РУБРИКИ |
Биологическая роль, структура и выделение митохондрий из печени крыс. |
РЕКЛАМА |
|
Биологическая роль, структура и выделение митохондрий из печени крыс.Биологическая роль, структура и выделение митохондрий из печени крыс.Биологическая роль, структура и выделение митохондрий из печени крыс. Содержание 1. Введение 1. История вопроса 2. Перспективы исследований 1. Биологическая роль митохондрий 2. Ультраструктура митохондрий 1. Общие принципы организации 2. Особенности строения мембраны митохондрий 3. Описание общих принципов различных методов выделения митохондрий 1. Гомогенизация материала 1. Механическая 2. На основе кавитации газов 3. Ультразвук 2. Разделение субклеточных компонентов 1. Центрифугирование 2. Разделение в двухфазной системе, содержащей два полимера 3. Электрофорез 4. Ферменты - маркеры митохондрий 4. Методики 5. Заключение 6. Список литературы Введение История вопроса. Кёлликер одним из первых описал характерным образом ориентированные гранулы в саркоплазме поперечно-полосатой мышцы. Ему принадлежит так же честь первого выделения митохондрий из клеточных структур. В 1888 году он выделил эти гранулы из мышцы насекомых и показал, что они обладают мембраной и набухают в воде. Началом новой эры в цитологическом изучении митохондрий явилась работа Бенсли и Хэрра, которые предприняли попытку выделить митохондрий из взвеси разрушенных клеток печени, применив метод дифференциального центрифугирования. Из-за отсутствия подходящей среды для суспендирования и несовершенства метода центрифугирования Бенсли не удалось получить интактные митохондрий, но именно новаторская работа Бенсли определила слияние цитологических исследований митохондрий с исследованиями дыхания. Перспективы исследований. В настоящее время основная задача изучения митохондрий на молекулярном уровне сводится к выделению ферментативных компонентов окислительных циклов, определения их молекулярной структуры и механизма действия, анализу их участия в полиферментных системах в митохондриях и картированию их локализации на структурах митохондрий. То обстоятельство, что ферменты дыхательной цепи составляют более 25 % белка митохондриальных мембран заставляют рассматривать эти ферменты не только как функциональные, но и как структурные элементы митохондрии. Биологическая роль митохондрий. На протяжении ста с лишним лет, т. е. со времени первых работ Кёлликера В развитии молекулярной биологии за последнее время наметился новый
этап. До сих пор это были исследования главным образом, на уровне
однородных молекул белков и нуклеиновых кислот, исследования, посвященные
их структуре, функции и биосинтезу. Теперь же исследователь не
довольствуется этим и переходит к изучению специфически организованных
надмолекулярных комплексов, каковыми являются клеточные органеллы. Ультраструктура митохондрии Общие принципы организации. Внутренне пространство митохондрии окружено двумя непрерывными системами мембран, каждая из которых представляет собой замкнутый мешок; эти мешки расположены так, что всю митохондрию можно представить себе, как мешок внутри мешка. Просвет внутреннего мешка не сообщается с пространством между двумя мембранами. Наружная мембрана гладкая, а внутренняя образует многочисленные впячивания, которые в самом простом случае имеют форму перегородок, но могут принимать крайне сложные очертания. Палад назвал эти впячивания митохондриальными кристами. Другой характерный компонент структуры митохондрии - это матрикс, который заполняет просвет, окруженный внутренней мембраной. Известно, что он содержит много белка и некоторое количество липидов; по-видимому, он обладает определенной организацией и более или менее жесткой структурой. Наконец, митохондрии, фиксированные осмием часто содержат в матриксе ряд мелких гранул. Число, диаметр и плотность этих внутримитохондриальных гранул изменяются в зависимости от состояния обмена веществ в тканях. Особенности строения мембраны митохондрии. Так как наибольшее практическое значение представляют внутренние
мембраны митохондрии, содержащие дыхательные ансамбли, имеет смысл более
детально познакомиться с ультраструктурой митохондриальной мембраны. При
