РУБРИКИ |
Биологические основы выращивания сёмги |
РЕКЛАМА |
|
Биологические основы выращивания сёмгиИзбыток кислорода в воде по сравнению с оптимальным режимом, в период эмбрионального развития снижает функцию кроветворных органов, что вызывает анемию. В некоторых случаях чувствительность к кислороду обостряется на определенных стадиях развития, не исключение и атлантический лосось. У молоди атлантического лосося первые 40 дней минимальная пороговая концентрация кислорода составляет 1,5 см3/л, к пятидесятому дню она повышается до 3 см3/л, а к 107 дню она уменьшается до 1,3 см3/л. Потребление О2 зависит от подвижности и физиологического состояния. Как правило, перед нерестом семга начинает потреблять кислорода на 25-50% больше первоначального. Таким образом, из всего вышеперечисленного следует, что для представителей лососевых, в данном случае, для семги кислородный режим исключительно важен и должен регулироваться до оптимальных величин, так как при пониженном содержании кислорода (до 4-5 мг/л) организм находится в угнетенном состоянии и не обеспечивает нормального функционирования всех систем органов и тканей. Немаловажной является и активная реакция среды. Влияние степени концентрации водородных и гидроксильных ионов на гидробионтов установлено и, несомненно. Жизнедеятельность каждого вида рыб протекает нормально лишь в определенных границах концентраций. Как правило, активная реакция среды зависит от соотношения растворенного в воде кислорода и свободной углекислоты, и изменяется в зависимости от суточного и сезонного хода фотосинтеза. Так как жизненный цикл семги складывается из нескольких периодов (морской и речной), то и воздействие активной реакции среды на организм в каждом из них будет различным. Как правило, пресные воды подвержены большим колебаниям рН, чем морские, что связано, главным образом, с цветением воды и массовым развитием планктонных водорослей. В свою очередь, выделившиеся в большом количестве гуминовые кислоты, угнетают рост рыбы. Также избыток СО2 в пресных водах вызывает увеличение кислотности. Морские же воды подвержены меньшим колебаниям кислотности из-за большого содержания бикарбонатов. Как для лососевых, так и для других видов рыб, изменение границ рН вызывает нарушения в обмене веществ, так как снижается способность организма поглощать кислород. Оптимальная величина рН для лососевых составляет от 7 до 8. Оптимальная рН для семги входит в эти пределы (7-8), то есть предпочтение отдается нейтральной или слабощелочной среде. Кислая среда, в любых своих проявлениях, угнетающе действует на молодь. Если же рН составляет меньше 5,6, семга уже не может нормально размножаться, а реакция среды со значениями выше 9 и более приводит к ее гибели. Глава 3. Управление половыми циклами у рыб различными методами В практике искусственного рыборазведения применяют 3 метода стимулирования созревания половых продуктов у производителей рыб: экологический, физиологический и эколого-физиологический. Для лососевых рыб применяют экологический метод, который был разработан в 30 – е гг. академиком Н. Державиным. Применяется при разведении лососевых и других видов рыб при выдерживании производителей с целью получения от них зрелых половых продуктов. Смысл этого метода состоит в том, что производителей выдерживают в садках и бассейнах в обстановке соответствующей естественным условиям. При этом учитываются те факторы, которые способствуют развитию и созреванию половых клеток, овуляции и образование спермы: это температура, близкая к температуре нереста данного вида рыб, течение, кислородный режим и грунт (нерестовый субстрат). Получение зрелых производителей лососей. Многие лососевые рыбоводные заводы заготавливают производителей, пришедших в реки с незрелыми половыми продуктами, и выдерживают их в естественных и искусственных садках до окончания созревания. Количество производителей зависит от их плодовитости, биотехнических нормативов промышленного разведения лососей и производителей, мощности заводов. Самцов можно заготовлять меньше на 10 – 50 %, чем самок, так как сперма у них созревает порциями, что позволяет повторно их использовать при выдерживании в садках. Сроки отлова производителей различных видов лососей следующее: семга: июнь – сентябрь; балтийский лосось: октябрь – ноябрь; каспийский лосось: ноябрь; тихоокеанские лососи: август – ноябрь. Для сохранения естественного генофонда популяций лососей при искусственном разведении необходимо заготавливать производителей от каждой популяции в различные сроки их нерестового хода в реки: ранние, средние и поздние. Производителей атлантического лосося (семга) отлавливают в реках ставными и закидными неводами. Их выбирают из невода специальным полым сачком, изготовленным из полубрезента. Длина сачка – 1,5м, а диаметр равен 0,4м; с одного конца в сачок вшито металлическое кольцо, к которому прикреплена деревянная ручка длиной 70см, другой конец тоже имеет отверстие. Выборку производителей из невода осуществляют следующим путем: рабочий подводит к голове лосося конец сачка с кольцом и пропускает в него рыбу. Когда лосось войдет в сачок, рабочий быстро зажимает свободной рукой края противоположного полого конца сачка, одновременно он перекручивает конец сачка с кольцом. Затем рабочий переносит лосося в садок, предназначенный для выдержки производителей непосредственно на месте отлова, или в живорыбную прорезь, которую используют для перевозки производителей в другое место. Такой способ пересадки производителей из невода в садок или прорезь облегчает работу и позволяет держать рыбу все время в воде. Отобранные производители должны быть возможно более крупными, не иметь ушибов, кровоподтеков, сбитой чешуи и уродств. В большую живорыбную прорезь астраханского типа, длина которой 16,3м, ширина 5,5м и высота 0,9м, сажают не более 40 крупных производителей лосося. Чтобы лососи не выпрыгивали, прорезь покрывают сетным полотном. Во избежание травмирования производителей в прорезях заранее убирают разделительные перегородки, а шпангоуты оббивают хорошо обструганными досками оставляя просветы в 3 – 4 см. Прорези