в нервных и мышечных клетках.

В нервных и мышечных клетках натрий - калиевый насос обеспечивает возникновение в плазматической мембране разности потенциалов, называемой по­тенциалом покоя. В мембранах саркоплазматического ретикулума мышечных клеток действует насос, ана­логичный Nа+, К+ - насосу; в этом случае за счет энергии АТФ в саркоплазматический ретикулум активно накачивается кальций.

В почках также имеет место активный транспорт: из проксимальных из­витых канальцев почки активно тран­спортируются натрий и глюкоза, а в корковом веществе почки - натрий.

Эндоцитоз и экзоцитоз

Эндоцитоз и экзоцитоз - это два активных процесса, посредством которых различные материалы тран­спортируются через мембрану либо в клетки (эндоцитоз), либо из клеток (экзоцитоз).

При эндоцитозе плазматическая мембрана обра­зует впячивания или выросты, которые затем, отшнуровываясь, превращаются в пузырьки или ва­куоли. Различают два типа эндоцитоза:

1. Фагоцитоз-поглощение твердых частиц. Спе­циализированные клетки, осуществляющие фагоцитоз, называются фагоцитами; эту функцию выпол­няют, например, некоторые виды лейкоцитов. Мем­бранный мешочек, обволакивающий поглощаемую частицу, называют фагоцитозной вакуолью.

2. Пиноцитоз - поглощение жидкого материала (раствор, коллоидный раствор, суспензия). Часто при этом образуются очень мелкие пузырьки. В таком случае говорят о микропиноцитозе и пузырьки называют микропиноцитозными.

Пиноцитоз характерен для амебоидных простей­ших и для многих других (часто амебоидных) кле­ток, таких, как лейкоциты, клетки зародыша, клетки печени и некоторые клетки почек, участвующие в водно-солевом обмене. Удается наблюдать пиноцитоз также и в клетках растений.

Экзоцитоз - процесс, обратный эндоцитозу. Та­ким способом различные материалы выводятся из клеток: из пищеварительных вакуолей удаляются оставшиеся непереваренными плотные частицы, а из секреторных клеток путем «пиноцитоза наоборот» выводится их жидкий секрет.

Все процессы жизнедеятельности клеток происходят с затратой энергии, которая поступает извне и преобразовывается специальными органалами клетки: в растительной клетке – это хлоропласт, в животной – митахондрии. Процессы преобразования энергии называется фотосинтез (растительная клетка), синтез АТФ – животная клетка.


Хлоропласты

У эукариот фотосинтез происходит в особых органеллах, называемых хлоропластами. Хлоропласты рассеяны в цитоплазме, их число варьирует от одного примерно до ста. У высших растений Хлоропласты на срезе обычно имеют двояковыпуклую форму, а при взгляде сверху вы­глядят округлыми. Диаметр хлоропластов около 3-10 мкм (в среднем 5 мкм), так что они хорошо видны в световой микроскоп. У водорослей форма хлоропластов более разнообразна.

Хлоропласты образуются из небольших недиф­ференцированных телец, называемых иропластидами; такие тельца имеются в растущих частях расте­ния (в клетках меристемы), они окружены двойной мембраной - будущей оболочкой хлоропласта. В хлоропластах всегда содержатся хлорофилл и дру­гие фотосинтетические пигменты, локализованные в системе мембран, которые погружены в основное вещество хлоропластастрому.

Детали строения хлоропластов выявляются с помощью электронного микроскопа. Мембранная система – это то место, где протекают световые реакции. Темновые реакции фотосинтеза происходят в строме.

 

Биохимия фотосинтеза

Процесс фотосинтеза обычно описывают уравне­нием:

                   Энергия света

6CO2 + 6Н2О ————> С6Н12О6 + 6O2.

                                                                                          Хлорофилл


Им удобно пользоваться, когда надо показать, что образуется одна молекула сахара, но при этом не следует забывать, что это всего лишь суммарное отображение многих событий. Несколько лучший вариант:


                  Энергия света

СО2 + Н2О —————> [СН2О] + О2.

                    Хлорофилл


Такого соединения, как СН2О, не существует, но эта формула отражает состав углевода.


Источник кислорода

Глядя на приведенное выше уравнение, химик сразу же задумается о том, к какому типу относится эта реакция, а ответить на этот вопрос нельзя, если не знать, из чего - из двуокиси углерода или воды - об­разуется выделяющийся кислород. Казалось бы, ответ ясен: из двуокиси углерода; в таком случае осталось бы только присоединить углерод к воде, и получился бы углевод. Но прямо ответить на этот вопрос удалось только после того, как в 40-е годы в биологических исследованиях начали применять.

