РУБРИКИ

Определение устойчивости функционирования промышленного объекта в чрезвычайных ситуациях

   РЕКЛАМА

Главная

Зоология

Инвестиции

Информатика

Искусство и культура

Исторические личности

История

Кибернетика

Коммуникации и связь

Косметология

Криптология

Кулинария

Культурология

Логика

Логистика

Банковское дело

Безопасность жизнедеятельности

Бизнес-план

Биология

Бухучет управленчучет

Водоснабжение водоотведение

Военная кафедра

География экономическая география

Геодезия

Геология

Животные

Жилищное право

Законодательство и право

Здоровье

Земельное право

Иностранные языки лингвистика

ПОДПИСКА

Рассылка на E-mail

ПОИСК

Определение устойчивости функционирования промышленного объекта в чрезвычайных ситуациях

–                     в выработке рекомендаций по повышению устойчивости наиболее уязвимых по воспламенению элементов производственного комплекса.

Определить устойчивость механического цеха машиностроительного завода к воздействию светотеплового импульса 1024 кДж/м2.

Пожароопасные (сгораемые) элементы цеха:

-                     кровля – рубероид;

-                     двери и окна – деревянные, окрашенные в темный цвет.

1. По табл. П.10 [1] определяем светотепловые импульсы, вызывающие воспламенение сгораемых элементов здания цеха:

-                     кровля – рубероид – 600 кДж/м2;

-                     двери и окна – деревянные, окрашенные в темный цвет – 350 кДж/м2.

2. Следовательно, расчетная устойчивость производственного комплекса цеха к светотепловому излучению (по минимальному значению импульса воспламенения) – 350 кДж/м2.


3. Сравниваем это значение с прогнозируемой величиной светотеплового импульса (1024 кДж/м2), можно сделать вывод что производственный комплекс цеха не устойчив к светотепловому излучению ядерного взрыва.

4. Для повышения устойчивости производственного комплекса цеха к светотепловому излучению необходимы противопожарные мероприятия: замена деревянных оконных рам и переплетов на металлические, либо их пропитка антипиренами.


3. Определение устойчивости производственного комплекса к воздействию вторичных поражающих факторов


Вторичные поражающие факторы  от взрыва: пожары, затопления, заражение местности радиоактивными, химическими и другими веществами могут быть внутренними (от внутренних источников) и/или внешними (от внешних источников).

При определении устойчивости производственных комплексов объектов и их структурных подразделении к действию вторичных поражающих факторов учитывают характер и степень опасности, удаление объекта от источника опасности, особенности метеорологических и топографических условий и т.п.

Так, при возможном взрыве газовоздушной смеси определяют максимальное избыточное давление DРФ, кПа, взрывной волны и его воздействие на производственный персонал и элементы производственного комплекса объекта. А при возможной аварии с выбросом (выливом) аварийно химически опасных веществ (АХОВ) определяют степень воздействия химического заражения местности на производственную деятельность объектов.


1)Формулы для определения DРФ, кПа, при взрыве газовоздушной смеси:


                          (9)


                                      (10)


где y =0,24 (RIII / R1)

R1 – радиус зоны I (детонационной волны);

RIII – расстояние от центра взрыва до объекта в пределах зоны III (действия взрывной ударной волны).


2)Формулы для определения радиусов зон I (детонационной волны) и II (действия продуктов взрыва):


                                                      (11)


                                                        (12)


где Q – масса газовоздушной смеси, т.


3)Параметры аварии с выбросом (выливом) АХОВ определяются по табл. П.11…П.17 [1].


Определить прогнозируемое максимальное избыточное давление воздушной ударной волны DРФ, кПа, воздействующее на механический цех машиностроительного завода при взрыве емкости с 40 т. пожаро-взрывоопасной (ПВО) смеси, расположенной на расстоянии 330 м от цеха.


По формулам (11) и (12) определяем радиусы I и II зоны.



Т.к. цех расположен в 330 м от емкости, т.е. в зоне III взрывной ударной волны, то определяем значение коэффициента y:

y = 0,24 × (330 / 59,8) = 1,32 < 2.