буксируют баркасы – буксировщики. Один баркас может буксировать 2 прорези. Буксировку прорезей с производителями надо производить в светлое время суток и не дольше 8 – 10ч. Средняя скорость буксировки 7 км/ч. В пути надо избегать остановок в местах возможного выхода в реки сточных вод. Во время транспортировки производителей мастер или рыбовод постоянно должны находиться на прорези и вести наблюдение за поведением рыбы и за температурой воды. Некоторые рыбоводные заводы, расположенные в стороне от промысловых рек, используют для перевозки производителей лососей автотранспорт и вертолеты. Для перевозки производителей на этих видах транспортов применяют баки из оцинкованного железа длиной 140см, шириной 60см, высота 125см и вместимостью до 600л. Баки наполняют на 2/3 объема речной водой, а затем в каждый из них сажают по 3 – 5 производителей. Продолжительность транспортировки производителей на автомашинах не должна превышать 4 – 6ч. При перевозке рыбы осенью, когда t воды в баках равна 2 – 5с, а содержание кислорода составляет 10 – 11 мг/л, воду в пути следования не меняют. Если же необходимо пополнить баки водой, то автомашину подводят к заведомо чистому источнику. Вода по всем показателям не должна отличаться от воды содержащейся в баках. Производителей можно перевозить в брезентовом чане, сделанном по размеру кузова автомашины. В зависимости от массы рыбы, t воды, содержания кислорода в воде, длительности транспортировки и возможности смены воды в пути, норма посадки производителей в чан – от 7 до 14 штук. Производители пересаживаются в заранее подготовленные садки для выдерживания. Выживаемость производителей за период транспортировки с мест составляет не менее 95%. Представителей озимой семги, у которой половые железы во 2 или начале 3 стадии зрелости, сажают в садки на более длительное выдерживание. Эти производители становятся зрелыми после 10 – 12 месяцев пребывания в садках. Кратковременное выдерживание производителей часто проводят в плавучих садках, установленные непосредственно в реке. Садки представляют собой деревянные решетчатые реечные, ящики длиной 2 – 4м, шириной 1,5 – 2м и высотой 1,5 – 2м. При изготовлении плавучего садка первоначально делают каркас из прочных деревянных брусков. Каркас обшивают планками с промежутками между ними 2 – 3см. Планки должны быть гладко обструганы, а их ребра закручены. На обшитый планками каркас навешивают легкую дощатую крышку. Садки обычно делают с разборными стенками, что облегчает их транспортировку по суше. Для выдерживания производителей необходимо иметь не менее нескольких садков (2 садка для самок и 2 для самцов). Садки устанавливают на таком участке реки, на котором скорость течения обеспечивает хороший водообмен (0,2 – 0,5м/с). Вблизи не должно быть сброса сточных вод. В реке садки обвязывают рамой из бревен, что улучшает их устойчивость и плавучесть. Вокруг садков делают мостики. Лососей сортируют по полу и зрелости половых желез и сажают в садки. Самок сажают в садки, которые размещаются ниже по течению реки. Норма посадки производителей в плавучих садках зависит от массы рыбы, t воды. Чем ниже t воды и мельче производители, тем выше плотность посадки их в садки. В плавучие садки сажают 5 – 10 штук/м2. С понижением температуры воды до 6с, у производителей находящихся в плавучих садках, систематически проверяют степень зрелости половых желез. При проверке всю рыбу отгоняют в один край садка, и посередине садка ставят решетку, которая делит садок на два отдела, одно из которых свободно. При осмотре несозревших представителей пересаживают в свободное отделение садка, а зрелую рыбу изымают из садка. Отход производителей семги в течение 30 суток выдерживания достигает 10%, 60 суток – 30%, 120 суток – 50%. Для длительного выдерживания производителей, а для некоторых рыбозаводов и для кратковременного выдерживания применяют стационарные естественные садки. Плотность посадки представителей в эти садки зависит от размеров лососей и продолжительности их выдерживания. Так семгу сажают в садок в количестве 1 штуки/м2. Выдерживание этих производителей осуществляют в основном в естественных садках. Под стационарные естественные садки могут быть использованы участки рек, протоков и ручьев. Глубина выбранных участков должна быть от 0,3 до 2м, скорость течения от 0,3 до 0,5м/с, t воды летом – не выше 15с, содержание в воде кислорода – 9 – 12мг/л, дно песчано-галечное, без крупных камней мешающих облову. На таком участке устраивают заграждения, препятствующие уходу лососей, и заходу посторонней рыбы. Заграждения устраивают в виде плетни или деревянной решетки. При расчете высоты, заграждения превышают уровень воды на 1,5 – 2м. В зависимости от количества производителей, которых ежегодно необходимо выдерживать до окончательного созревания, русловые садки имеют различную площадь. Длина этих садков от 20 до 200м, а ширина от 1,5 до 30м. Для выдерживания представителей лосося требуется не менее 2 – ух русловых садков: один для самок, а второй для самцов. Внутри садка устанавливают решетчатую перегородку для сортировки производителей по степени зрелости половых продуктов. При сортировке более зрелых рыб сажают в одно отделение, а менее зрелых в другое. Это позволяет улучшить контроль за близкими к созреванию производителями. По мере появления зрелых особей их вылавливают из садка и берут у них половые продукты, но производителей семги часто отлавливают из русловых садков примерно за месяц до начала взятия у них половых продуктов (в конце августа). Этих рыб сажают в плавучие садки, где и происходит окончательное созревание их половых желез. Отход производителей за период выдерживания в стационарных, естественных, русловых садках в течение 30 суток составляет 5 – 10%, в течение 120 суток – 20 – 25%. Особенности гормональной регуляции созревания карликовых самцов атлантического лосося. В популяциях лосося значительно внутривидовая дифференциация: разные экологические группы, сезонные расы, различающиеся степенью мигрантности, условиями среды обитания на разных этапах жизненного цикла, скоростью созревания – все это способствует