детальном анализе было выявлено, что митохондриальные мембраны содержат 35 Митохондрии печени крысы содержат значительные количества фосфатидилэтаноламина, фосфатидилхолина, инозитфосфатидов, кардиолипина и фосфатидилсерина; содержание плазмалогена и сфингомиелина невелико, иногда они вовсе отсутствуют. Характерное содержание и количественное содержание липидов в митохондриальной мембране, вероятно обусловлены необходимостью поддержания термодинамически устойчивого двойного слоя липидов, образующего остов мембраны, который служит опорой для дыхательных ансамблей. По- видимому, большое значение имеет тот факт, что практически все липиды митохондриальной мембраны экстрагируются смесью хлороформ - метанол. Это указывает на наличие лишь незначительного числа ковалентных связей между липидами и белковыми элементами или даже на полное их отсутствие; этот факт свидетельствует о высокой степени стабилизации липидов и белков мембранных структурах. Крейн показал, что цитохром с соединяется с фосфатидилэтаноламином, образуя устойчивый комплекс. Возможно, что именно такое взаимодействие липид - белок совместно с гидрофобными связями и обеспечивает такую стабилизацию мембранной структуры. Криддл и сотрудники выделили мономерную форму, которую они назвали структурным белком митохондриальной мембраны. При нейтральном рН структурный белок находится в полимерной форме и не растворим в воде. Мономерная форма имеет молекулярный вес около 22000, но тенденция к полимеризации нарушает точность седиментационных и электрофоретических исследований. Структурный белок способен соединяться с чистыми цитохромами а, Ь, и ее образованием растворимых в воде комплексов в молярном отношении 1:1, причем условия этого взаимодействия для каждого случая различны. Предполагается, что в таких комплексах образуются преимущественно гидрофобные связи. Далее, оказалось, что структурный белок соединяется с фосфолипидами. Таким образом, структурный белок способен к взаимодействию с двумя другими основными молекулярными элементами мембраны - с переносчиками электронов и с фосфолипидами. Склонность цитохромов, флавопротеидов и структурного белка к существованию в мономерной и полимерной формах указывает на выраженную тенденцию этих молекул к образованию очень устойчивых макромолекулярных ансамблей, имеющих пластинчатую структуру. Так как для будущих исследований наибольший интерес представляет цитохром с, то следует уделить особое внимание именно этому ферменту. Этот цитохром отличается от остальных тем, что он легко экстрагируется из митохондрий в растворимой форме с помощью кислот и нейтральных растворов солей. Молекулярный вес кристаллического фермента 12000, изоэлектрическая точка при высоком рН; в молекулу входит одна железопорфириновая группа, которая представлена производным протопорфирина и соединена (ковалентно) с двумя цистеиновыми остатками пептидной цепи, посредством двух тиоэфирных связей. При рН 7,0 атомы железа в положениях 5 и 6, очевидно, координированы с остатками гистидина; при нейтральных значениях рН цитохром с не имеет тенденции реагировать с кислородом. Известно, что третичная структура цитохрома с резко изменяется, как функция состояния окисления - восстановления. Цитохром с восстанавливается тиолами, аскорбатом, хинолами, и восстановленными цитохромами b и с1, а восстановленный цитохром с окисляется феррицианидом, некоторыми красителями и цитохромом а. Было показано, что в водных растворах цитохром с способен к полимеризации; удалось получить его димер и очистить так же тример и тетрамер. Вторичная и третичная структура цитохрома с изучается методом рентгеноструктурного анализа. Цитохром с легко соединяется с липидами, в частности с фосфатидилэтаноламином он образует комплекс, названный липоцитохромом с. Описание общих принципов различных методов выделения митохондрий. Митохондрии и после выделения сохраняют свой вид, не смотря на то, что
мембраны их несколько повреждаются и контуры сглаживаются. В сущности, в
наше время их выделяют тем же самым способом, которым пользовался еще В более ранних исследованиях митохондрий, как правило, получали из
печени животных, так как её клетки очень легко разрушить, а так же потому,
что она богата митохондриальной фракцией. После того, как было обнаружено,
что бактериальная протеиназа разрушает клетку, не повреждая митохондрий,
был разработан простой и быстрый метод получения мышечных митохондрий. Гомогенизация материала. Методы гомогенизации: • Разрушение клеток • Метод основанный на кавитации газов • Ультразвук. Разделение субклеточных компонентов. • Центрифугирование. Обработка гомогената из печени крысы 10 мМ фосфатом калия увеличивает скорость седиментации митохондрий, не влияя на осаждение лизосом, что позволяет очищать последние в градиенте плотности перколла. • Разделение в двухфазной системе, содержащей два полимера. Полезным и быстрым способом выделения мембран является разделение их в водной двухфазной системе декстран - полиэтиленгликоль (ПЭГ), особенно если отсутствуют необходимые ультрацентрифуги и роторы. Метод, продуктивность которого может быть легко повышена, основан на использовании целого ряда свойств мембран, включая