Массовое число обычного изотопа кислорода рав­но 16, поэтому его обозначают lб0 (8 протонов, 8 нейтронов). А один из редких изотопов имеет мас­совое число 18 (18О). Это стабильный изотоп, но его можно обнаружить благодаря его несколько боль­шей массе. Для этого используют масс-спектро­метр - очень важный аналитический прибор, способ­ный улавливать разницу между массами отдельных атомов и молекул. В 1941 г. был поставлен экспери­мент, результаты которого можно выразить сле­дующим образом:


СО2 + Н218О -> [СН2О] + 18O2.


Так было установлено, что источником кислорода служит вода. Из уравнения видно, что из каждой молекулы воды выделяется один атом кислорода. В сбалансированном виде уравнение должно выгля­деть так:


           Энергия света

СО2 + 2H218O ————> [СН2О] + 18О2 + Н2О.

                              Хлорофилл


Это самое точное итоговое уравнение фотосинте­за; к тому же из него дополнительно вытекает, что вода в процессе фотосинтеза не только исполь­зуется, но и образуется. Рассмотренный выше экспе­римент косвенно подтверждал полученные пример­но в это же время данные Ван-Нила о том, что фотосинтезирующие бактерии совсем не выделяют кислорода, хотя и используют СО2. Ван-Нил при­шел к выводу, что всем фотосинтезирующим орга­низмам необходим источник водорода; у растений это вода, причем выделяется кислород; а, например, у серобактерий это сероводород, и вместо кислорода выделяется сера:

 

       Энергия света

CO2 + 2H2S ——————> [СН2О] + 2S + Н2О.

                          Хлорофилл


Это уравнение для серобактерий полностью анало­гично уравнению для растений.

Упомянутые эксперименты позволили глубже по­нять природу фотосинтеза. Они показали, что фото­синтез включает две стадии, первая из которых состоит в получении водорода. У растений водород получается путем расщепления воды на кислород и водород; для этого расщепления нужна энергия, которую и дает свет (отсюда и сам процесс стали называть фотолизом (греч. photos-свет, lysis-рас­щепление). Кислород выделяется как ненужный по­бочный продукт. Во второй стадии водород соеди­няется с СO2 и образуется углевод. Присоединение водорода - это один из примеров химической реак­ции, называемой восстановлением.

Тот факт, что фотосинтез является двухстадий­ным процессом, был впервые установлен в 20-е-30-е годы. Для первой стадии характерны так назы­ваемые световые реакции, для которых нужен свет. На второй стадии свет не нужен, и поэтому соот­ветствующие реакции, хотя они тоже происходят на свету, назвали темповыми реакциями. Сейчас выяс­нено, что это два отдельных набора реакций, кото­рые к тому же разделены и в пространстве: световые реакции происходят в мембранах хлоропластов, а темновые - в их строме.

Когда было установлено, что фотосинтез склады­вается из световых реакций и следующих за ними темновых реакций, к концу 50-х годов осталось только выяснить, что же это за реакции.


Световые реакции

В 1958 г. Арнон и его сотрудники показали, что на свету изолированные хлоропласты могут синтезиро­вать АТФ из АДФ и фосфата (фосфорилирование), восстанавливать НАДФ до НАДФ-Н2 и выделять кислород.

Арнон показал также, что СО2 можно восстано­вить до углевода даже в темноте, при условии что в среде присутствуют АТФ и НАДФ • Н2. Это позволяло думать, что роль световых реакций состоит лишь в образовании АТФ и НАДФ-Нд. Арнон обратил внимание на сходство этого процес­са с дыханием, при котором тоже происходит фос­форилирование АДФ. Для фосфорилирования нуж­на энергия. При дыхании энергия высвобождается в результате окисления питательных веществ пищи (чаще всего глюкозы), и потому этот процесс назы­вают окислительным фосфорилированием. При фотосинтезе источником энергии служит свет, и соответствующий процесс назвали фотофосфорили-рованием. Таким образом, окислительное фосфори­лирование - это превращение АДФ и Фн в АТФ за счет химической энергии, получаемой из пищи в процессе дыхания, а фотофосфорилирование-это такое же превращение с использованием энергии света в процессе фотосинтеза (Фн - неорганический фосфат).

Арнон совершенно верно предсказал, что фото-фосфорилирование, как и окислительное фосфори­лирование, должно быть сопряжено с переносом электронов в мембранах. Перенос электронов - это основа для понимания как фотосинтеза, так и ды­хания.

Процесс преобразования энергии в животных клетках происходит с помощью митахондрий.


Митохондрии

Митохондрии имеются во всех эукариотических клетках. Эти органеллы - главное место аэробной дыхательной активности клетки. Впервые наблюдал Митохондрии в виде гранул в мышечных клетках Кёлликер в 1850 г. Позднее, в 1898 г., Михаэлис показал, что они играют важную роль в дыхании: в его опытах митохондрии вызывали измене­ние цвета окислительно-восстановительных индика­торов.