приспособлению популяции к условиям ареала. Особый интерес представляет способность лососей к образованию карликовых самцов, достигающие половой зрелости в реке, без миграций в море в более раннем возрасте и при небольших размерах по сравнению с самцами, ведущими проходной образ жизни. Развитие значительной части самцов по пути карликовых, наблюдаемое при заводском воспроизводстве лосося экономически невыгодно. У лосося, жизненный цикл которого включает смолтификацию, в этот период возрастает функциональная активность тиреотропных, соматотропных, кортикотропных клеток и изменяется активность пролактиновых клеток аденогипофиза, а у особей, развивающихся по пути карликовых самцов, особенно активными становятся гонадотропные элементы и гипофиз – адреналовая система. Состояние семенников. В июне – июле семенники неполовозрелых пестряток и серебрянок в возрасте 2+ и 3+ находились в 1 стадии зрелости. Коэффициент зрелости составляет 0,01 – 0,02%. Состояние половых желез у карликовых самцов разного возраста в этот период различались. У впервые созревающих карликовых самцов в возрасте 2+ семенники достигли 3 стадии зрелости. Средний коэффициент зрелости составил 1,2%. Повторно созревающие карликовые самцы в возрасте от3+ до 7+ в тот же сезон имели гонады 2, 2 – 3 стадии зрелости. О повторности созревания можно судить по наличию значительных просветов в ампулах, остаточной спермы в просвете ампул или выводных протоков и утолщенной наружной оболочке. Среднее значение коэффициента зрелости у этих самцов ниже – 1,02%, чем у впервые созревающих в этот же период. В августе половые железы карликовых самцов в возрасте 2+ и 3+ находились на 2 стадии зрелости. Средний коэффициент зрелости 9,6%. Состояние гипофиза. Гипофиз неполовозрелых самцов пестряток на сагиттальных срезах имеет форму полумесяца. Мезоаденогипофиз лежит в виде узкого слоя клеток. Гипофиз неполовозрелых самцов – серебрянок имеет такую же форму как и у пестряток, но Мезоаденогипофиз серебрянок отличается значительно большими размерами, повышенной митотической активностью клеток. Гипофиз карликовых самцов в возрасте от 0+ до 3+ не отличается по форме от гипофиза неполовозрелых самцов. Но у карликовых самцов старших возрастных групп от 4+ до 7+ он становится более высоким по дорзо – вентральной оси и приобретает на сагиттальных срезах треугольную форму, приближаясь в этом отношении к гипофизу крупных половозрелых особей. У карликовых самцов мезоаденогипофиз занимает промежуточное положение между мезоаденогипофизом пестряток и серебрянок. В гипофизе карликовых самцов в возрасте 7+ гонадотропные клетки были особенно крупными и многочисленными, они отличались неправильной формой. Гонадотропные клетки этого самца напоминали видоизмененные гонадотропы, описанные в гипофизе старых особе ряда видов рыб. В августе у карликовых самцов в возрасте 2+ и 3+ гонадотропные клетки имели неправильную форму, округлую, овальную или полиморфное ядро и небольшое количество цитоплазмы заполненной грубозернистыми секрекреторными гранулами. Состояние латерального ядра. Многие исследователи предполагают, участие крупных нейросекреторных клеток латерального ядра гипоталамуса лежащих в стенках воронки в регуляции гонадотропной функции гипофиза у костистых путем выработки гонадотропина – такие предположения основываются на наличии контактов между аксонами клеток латерального ядра и репродуктивным циклом. В латеральном ядре лосося можно выделить 2 группы крупных нейросекреторных клеток: одна находится в ростро – вентральной части ядра у поверхности гипоталамуса; вторая группа клеток находится над гипофизарным стеблем в стенках воронки. Именно клетки второго типа у изученных групп рыб различаются по морфологическим признакам. Результаты изучения гипоталамо-гипофизарной системы и половых желез молоди лосося помогают понять некоторые стороны функционального механизма формирования карликовых самцов молоди лосося и подойти к вопросу о регуляции их численности на заводах повысить эффективность рыбоводных мероприятий. Регуляция численности карликовых самцов является актуальной задачей на современном этапе развития лососеводства, когда формирование большинства популяций лососей происходит в основном за счет заводского воспроизводства. Глава 4. Биологические основы кормления исследуемого объекта На первых этапах постэмбрионального развития предличинки рыб осуществляют свое питание за счет содержимого желточного мешка. При резорбции последнего на 2/3 наступает переход на смешанное питание. После полного рассасывания желточного мешка личинки переходят на активное, или внешнее питание, когда необходимые организму вещества поступают с кормом из внешней среды. В естественных водоемах в качестве такого корма выступают многие беспозвоночные животные. При выращивании молоди рыб в искусственных условиях (в специальных бетонных бассейнах, в деревянных лотках, канавах или прудах), где плотность посадки достаточно велика, основу питания молоди составляют корма, вносимые из вне. Все корма, применяемые в рыбоводстве, делят на две основные группы: корма растительного и животного происхождения (живые и неживые). В качестве живых кормов используют искусственно разводимых низших ракообразных (дафний, артемий, жаброногов), олигохет и других, неживых кормов – яичный порошок, творог, корма из печени и селезенки сельскохозяйственных животных, рыбный фарш, кровяную, рыбную и крилевую муку, муку из куколок шелкопряда, водоросли и другие. Корма должны хорошо поедаться молодью рыб и обеспечивать ее нормальный рост и развитие. Корма, полностью удовлетворяющие физиологическим потребностям рыбы на данном этапе ее развития, называется полноценным. Полноценные корма содержат все необходимые питательные вещества (белки, жиры, углеводы, минеральные соли, витамины). Неполноценность кормов устраняется путем составления рационов из комплекса различных кормовых компонентов. В такой комплекс должны входить в необходимом количестве все питательные вещества, в которых нуждается организм рыбы. В настоящее время неживые корма широко используют на рыбоводных заводах при выращивании молоди