Следовательно, значение избыточного давления взрывной волны, воздействующей на цех, определяем по формуле (9):

По полученным данным и данным Таблицы 3 можно сделать вывод: при взрыве емкости с 40 т. ПВО смеси здание, оборудование и КЭС будут полностью разрушены, среди персонала – случаи смертельных повреждений.

Объект экономики (машиностроительный завод) расположен в 4,5 км от центра города, под углом α1 = 55° (из примера 1), а химкомбинат, внешний источник опасности, в 7,8 км от центра города, под углом α2 = 210º. На машиностроительном заводе в 1-ой смене работают 140 чел., (в зданиях –120 чел., вне зданий – 20 чел.); во 2-ой смене – 55 чел. (45 чел и 10 чел. соответственно); во 3-ей смене – 30 чел. (20 чел. и 10 чел. соответственно). Обеспеченность производственного персонала противогазами – 80%.

Определить:

·                   глубину и площадь химического заражения местности АХОВ;

·                   местоположение завода на зараженной АХОВ местности (в соответствующей зоне ХЗМ);

·                   время подхода зараженного АХОВ облака к заводу;

·                   время поражающего действия АХОВ и возможные химические (от АХОВ) потери производственного персонала завода в случае аварии на химкомбинате с выбросом 110 т хлора из обвалованной емкости, в конце работы 2-ой смены. При следующих наиболее вероятных метеоусловиях: полуясно, направление ветра a2 = 250º.

1. Чертим план размещения завода относительно центра города и химкомбината (рис. 11).

хлор – 110 т.

ночь – …

 

Рис. 11. Расположение механического завода и химкомбината относительно центра города.


2. Определяем прогнозируемую химическую обстановку в районе машиностроительного завода:

а) По табл. 3 [1] определяем величину угла j0 сектора возможного химического заражения местности (ВХЗМ) с центром на химкомбинате и биссектрисой угла по направлению ветра. При скорости ветра 1 м/с, угол j0 = 180°.

б) Степень вертикальной устойчивости воздуха – инверсия.

в) Определяем табличную глубину района ВХЗМ с поражающей и смертельной концентрацией хлора Гпор(табл).

По табл. П.12 [1] для закрытой местности, инверсии, необвалованной емкости, скорости ветра 1 м/с и выбросе 110 т. хлора, глубина района с поражающей концентрацией  составит Гпор(табл.) = 60 км. (по правилу интерполяции).

Для закрытой местности, инверсии, обвалованной емкости реальная глубина составит:

Гпор = 60 / 1,5 = 40 км.


Глубина зоны ВХЗМ со смертельной концентрацией (Гсм) составит:


Гсм = 0,15 × Гпор = 0,15 × 40 = 6 км.


Строим зоны с поражающей и смертельной концентрацией (рис. 12).

хлор – 110 т.

ночь – …

 

Рис. 12. Расположение зон поражающей и смертельной концентраций хлора

По результатам построения можно сделать вывод что машиностроительный завод попадает в зону с поражающей концентрацией хлора.

Для организации надежной защиты производственного персонала завода к воздействию хлора необходима оценка прогнозируемой химической обстановки на машиностроительном заводе.

 3. Производим оценку прогнозируемой химической обстановки на машиностроительном заводе:

а) по формулам

, для j0 = 1800, и                                               (13)

Sфакт. = 1/3 Sпрогн.                                                           (14)

определяем площадь районов ВХЗМ и ХЗМ с поражающей и смертельной концентрациями хлора:

                             

Sфакт.(пор) = 2512 / 3 =837 км2;                              Sфакт.(см) = 57 / 3 =19 км2.


б) Время подхода облака с фосгеном к заводу определяем по формуле:

                                           (15)

где R – расстояние от механического завода до химкомбината, м;

Wпер – средняя скорость переноса воздушным потоком облака, зараженного АХОВ, при удалении от места аварии, м/с, табл. П.14 [1].



в) По табл. П.15 [1] определяем время поражающего действия хлора на местности (емкость обвалована, скорость ветра 1 м/с) – 22 ч.