Число митохондрии в клетке очень непостоянно; оно зависит от вида организма и от природы клет­ки. В клетках, в которых потребность в энергии велика, содержится много митохондрии (в одной печеночной клетке, например, их может быть около 1000). В менее активных клетках митохондрии го­раздо меньше. Чрезвычайно сильно варьируют так­же размеры и форма митохондрии. Митохондрии могут быть спиральными, округлыми, вытянутыми, чашевидными и даже разветвленными; в более активных клетках они обычно крупнее. Длина мито­хондрии колеблется в пределах 1,5-10 мкм, а ши­рина - в пределах 0,25-1,00 мкм.

Митохондрии способны изменять свою форму, а некоторые могут также перемещаться в особо активные участки клетки. Такое перемещение (ко­торому способствует ток цитоплазмы) позволяет клетке сосредоточивать большее число митохонд­рии в тех местах, где выше потребность в АТФ. В других случаях положение митохондрии более постоянно (как, например, в летательных мышцах насекомых).


Синтез АТФ

Изучением этого вопроса активно занимаются больше 30 лет однако четкого представления о механиз мах синтеза АТФ нас пока еще нет. В последнее время усиленно обсуждаются главным образом две гипотезы: гипотеза химического сопряжения и хемиосмотическая гипотеза.


Гипотеза химического сопряжения

Согласно этой гипотезе, синтез АТФ сопряжен с переносом электронов при посредстве одного или нескольких «высокоэнергетических» промежуточных Энергия, высвобождаемая при переносе в окислительно-восстановительных реакциях дыхательной цепи, используется в нескольких ее звеньях для образования высокоэнергетической связи в одном из таких продуктов. Затем при фосфорилировании АДФ эта энергия переходит к высокоэнергетической связи АТФ. До сих пор, однако, обнаружить подобные промежу­точные продукты не удалось, и до тех пор, пока их существование не подтвердится, эту гипотезу нельзя считать убедительной.


Хемиосмотическая гипотеза

Большее признание завоевала гипотеза, выдвинутая Митчеллом в 1961 г. Он полагал, что синтез АТФ находится в тесной зависимости от того, каким образом электроны и протоны передаются по дыха­тельной цепи. Ниже перечислены условия, соблюде­ния которых требует эта гипотеза.


1. Внутренняя митохондриальная мембрана должна быть интактна и непроницаема для протонов (ионов водорода), направляющихся снаружи внутрь.     

2. В результате активности дыхательной (электрон-транспортной) цепи ионы водорода поступают в нее изнутри, из матрикса, а освобождаются на наружной стороне мембраны.

3. Движение ионов водорода, направленное изнутри наружу, приводит к их накоплению, вследствие чего между двумя сторонами митохондриальной мембраны возникает градиент рН. Это может быть связано с тем, что ферменты, принимающие и отдающие ионы водорода, расположены в мембране определенным образом и поэтому могут принимать ионы водорода только изнутри и отдавать их только наружу.

4. Сам по себе градиент рН не мог бы поддерживаться, так как ионы водорода диффундировали бы обратно в митохондрию. Поддержание такого градиента требует затраты энергии. Предполагается, что энергию поставляет перенос электронов по электронтранспортной (дыхательной) цепи.

5. Эта энергия используется затем для синтеза АТФ. Синтез АТФ, таким образом, поддерживается наличием градиента рН.

6. АТФ образуется в результате фосфорилирования АДФ:


АДФ + ФН  = АТФ + Н2O.

 

По закону действующих масс удаление воды должно ускорять реакцию, идущую слева направо, т. е. благоприятствовать образованию АТФ. Согласно теории Митчелла, фермент, ответственный за образование воды при синтезе АТФ, ориентирован в мембране таким образом, освобождаются с внутренней стороны мембраны, где значение рН выше (т.е. концентрация Н'1'меньше), а гидроксильные ионы (ОН")-с наружной стороны, где рН ниже (т.е. концентрация Н4" больше). Таким образом, вода, образующаяся при синтезе АТФ, быстро удаляется, и это стимулирует синтез,

Из гипотезы Митчелла ясно, почему мембрана должна быть интактной (в моменты, ответственные за прохождение ионов водорода и за образование воды, так что любое изменение структуры мембраны неминуемо сказалось бы также на расположении ферментов и на их структуре). Объяснимо и требование непроницаемости мембраны для ионов водорода (в направлении снаружи внутрь): в основе гипотезы лежит представление о трансмембранном градиенте рН, атакой градиент не мог бы поддерживаться, если бы мембрана была полностью проницаемой. Следует отметить также, что гипотеза обходится без каких бы то ни было промежуточных продуктов в процессе синтеза АТФ.

Список использованной литературы.


1.     Зегбуш П. «Молекулярная и клеточная биология»

2.     Грин Н., Стаут У., Тейлор Д. «Биология» 1, 2 том.



© 2000
При полном или частичном использовании материалов
гиперссылка обязательна.