лососевых рыб. Основу кормовых рационов для молоди этих рыб составляют корма животного происхождения с высоким содержанием белка. Богатые углеводами растительные корма имеют второстепенное значение. Их чаще всего используют для связи отдельных кормовых компонентов в пастообразных смесях, а некоторые из них употребляют в пастообразных и гранулированных кормах для обогащения кормовых рационов отдельными незаменимыми аминокислотами, минеральными веществами и витаминами. Корма животного происхождения. Яичный порошок – желток куриного яйца, сваренного вкрутую и мелко растертый, на рыбоводных заводах применяют для кормления личинок лососей при их переходе на смешанное питание. Этот корм богат питательными веществами, которые обеспечивают хороший рост молоди лососей на ранних стадиях развития. Творог – применяется для кормления личинок и мальков лососей, беден железом и витаминами, поэтому он идет в дополнение к основному корму. Селезенка – входит в кормовой рацион молоди лососей. Имеет низкий уровень протеина с небольшой биологической ценностью. Длительное кормление молоди исключительно селезенкой приводит к резкому нарушению функциональной деятельности организма. Для устранения этого нежелательного явления кормовой рацион молоди лосося должен состоять не только из селезенки, но и из других кормов в количестве не менее 30 – 50% от общей массы суточной нормы корма. Селезенку скармливают молоди лососей в виде жидкой пасты, очищенной от пленок и жил. При приготовлении пасты отход селезенки составляет 10%. Фарш из свежей рыбы – скармливают молоди лососей в количестве не более 50% от общей массы суточной нормы корма. Отход при обработке рыбы достигает 40 – 50%. Кровяная мука – используется как один из компонентов входящих в кормовую смесь. Рыбная мука – содержит большое количество белка, богата фосфором и витамином В. Является ценным кормом. Мука из куколок тутового шелкопряда – применяется при кормлении молоди лососевых рыб, но в ограниченном количестве из-за высокой степени окисляемости. Мясокостная мука – представляет собой вываренное, высушенное и размолотое мясо и кости. Она содержит более 20% минеральных веществ. Эту муку скармливают молоди лососей в смеси с другими кормами в количестве 5% от величины кормового рациона. Корма растительного происхождения. Жмыхи – отходы маслобойного производства. Богаты протеином (31-40%), углеводами (30-40%), жира (7-8%). При искусственном разведении промысловых рыб их применяют редко. Шроты – обезжиренная мука семян масличных растений. Содержит жира 0,1 – 1%. Богаты протеинами, их используют в кормовых рационах лососевых рыб. Мука пшеничная (кормовые отходы) – содержит более 60% углеводов. Ее вводят в кормовые рационы лососевых рыб в количестве не более 15%. Составление кормовых смесей. При составлении кормовых смесей для удовлетворения всех жизненно важных функций организма к кормам добавляют витамины, рыбий жир, кормовые (гидролизные) дрожжи, антибиотики и микроэлементы. Рыбий жир – препарат, полученный из печени тресковых рыб. Он содержит холестерин, трипальмитин, йод, витамины А и Д. В среднем в 1г рыбьего жира содержится 350 ИЕ витамина А и 30 ИЕ витамина Д. В 1г витаминизированного рыбьего жира содержится около 500 ИЕ витамина А и 150 – 200 ИЕ витамина Д . Дрожжи кормовые – богаты комплексом витамина группы В. Их размельчают и добавляют к кормовым смесям в количестве 3 – 6% от массы кормового рациона. Антибиотики – применяют в кормовых рационах рыб в микродозах. Так на 1т пастообразной кормовой смеси КРТ – 6 используют 200г мицелия пенициллина и 50мг химически чистого биомицина. Микроэлементы – йод, кобальт, молибден, марганец и некоторые другие – добавляют в кормовые смеси в микродозах (в среднем в количестве 0,0006% от массы кормового рациона). Вводить микроэлементы в кормовую смесь следует с учетом их дефицита в кормовой смеси и в воде, в которой выращивают молодь рыб. Кормовая смесь КРТ – 6 - для приготовления 1т этой смеси берут: кровяной муки – 200кг, рыбной муки – 120кг, муки из куколок тутового шелкопряда – 120кг, муки из морских водорослей – 50кг, горчичной муки – 20кг, кормовых дрожжей – 30кг, рыбьего жира – 5кг, концентрата витамина А 15млн ИЕ, концентрата витамина Д 75млн ИЕ, мицелия пенициллина – 200г (или 50г пенициллина), биомицина – 50г, молибденово-кислого аммония – 5,5г (или углекислого марганца 6,3, или углекислого кобальта 6,0г) и воды – 460л. Если приготовленная смесь не может быть использована в течение суток, к ней добавляют консервант – пиросульфат натрия в количестве 15кг на 1т. (1,5% от массы смеси) и хранят в герметически закрытой таре. Кормовые смеси для кормления молоди лососевых рыб применяют как в пастообразном, так и в гранулированном виде. Но гранулированные корма применяют чаще, так как они более эффективны и могут храниться длительное время. Сухие гранулированные корма. Эти корма имеют влажность не более 15%. Они обладают весомыми преимуществами по сравнению с пастообразными кормами. При использовании сухих гранулированных кормов на рыбоводных заводах не требуются кормокухни для их приготовления и холодильные установки для их хранения, так как эти корма изготавливают централизованным путем. При внесении гранулированных кормов в воду они не снижают своей биологической ценности в противоположность пастообразным кормам, которые в ней теряют значительную часть питательных веществ. Известны различные кормосмеси гранулированных кормов, применяемых для кормления рыб в разных странах. На рыбоводных заводах нашей страны для кормления молоди лососевых рыб используют сухие гранулированные корма отечественного производства. Так, для кормления молоди атлантического лосося используют сухой гранулированный корм РГМ – 8М, в состав которого входят следующие кормовые компоненты (в %): рыбная мука – 48,6; мясокостная мука – 5; кровяная мука – 5; пшеничная и водорослевая муки – 1; обрат сухой – 5,5; дрожжи гидролизные – 6; шрот соевый – 16; рыбий жир – 10,6; премикс – 1; краситель (рубиновый СК) – 0,3. В зависимости от массы выращенной молоди лосося используют гранулы корма РГМ – 8М различного размера. Таб.3.