г) Возможные потери производственного персонала машиностроительного завода от действия хлора определяем по табл. П.17 [1]:

 – для производственного персонала, расположенного на открытой местности, при 80% обеспеченности противогазами потери могут составить 25%, т.е:

2 смена: 10 × 0,25 = 2,5 т.е. 3 чел;

3 смена: 10 × 0,25 = 2,5 т.е. 3 чел.


Из которых (по примечанию к табл. П. 17.[1]) 2 чел. – легкой степени, 2 чел. ­ средней и тяжелой степени и 2 чел. со смертельным исходом.


 – для производственного персонала, расположенного в здании цеха (при 80% обеспечении его противогазами) потери могут составить 14%, т е.


2 смена: 45 × 0,14 = 6,3 т.е. 7 чел;

3 смена: 20 × 0,14 = 2,8 т.е. 3 чел.


Из которых: 2 чел. – легкой степени, 4 чел. ­ средней и тяжелой степени и 4 чел. со смертельным исходом.


По полученным данным можно сделать выводы:

¨машиностроительный завод и его структурные подразделения в результате аварии на химкомбинате могут оказаться в районе ВХЗМ в зоне с поражающей концентрацией;

¨общая площадь района ВХЗМ с поражающей концентрацией хлора составит 2512 км2, фактическая (района ХЗМ) 837 км2, со смертельной концентрацией – соответственно 57 и 19 км2;

¨на объекте возможны потери до 16 человек различной степени тяжести;

¨для надежной защиты производственного персонала необходимо:

–                объявить (продублировать) сигнал оповещения «Внимание всем!» и «Газовая опасность» (авария на химкомбинате);

–                привести в полную готовность объектовые силы и средства ГО и ЧС;

–                выдать производственному персоналу противогазы, укрыть его в защитных сооружениях и (или) эвакуировать в безопасные районы;

–                в случае необходимости оказать пораженным медицинскую помощь;

–                о проведенных мероприятиях докладывать в Управление по делам ГО ЧС района и города.

III. Методика определения устойчивости производственной деятельности объектов

Устойчивость производственной деятельности объектов и их структурных подразделений определяется по воздействию ударной волны, светотеплового излучения, проникающей радиации, радиоактивного, химического и бактериологического заражения местности. При этом методики определения устойчивости элементов производственной деятельности различны.

Так, устойчивость управления объектом и его структурными подразделениями определяется:

·               структурой системы управления;

·               организацией дублирования руководящего состава;

·               оснащением объекта средствами связи, управления, оповещения;

·               компьютеризацией процесса управления и др.

Устойчивость защиты производственного персонала объекта определяется:

·               наличием необходимого количества и качества средств коллективной и индивидуальной защиты;

·               соответствием средств защиты требованиям нормативных документов;

·               наличием планов рассредоточения и эвакуации производственного персонала и членов их семей при угрозе ЧС;

·               наличием расчетных режимов работы структурных подразделений объектов (при различных дискретных значениях Р1 и др.).

Устойчивость технологических процессов на объекте определяется воз­можностями:

·               автономной работы отдельных участков, цехов;

·               безаварийной остановки производства по сигналу оповещения;

·               перехода на выпуск продукции военного времени и др.

Устойчивость материально-технического снабжения объекта определяется:

·               наличием расчетных запасов сыры, топлива, комплектующих изделий;

·               надежностью связей с поставщиками и потребителями готовой продукции;

·               возможностью, в случае необходимости, замены материалов (металлов, пластмасс и т.п.) на другие марки (без снижения качества изделий) и др.

Устойчивость ремонтно-восстановительной службы объекта определяется наличием:

·               профессионально подготовленных специалистов-ремонтников;

·               запасов ремонтных материалов, строительных конструкций;

·               необходимой тех. документации на ремонтно-восстановительные работы и др.

Определить режим работы производственного персонала механического цеха машиностроительного завода на радиоактивно зараженной местности на 1 и 2 сутки после ядерного взрыва при эталонном уровне радиации (на 1 час после взрыва) Р1 = 100 р/ч; 200р/ч; 1700р/ч.


Исходные данные: Косл.цеха  = 5, количество и продолжительность работы смен: 3 по 8 часов каждая; установленные дозы облучения: на 1 сутки 30 р (бэр), на 2 сутки – 10 р (бэр).