электрический заряд, плотность, массу и гидрофобность. Различие в этих свойствах обуславливает разное распределение компонентов смеси между верхней и нижней фазами и поверхностью раздела. По сродству к верхней фазе компоненты животной клетки располагаются в следующем порядке: эндоплазматический ретикулум / митохондрий / лизосомы / аппарат Гольджи / плазматические мембраны Успех в применении фазовых систем зависит от адекватности выбора их состава. Качество разделения зависит не только от конкретного полимера (пока число их ограничено - в основном используют декстран и ПЭГ), но и от других параметров: молекулярной массы полимера, концентрации солей, рН, химической модификации полимера. • Электрофорез. С помощью высоковольтного электрофореза в свободном потоке можно получить
препараты субклеточных мембран и органелл высокой степени чистоты. Таблица 1. Ферменты - маркеры митохондрий В таблице 1 приведены ферментные маркеры, к которым относятся сравнительно стабильные ферменты, активность которых достаточно высока и ее удобно измерять. Обычно эти измерения проводят как можно быстрее после выделения; образец при этом хранят при 40С и не замораживают. Отмечено, что такой фермент, как цитохром с - редуктаза может оказаться лабильным и терять активность в замороженных препаратах мембран из печени. Для правильной оценки распределения фермента-маркера весьма существенным является пространственное расположение субстрат-связывающего сайта. Методики Субфракционирование мембран и компонентов матрикса митохондрий. Митохондрии выделяют из многочисленных источников стандартными методами. Субфракционирование их для получения внутренних и наружных мембран и компонентов матрикса проводят после замораживания - оттаивания препарата и / или обработки ультразвуком стандартного осадка митохондрий, суспендированных в среде, содержащей 1.2 М сахарозы и 2 мМ АТР (10 мг мембранного белка на 1 мл). При этом происходит разрушение митохондрий, а после центрифугирования в ступенчатом градиенте плотность сахарозы наружные мембраны концентрируются в полосе 0,45-1,12 М сахарозы, внутренние мембраны и компоненты матрикса собираются в осадке, под нижним слоем с концентрацией сахарозы 1,2 М, а промежуточная везикулярная фракция - между двумя предыдущими, в полосе 1,12-1,20М. Маркерами внутренних митохондриальных мембран служат ферменты - переносчики электронов. Наружная митохондриальная мембрана, которая при фрагментации образует везикулы, сходные по плотности и морфологии с везикулами из плазматической мембраны содержит моноаминооксидазу. Описан также метод выделения наружных митохондриальных мембран из печени крыс. Метод противоточного распределения митохондрий. Препараты митохондрий, выделенные из печени крысы, были исследованы Рабочая методика выделения митохондрий из печени крыс. • Среда выделения: 0,25 М раствор сахарозы, содержащий 0,001 М ЭДТА, рН 7,4 • Сахароза - 0,25 М раствор • НС1 - 1 н и 0,1 н растворы • КОН - 1 н и 0,1 н растворы Все реактивы готовятся на бидистиллированной воде. Изолированную печень крысы погружают в 30 мл ледяной среды выделения. Супернатант осторожно сливают и хранят на льду, остатки объединяют и вновь гомогенизируют 20 секунд в 20 мл среды выделения. Гомогенат центрифугируют при 600 д 10 минут, супернатант объединяют с полученным ранее. Для осаждения митохондрии, объединенный супернатант центрифугируют в
двух стаканах при 14000 g в течение 10 минут. Остатки объединяют в одном
стакане и тщательно суспендируют с помощью пипетки на 1 мл в небольшом
объеме среды выделения (около 0,5 мл). .Маленькими порциями, при осторожном
встряхивании добавляют 10 мл среды выделения и осаждают митохондрии (14000
g, 10 минут). Осадок суспендируют в 0,25 М сахарозе, не содержащей ЭДТА, и
вновь центрифугируют (14000 g, 10 минут). Супернатант сливают, на
полученный осадок митохондрии осторожно наслаивают 0,2 - 0,3 мл 0,25 М
сахарозы. Легким встряхиванием смывают верхний рыхлый слой осадка. Заключение В данной работе предложены различные методики выделения митохондрии из печени крыс, но использоваться будет метод с применением ультрацентрифугирования, как наиболее приемлемый и удовлетворяющий критериям простоты работы и необходимой степени чистоты продукта. В дальнейшем планируется фотометрическое изучение влияния этидиум бромида на активность цитохрома с из митохондрии печени крыс. Данная работа представляет практический интерес, так как цитохром с является индуктором апоптоза - программированной гибели клеток. Механизмы этого процесса в настоящее время представляют большой интерес (для лечения онкологических заболеваний). Список литературы 1974 Москва, 1998
|
|
© 2000 |
|