Для приготовления 1кг поливитаминного премикса в качестве наполнителя используют пшеничные отруби мелкого помола, антиоксидант (антиокислитель – сантехин) и 14 наименований витаминов: А (ретинол), Д3, Е (токоферол), К3 (филюкинон), С (аскорбиновая кислота), В1 (тиамин), В2 (рибофлавин), В3 (пантотеновая кислота), В4 (холин – хлорид), В5(никотинамид), В6 (пиридоксин), В12 (цианкобаламид), Вс (фолиевая кислота), Н (блотин). Поливитаминный премикс содержит следующие витамины: А, Д2, Е, К3, С, В1, В2, В3, В12, В4, В5, В6, Вс, Н. Размер скармливаемых гранул этого корма также зависит от массы выращенной молоди. На основе рецептуры кормовой смеси пастообразного корма КРТ – 6 специалисты БалтНИИРХа разработали гранулированный корм С – 112 – Лат – 1 для личинок и С – 113 – Лат – 1 для молоди лососей. Корма обогащены по сравнению с кормовой смесью КРТ – 6 некоторыми кормовыми компонентами и микродобавками: микроэлементами, антибиотиками, ферментами и витаминами. Размер гранул С – 112 – Лат – 1 от 0,3 до 0,6 мм. Этот корм применяют для кормления личинок и мальков лосося до массы 0,6г. Молодь лосося m = 0,6г и более выращивают на корме С – 113 – Лат – 1, который имеет размер гранул. Таб.4.
Кормовой коэффициент данных гранулированных кормов не превышает 1,6 – 1,7. Гранулированные корма должны быть изготовлены из доброкачественных исходных кормовых компонентов, не содержащих продукты распада белка и окисленный жир. Показателем степени окисленной порчи жира является перекисное число жира, его величина в жире стартовых кормов применяемые для личинок и мальков лосося m = до 0,6г, не должна превышать 0,2, а в жире кормов для молоди лосося старших возрастов – 0,3; корма с высоким перекисным числом не должны применяться на лососевых рыбозаводах. Перекисные соединения разрушают витамины (полиавитаминоз), нарушают обменные процессы, рыба испытывает голодание, на ее теле и внутренних органах появляются точечные кровоизлияния, у многих рыб возникает пучеглазие, рост рыбы приостанавливается, все эти признаки приводят к гибели рыбы. В случае возникновения у рыб состояния полиавитаминоза необходимо принять срочные меры по его устранению. Для этого следует исходное количество витаминов увеличить в 2 – 3 раза по сравнению с нормой. Применяемые в рыбоводстве корма содержат большое количество самых разнообразных веществ. Химический состав кормов. Вода – является составной частью корма, количество воды в кормах составляет 5 – 90%. Сухое вещество корма состоит из минеральных и органических веществ. Минеральные вещества – входят в состав всех органов и тканей рыбы и имеют большое значение для обмена веществ, поэтому при кормлении рыбы необходимо учитывать содержание в воде и кормах Са, Р, а в остальных случаях Fe, J2, Co, Mn, Mo и других элементов. Количество минеральных веществ, содержащиеся в различных кормах, неодинаково – от 0,5 до 26%. Мясокостная мука, вводимая в кормовой рацион в качестве минеральной подкормки, очень богата кальцием (51,5%) и фосфором (32,1%). Органическая часть сухого вещества корма включает сырой протеин, жир, углеводы. Сырой протеин – это азотистые вещества, которые представлены белками и амидами. Сырой протеин большинства кормов содержит 90 – 97% белков и 3 – 10% амидов. Исключение составляют корма из молодых растений, сырой протеин которых содержит 60 – 80% белков и 20 – 40% амидов. Белки – основное питательное вещество, ибо все жизненные процессы, происходящие в организме, связаны с белковым обменом. В состав белков входят аминокислоты, чем лучше аминокислотный состав белков корма удовлетворяет потребностям организма рыбы, тем выше питательная ценность корма. Наиболее богаты белками корма животного происхождения (до 60 – 70%). Из кормов растительного происхождения белками богаты жмыхи и шроты (30 – 40%). Амиды – это небелковые азотистые вещества, являются продуктами синтеза белка. К ним относятся свободные аминокислоты, нуклеиновые соединения, содержащие азот глюкозиды, и продукты их распада, нитраты и другие. Кормовой рацион для молоди рыб должен быть богат переваримым протеином и содержаться в нем всеми незаменимыми аминокислотами. Сбалансированные по питательным веществам сухие гранулированные корма, которые содержат не менее 43 – 45% протеина, имеют коэффициент преобразования протеина корма в протеин тела рыбы, равный 22 – 24%. Это в 3 раза выше, чем при применении несбалансированных по питательным веществам пастообразных кормовых смесей с содержанием протеина 30%. Жир – корма являются главным образом энергетическим источником в организме рыбы. Содержание жира в кормах различно. Наиболее богаты жиром семена льна, хлопчатника, подсолнечника и некоторых других масличных растений (25 – 40%), а также их жмыхи (7 – 8%). Много жира содержится в муке из куколок тутового шелкопряда (более 20%). Жир легко окисляется и поэтому продукты его окисления надо держать подальше от организма рыб, так как они плохо действуют на их организм. Применять кормовые смеси для молоди лососевых рыб с высоким содержанием жира (более 10 – 15%) не рекомендуется. Углеводы – содержатся в большом количестве в кормах растительного происхождения (до 60 – 70%). В кормах животного происхождения углеводов незначительное количество (0,4 – 6,0%). Углеводы представлены: клетчаткой, крахмалом, сахарами, пектиновыми веществами. В зерновых кормах клетчатки мало (2 – 10%), а в кормах животного происхождения она отсутствует совсем. Много сахара в растительных кормах (4 – 20%). Содержание углеводов не должно превышать 10%,но если жира содержится менее 10%, то содержание жира можно повысить до 20 – 23%. Витамины – необходимы рыбе для роста и развития рыбы. Они регулируют обменные процессы в организме. Их недостаток ведет к снижению роста, развития и плодовитости организма. При недостатке того или иного витамина в корме его вводят с различными добавками: рыбий жир содержит витамины А и Д, дрожжи содержат комплекс витаминов группы В. Кормовой коэффициент – количество весовых единиц корма, которые надо дать рыбе, чтобы получить прирост ее массы в одну такую же весовую единицу. Например, если кормовой коэффициент равен 5, то это означает, что для получения 1г прироста рыбы необходимо затратить 5г корма. Глава 5.