Решение:

1.1. Для Р1 = 100 р/ч, Дуст-1 = 30 р (бэр) и Косл = 5 определяем значение коэффициента а.

                                        (16)

1.2. По значению а = 0,7 и Тпрод. = 8 ч по графику рис.10 [1] определяем значение tнач (после взрыва) смены 1 суток работы – 1,4 ч.

1.3. Тогда время окончания работы 1 смены 1 суток (начало 2 смены 1 суток) составит:

1,4 ч. + 8 ч. = 9,4 ч;

время окончания работы 2 смены 1 суток (начало 3 смены 1 суток) составит:

9,4 ч. + 8 ч. = 17,4 ч.


Время начала 1 смены 2 суток:

17,4 ч. + 8 ч. = 25,4 ч;

время окончания работы 1 смены 2 суток (начало 2 смены 1 суток):

25,4 ч. + 8 ч. = 33,4 ч;

время окончания работы 2 смены 2 суток (начало 3 смены 1 суток):

33,4 ч. + 8 ч. = 41,4 ч.


1.4. Определим прогнозируемые дозы облучения производственного персонала:

–                1 смены 1 суток – 30 р (бэр);

–                2 смены 1 суток – < 30 р (бэр);

–                3 смены 1 суток – < 30 р (бэр).

–                1 смены 2 суток: из графика рис.10 [1] для tнач = 25,4 ч. и Тпрод. смены = 8ч. значение а = 7, тогда:

что меньше установленной дозы, равной 10 р (бэр).

–                2 смены 2 суток – < 2,9 р (бэр);

–                3 смены 2 суток – < 2,9 р (бэр).


2.1. Для Р1 = 200 р/ч (остальные параметры те же) определяем значение коэффициента а.

2.2. Значение tнач (после взрыва) смены 1 суток работы – 3,3 ч.


2.3. Тогда время окончания работы 1 смены 1 суток (начало 2 смены 1 суток) составит:

3,3 ч. + 8 ч. = 11,3ч;

время окончания работы 2 смены 1 суток (начало 3 смены 1 суток) составит:

11,3 ч. + 8 ч. = 19,3ч.


Время начала 1 смены 2 суток:

19,3 ч. + 8 ч. = 27,3 ч;

время окончания работы 1 смены 2 суток (начало 2 смены 2 суток):

27,3 ч. + 8 ч. = 35,3 ч;

время окончания работы 2 смены 2 суток (начало 3 смены 2 суток):

35,3 ч. + 8 ч. = 43,3 ч.


2.4. Определим прогнозируемые дозы облучения производственного персонала:

–                1 смены 1 суток – 30 р (бэр);

–                2 смены 1 суток – < 30 р (бэр);

–                3 смены 1 суток – < 30 р (бэр);

–                1 смены 2 суток: из графика рис.10 [1] для tнач = 27,3 ч. и Тпрод. = 8 ч. значение а = 8, тогда:

что меньше установленной дозы, равной 10 р (бэр).

–                2 смена 2 суток – Добл < 4,4 р (бэр);

–                3 смена 2 суток – Добл < 4,4 р (бэр).


3.1. Для Р1 = 1700 р/ч (остальные параметры те же) определяем значение коэффициента а.

3.2. Значение tнач (после взрыва) смены 1 суток работы – 34 ч.


3.3. Тогда время окончания работы 1 смены 1 суток (начало 2 смены 1 суток) составит:

34 ч. + 8 ч. = 42 ч;

время окончания работы 2 смены 1 суток (начало 3 смены 1 суток) составит:

42 ч. + 8 ч. = 50 ч.


Время начала 1 смены 2 суток:

50 ч. + 8 ч. = 58 ч;

время окончания работы 1 смены 2 суток (начало 2 смены 1 суток):

58 ч. + 8 ч. = 66 ч;

время окончания работы 1 смены 2 суток (начало 2 смены 1 суток):

66 ч. + 8 ч. = 74 ч.


3.4. Определим прогнозируемые дозы облучения производственного персонала:

–                1 смены 1 суток – 30 р (бэр);

–                2 смены 1 суток – < 30 р (бэр);

–                3 смены 1 суток – < 30 р (бэр);

–                1 смены 2 суток: из графика рис.10 [1] для tнач = 58 ч. и Тпрод. = 8 ч. значение а = 18, тогда:

что больше установленной дозы, равной 10 р (бэр).