Транспортировка икры, личинок, молоди и взрослых особей выбранного объектаТранспортировка икры лососевых производится в специальных упаковках. Многие инкубационные станции в большом количестве пересылают икру лососевых и используют при этом современную упаковку из стиропора фабричного производства, предназначенного для разового употребления. Распространенные прежде деревянные рамки с субстратом почти вышли из употребления. Стандартная кювета из стиропора имеет вид квадрата со стороной 30 см и высотой 6 см. Она разделена на 4 равных отсека. В дне сделаны отверстия, а нижние края профилированы таким образом, что на 1см входят в пазы нижестоящей кюветы. Кюветы устанавливают стопкой до 8 штук в один компактный блок, который помещают в картонную коробку с пенопластовыми прокладками. Нижний ящик заполняют торфяной крошкой или пенопластовой стружкой, которая впитывает воду, образовавшуюся после таяния кусочков льда, помещенных в верхней кювете. Такая вода, просачиваясь сверху вниз, охлаждает и смачивает икру в кюветах. Каждый отсек заполняют одинаковым количеством икры, укладывая ее в несколько слоев. При таком способе упаковки транспортировка может продолжаться несколько дней без потерь. Во избежание распространения заболеваний икру после доставки орошают 3%-ным раствором поваренной соли и только после этого отправляют на инкубацию. Благодаря надежной изоляции и простоте изготовления такой упаковки она в короткое время вытеснила другую тару, ране используемую для таких целей. В связи с небольшой массой и невысокой стоимостью она пригодна для железнодорожных и воздушных перевозок. Перевозка спермы. В семенной жидкости сперматозоиды находятся в неактивном состоянии. Сперму рыб можно перевозить на любые расстояния в сухих стерильных пробирках, установленных в термосе со льдом. Необходимо учитывать сроки ее активности. Длительность оплодотворяющей способности спермы лососевых – 2-3 суток при температуре в контейнере равной 2 градусам. Хранению в пере5возке подлежит свежеотобранная сперма, помещенная в сухие пробирки отдельно для каждого самца с плотно прижатыми пробками во избежание попадания воды. Пробирки с этикетками заворачивают в марлю и опускают в термос, наполненный мелко наколотым льдом. Транспортировка личинок. Для транспортировки личинок используют стандартные полиэтиленовые пакеты (объем-40л, высота-65см, ширина рукава-50 см). Перед перевозкой их упаковывают в стандартные картонные коробки (65х35х35 см) и наливают 10-12 л воды, свободное пространство заполняют кислородом, затем закрывают при помощи зажима Мора или резинового шланга. Оптимальная температура для перевозок представителей лососевых и для других холодолюбивых рыб в летнее время составляет 6-30С, а весной и осенью- 3-50С. В один пакет помещают до 16 тысяч личинок лососевых. Транспортировку личинок из инкубационного цеха также можно производить и в другой таре, используя для этого молочные фляги с крышкой. При температуре 4-50С и продолжительности транспортировки в течение 2 часов допустимая плотность посадки 2-3 тысяч экземпляров на 1 л воды. После помещения личинок воду доливают до горловины фляги и плотно обвязывают двойным слоем марли, на марлю кладут деревянный брусок размером 2х2 см и опускают крышку, но, не стягивая ее зажимом. Этим достигается постоянная аэрация воды и исключается выброс личинок при толчках во время перевозки. Транспортировка молоди рыб. Молодь можно успешно перевозить в самых различных емкостях, если учитывать следующие такие моменты как то, что потребность молоди в кислороде выше, чем у икры и возрастает с повышением температуры, поэтому особенно важно здесь охлаждение. Нельзя транспортировать личинок с желточным мешком, так как к этому моменту происходит наполнение плавательного пузыря атмосферным воздухом. В естественных условиях молодь лососевых держится на камнях, либо лежит на дне, так как она еще не способна выравнивать давление с помощью плавательного пузыря. При перевозке личинки быстро утомляются, идут ко дну и погибают. Позже личинки свободно плавают в толще воды и их можно транспортировать. Перевозки на значительные расстояния целесообразно осуществлять, когда еще не полностью израсходовано содержимое желточного мешка, и когда личинка начинает активно питаться, иначе при перевозке может возникнуть большой % отхода из-за истощения организма. Нельзя перевозить личинок только что получивших корм, так как при активном пищеварении повышается потребность в кислороде. Перед перевозкой личинок, как правило, на несколько часов подвергают голоданию. Чем взрослее личинка, тем дольше она может обходится без пищи. Подращенную молодь следует выдерживать пред транспортировкой в течение 24 часов. Транспортировка икры и личинок в последнее время приобретает все