Следовательно, можно либо уменьшить время работы всех трех смен во вторые сутки, либо начать позднее 1 смену 1 суток.

3.5. Рассчитаем, на сколько позднее нужно будет начать 1 смену 1 суток.

Определим коэффициент а по Дуст-2 = 10 р (бэр):

3.6. Тогда время начала 1 смены 2 суток из графика рис.10 [1] будет равно tнач = 80 ч, время окончания работы 1 смены 2 суток (начало 2 смены 2 суток):

80 ч. + 8 ч. = 88 ч;

время окончания работы 2 смены 2 суток (начало 3 смены 2 суток):

88 ч. + 8 ч. = 96 ч.

Соответственно время начала 1, смены 1 суток тоже сдвинется на 22 ч. позднее, т.е. будет равно 56 ч, тогда время окончания работы 1 смены 1 суток (начало 2 смены 1 суток):

56 ч. + 8 ч. = 64 ч;

время окончания работы 2 смены 1 суток (начало 3 смены 1 суток):

64 ч. + 8 ч. = 72 ч.

3.7. Доза облучения 1 смены 1 суток будет равна (при а = 18, из графика рис.10 [1] для tнач = 56 ч.):

что меньше установленной дозы, равной 30 р (бэр).

3.8. Составляем сводную Таблицу 4, в которую вносим характеристики режима работы производственного персонала механического цеха при нахождении его на радиоактивно зараженной местности с уровнями радиации Р1 = 100р/ч, 200р/ч и 1700 р/ч. Так же представим графики режима работы производственного персонала цеха при указанных уровнях радиации (рис. П.5, рис. П.6 и рис. П.7 в Приложении).


Таблица 4. Режим работы механического цеха на радиоактивно зараженной местности

Эталонный уровень радиации

р/ч

Время работы, сутки

№ смены

Начало работы смены (после взрыва, ч)

Продолжи-тельность работы смены, ч

Прогнозируемые дозы облучения,  р (бэр)

100

1

1

3,3

8

30

2

11,3

8

менее 30

3

19,3

8

менее 30

2

1

27,3

8

4,4

2

35,3

8

менее 4,4

3

43,3

8

менее 4,4

200

1

1

34

8

30

2

42

8

менее 30

3

50

8

менее 30

2

1

58

8

18,8

2

66

8

менее 18,8

3

74

8

менее 18,8

1700

1

1

56

8

19

2

64

8

менее 19

3

72

8

менее 19

2

1

80

8

10

2

88

8

менее 10

3

96

8

менее 10


IV. Мероприятия по повышению устойчивости функционирования объектов экономики в чрезвычайных ситуациях

Мероприятия по повышению устойчивости объектов экономики и их структурных подразделений к поражающим факторам ЧС должны соответствовать требованиям нормативной и нормативно-технической документации (стандартам, нормам, правилам и др.), способствовать социально-экономическому развитию объектов, быть экономически обоснованными.

Основная часть разрабатываемых мероприятий намечается к реализации до возникновения ЧС, часть – при угрозе и возникновении ЧС.

На период до возникновения ЧС планируется наиболее сложные и объемные работы:

–    усиление конструкций зданий и сооружений;

–    заглубление резервуаров с ГСМ и АХОВ, трубо- и электропроводов КЭС;

–    строительство защитных сооружений;

–    накопление средств индивидуальной защиты (СИЗ) и др.

На период угрозы возникновения ЧС планируется:

–    приведение в полную готовность средств защиты, оповещения и связи;

–    проведение комплекса противопожарных, противопаводковых и др. мероприятий;

–    подготовка сил и средств для спасательных, восстановительных и др. работ;

–    проведение (по особому указанию) рассредоточения и эвакуации населения и др.

На период действия ЧС планируется:

–    оповещение персонала о ЧС;

–    безаварийная остановка производства;

–    укрытие производственного персонала в защитных сооружениях;

–    проведение неотложных спасательных, восстановительных и др. работ в очагах поражения, районах заражения и др.