большее значение. Благодаря авиации масштабы ее увеличились, и это позволило расширить возможности акклиматизации ценных видов рыб, в том числе и семги. Транспортировка взрослых рыб. На выживаемость перевозимой рыбы влияют несколько факторов, основными из которых являются содержание в воде кислорода, накопление продуктов жизнедеятельности и свободное пространство. Большое значение предается качеству и физиологическому состоянию. Для перевозки живой рыбы необходимо использовать воду из естественных водоемов. Не допускается использование воды из артезианских скважин, колодцев, водопровода. Вода при перевозке должна быть чистой, прозрачной, без химических и органических примесей. Очень важно, чтобы перевозимая рыба не испытывала резких колебаний температуры. Разница температур воды, в которой рыб находилась до погрузки, и воды, в которой она будет перевозиться, не должна превышать 1-20С, также как и при выгрузке рыбы. Важно, чтобы перевозимая рыба была подготовлена к длительной перевозке. С этой целью ее отсаживают в специальные бассейны с постоянным водообменом. Во время предварительного выдерживания допускается плотность посадки рыбы, при которой содержание в воде растворенного кислорода поддерживается на уровне 6,0-6,5 мг/л. Соотношение между временем выдерживания рыбы в чистой воде и длительностью транспортировки должно составлять 2:1. Как было отмечено выше, во время выдерживания рыбу не кормят. Способы перевозки в полиэтиленовых пакетах. Наиболее удобный способ транспортировки молоди и сеголетков рыб - в стандартных полиэтиленовых пакетах. Плотность посадки молоди зависит от длительности перевозки, температуры оды и воздуха, видового состава и рассчитывается по формуле: В= V(К1- К2)/ ТМ, где В - масса рыбы, г V- количество воды в емкости для перевозки, л К1- содержание кислорода в воде в начале перевозки, мг/л К2- содержание кислорода, при котором наступает угнетение, мг/л Т- длительность перевозки, час М- потребление кислорода рыбой, мл/(кг/ч). Технологические основы транспортировки лососевых рыб.
При перевозке семги, как и других лососевых рыб, потребляющих большое кислорода и характеризующихся высоким кислородным порогом, может наблюдаться их гибель в связи с дефицитом О2 в воде, несмотря на большой его запас в пакете. Это может произойти при длительных остановках транспорта. Время наступления порогового содержания О2 в пакете без вибраций при перевозке (Таб.5). Выживаемость семги в полиэтиленовых пакетах (в час.) и основные параметры этих пакетов (Таб.6).
Пороговое содержание кислорода для семги составляет: для годовиков- 0,7-0,8 мг/л, для молоди- 0,8-1,3 мг/л, для личинок-0,8-2,1мг/л. Перевозка автотранспортом. На автомашинах перевозят крупный посадочный материал (сеголеток и двухлеток) на расстояние от 10 до 1000 км. Для перевозки рыбы применяются живорыбные цистерны и установки различных модификаций (АЦЖР-3, АЦПТ-2,8/53А, ИКА, ИКА-4, ИКФ-4, ИКФ-5 и другие), смонтированные н базе авто ЗИЛ-164, ЗИЛ-130. Они имеют емкости объемом до 3000л, в которых поддерживается необходимая температура и газовый режим. При перевозке живой рыбы на короткие расстояния (до 50 км) отношение ее массы к массе воды должно находиться в определенных пределах (1:2), а при более длительных перевозках, соответственно, 1:4. Как было отмечено выше, норма загрузки устанавливается в зависимости от массы, вида рыбы и длительности транспортировки. Плотность посадки лососевых рыб в живорыбные машины. Таб.7.
Из табличных данных видно, что лососевые рыбы (в том числе и семга) очень требовательны к условиям перевозки, поэтому транспортировка должна проходить с соблюдением всех условий, перечисленных выше. Глава 6.Биологические особенности акклиматизацииАкклиматизация рыб и кормовых объектов является составной частью комплексных мероприятий по воспроизводству рыбных запасов и кормовых ресурсов водоемов.Задачей акклиматизационных работ является повышение продуктивности и хозяйственной ценности водоемов, а также сохранение и увеличение численности ценных видов гидробионов за счет расширения их ареала обитания. Самым первым и, безусловно, важным этапом процесса акклиматизации является интродукция. В практике переселения водных организмов интродукция- это перенос организмов с целью введения их в новую область, биотоп, водоем. Но не всегда процесс интродукции заканчивается акклиматизацией. Поэтому главным шагом акклиматизационного процесса является выбор водоема- объекта заселения. Он не должен отличаться от материнского водоема по основным показателям (гидрохимический режим, кормовая база и так далее).Благородный лосось, или семга, в прошлом являлся объектом многочисленных, но безуспешных интродукций. До настоящего времени удачных случаев акклиматизации этого вида не было выявлено. Тем не менее, известно, что он великолепно выносит поэтапную акклиматизацию: первые этапы жизненного цикла (получение икры, ее оплодотворение и инкубация) поддерживаются на рыбоводных лососевых заводах, а нагул и созревание протекают в реках и морях.План акклиматизационных работ. 1. Выбор объекта. 2. Выбор водоема. 3. Анализ гидрохимического режима водоема. 4. Вселение объекта – акклиматизанта. На данный момент запасы семги сильно истощены. Для пополнения численности этого ценного объекта целесообразно будет использовать реоакклиматизацию в водах Норвежского моря, где условия среды приближены к привычным виду условиям обитания.Географическое положение Норвежского моря. Норвежское море является как бы продолжением Гренландского, от которого отделено порогом Мона. Средняя глубина моря 1742 м, а максимальная-3860м. Береговая линия изрезана многочисленными фиордами. Течения. Система течений складывается из двух потоков разного происхождения. Холодное Восточно-Исландское течение является продолжением Восточно-Гренландского и входит в Норвежское море с северо-запада, направляясь на юго-восток. Воды его имеют температуру ниже 00С. Наиболее мощный поток теплых атлантических вод с температурой 4-70С вливается в Норвежское море между Фарерскими и Шетлендскими островами. Гидрохимический режим. Одной из своеобразных особенностей климата Норвежского моря являются относительно высокие температуры воздуха и поверхностных вод, не свойственных этим широтам. Мягкость климата обусловлена влиянием атлантических вод. Летом температура поверхностных вод в южных районах, у Фарерских островов, достигает 14-150С, а у острова Ян-Майен 8-90С. Воды полярного происхождения в этот период прогреваются до 3-50С. Температура поверхностных вод в южных районах остается высокой и в зимний период - около плюс 6-80С. Соленость в разных районах моря колеблется от 34,5 до 34,90/00. Насыщение вод кислородом имеет пределы 6,0-6,5мг/л. Флора и фауна. Основу населения составляют арктическо-бореальные виды. В фитопланктоне встречаются представители диатомовых, перидиневых и золотистых водорослей. Ход развития фитопланктона в водах различного происхождения неодинаков. В прибрежных районах и в районах действия Атлантического течения наблюдается два максимума: весенний и летний. Воды Восточно-Исландского течения характеризуются лишь весенним максимумом. Величина среднегодовой биомассы в водах различного происхождения сильно отличается. В прибрежных водах она равна 118мг/м3, в атлантических 204, а в зоне Восточно-Исландского течения лишь около 46мг/м3.В зоопланктоне в течение всего года доминируют веслоногие ракообразные. Некоторое значение имеют эвфаузииды и гиперииды. Весной биомасса зоопланктона достигает 300-500 мг/м3. В ихтиофауне Норвежского моря наибольшее распространение имеют сельдь, треска, пикша, морской окунь. Океаническая сельдь представлена сейчас в меньших количествах, но, тем не менее, не теряет своей роли на большей части акватории моря. Из приведенных выше характеристик Норвежского моря видно, что условия южных районов (у Фарерских островов) идеально подходят для вселяемого объекта, так как гидрохимический режим соответствует всем требованиям организма семги (исходя из биологических особенностей). Фактором, определяющим возрастную избирательность вселяемого объекта, является соленость водоема. Это объясняется тем, что уникальная способность семги переносить значительные колебания солености (от 0 до 350/00) приобретается на более поздних стадиях онтогенетического развития (примерно к двухлетнему возрасту). Поэтому вселение целесообразнее производить именно в этом возрасте (в возрасте двух лет). Фактором, определяющим время выпуска молоди семги, является количественный состав кормовой базы, основу которого составляют стайные пелагические виды (сельдь и песчанка). Именно весной в Норвежском море стада океанической сельди многочисленны. Целесообразность проведения акклиматизационных работ именно с этим объектом можно отразить, используя сравнительный коэффициент продуктивности (СКП), который получается в результате сравнения средних годовых приростов массы особи рыб одного трофического уровня, взятых за период их созревания с длительностью этих периодов. Сравнительный коэффициент продуктивности различных видов рыб. Таб.8.
Таким образом, проводя акклиматизационные работы с данным объектом можно добиться не только увеличения его численности для сохранения популяции, в целом, но и вернуть ему прежнее промысловое значение.Список литературыАртамонова В.С., Махров А.А., Крылова С.С., Лазарева Л.В., Прищепа Б.Ф. Выпуск молоди семги в чужие реки и эффективность работы рыбоводных заводов. – М.: Вопросы рыбоводства, N03(11), 2002. Балабанова З.В. Рыбы и кислород. – М.: Рыбоводство и рыболовство, N01, 1960. Березина Н.А. Гидробиология. – М.: Легкая и пищевая промышленность, 1984. Канидьев А.Н. Биологические основы искусственного разведения лососевых рыб. – М.: Легкая промышленность, 1984. Карпевич А.Ф. Теория и практика акклиматизации водных организмов. – М.: пищевая промышленность, 1975. Кузьмин О.Г., Смирнов Ю.А. Условия обитания и рост молоди семги в малых реках Кольского полуострова. – М.: Вопросы ихтиологии, 1988. Лоенко А.А., Черницкий А.Г. Факторы, влияющие на переход в миграционное состояние молоди семги, выпущенной с рыбоводных заводов. – М.: Вопросы ихтиологии, 1984.Моисеев П.А., Азизова Н.А., Куранова И.И. Ихтиология. – М.: легкая и пищевая промышленность, 1981.Павлов Д.А. Влияние температуры на ранний онтогенез семги. – М.: Вопросы ихтиологии, 1985. Пономарев С.В., Гамыгин Е.А., Никоноров С.И., Пономарева Е.Н., Грозеску Ю.Н., Бахарева А.А. Технологии выращивания и кормления объектов аквакультуры юга России. Астрахань, 2002. Привольнев Т.И. Отношение молоди семги к различной солености воды. Труды Мурманского морского биологического института, выпуск 12, 1966. Сборник нормативно – правовых актов, регламентирующих рыбохозяйственную деятельность в Российской Федерации. М., 2001. Титарев Е.Ф. Форелеводство. – М.: Пищевая промышленность, 1980. Шустов Ю.А. Условия обитания, поведение и распределение молоди семги в реке. – М.: Вопросы ихтиологии, выпуск 1(120), 1980. Страницы: 1, 2 |
|
© 2000 |
|