Мероприятия по повышению устойчивости функционирования объектов экономики, намечаемые к реализации до ЧС (Таблица 5) вносятся в планы социально-экономического развития объекта, намечаемые к реализации при угрозе и возникновении ЧС (Таблицы 5, 6) – в планы и планы-графики действий при ЧС в мирное и военное время.

Таблица 5

Утверждаю

Директор завода

________________/Семенов Е.Н./___________________

    (подпись)                                                                                   (дата)


План мероприятий по повышению устойчивости функционирования цеха объекта экономики при ЧС


п/п

Мероприятия

Сроки выполнения

Ответственные исполнители

Отметка о выполнении

а) Мероприятия, проводимые до возникновения ЧС

1

Ремонт ограждающих конструкций и перекрытий зданий

При плановом капитальном ремонте зданий

Начальник ОКСа объекта, начальник цеха


2

Проектирование и изготовление защитных устройств

12 месяцев

Главный механик завода, механик завода


3

Заглубление электро- и трубопроводов, КЭС, ценного оборудования и емкостей

2 месяца

Главный механик и главный энергетик завода


4

Закрепление высоких сооружений стяжками

1 месяц

Главный механик завода


5

Обваловывание емкостей со СДЯВ и ГСМ

6 месяцев

Главный механик завода


6

Проектирование и возведение резервных коммуникаций

2 года

Главный механик и главный энергетик завода


7

Накопление средств коллективной и индивидуальной защиты

1 месяц

Начальник цеха


8

Составление плана перевода завода на особый режим работы

Неделя

Начальник цеха


9


Составление плана-графика безаварийной остановки производства в отдельных цехах по сигналам оповещения ТО


Неделя

Начальник цеха


б) Мероприятия, проводимые при угрозе возникновения ЧС

1

Приведение в полную готовность органов управления ГО, защитных сооружений на объекте и в загородной зоне

При объявлении угрозы ЧС

Директор завода, начальник цеха


1

2

3

4

5

1

2

3

4

5

2

Установка защитных устройств над особо ценным оборудованием

При объявлении угрозы ЧС

Начальник цеха, зам. начальника


3

Выдача персоналу завода и членам их семей СИЗ

При объявлении угрозы ЧС

Начальник цеха, зам. начальника


4

Проведение (в случае необходимости) эвакомероприятий

При объявлении угрозы ЧС

Начальник цеха, зам. начальника


5

Проведение комплекса противопожарных мероприятий

При объявлении угрозы ЧС

Начальник цеха, зам. начальника


в) Мероприятия, проводимые при возникновении ЧС

1

Дублирование сигнала оповещения о возникновении ЧС

По сигналу воздушной тревоги

Начальник отдела (штаба) ГО ЧС, начальник службы связи и оповещения


2

Укрытие производственного персонала в убежищах

По сигналу воздушной тревоги

Начальник цеха, зам. начальника


3

Безаварийная остановка (по сигналам ВТ) производства или перевод его на пониженный режим работы

По сигналу воздушной тревоги

Начальник цеха, зам. начальника


4

Проведение необходимых спасательно-восстанови­тельных работ

По сигналу воздушной тревоги

Начальник отдела (штаба) ГО ЧС



Начальник цеха                                                                   ________________ /Ковалев В.К./

Таблица 6

Утверждаю

Директор завода

                                  /Семенов Е.Н./     

(подпись)                                                             (дата)

План-график наращивания мероприятий по повышению устойчивости функционирования цеха объекта экономики при ЧС

№ п/п

Мероприятия

Объем

1 смена

2 смена

3 смена

Исполнители

Время выполнения

1

2

3

4

5

6

7

а) Мероприятия, проводимые при угрозе возникновения ЧС (дни)

1

Приведение в полную готовность органов управления ГО, защитных сооружений на объекте и в загородной зоне

10 / 5 / 3

Директор завода, начальник цеха












2

Установка защитных устройств над особо ценным оборудованием

16

Начальник цеха, зам. начальника








3

Выдача персоналу завода и членам их семей СИЗ

140 /55/ 30

Начальник цеха, зам. начальник






















4

Проведение (в случае необходимости) эвакомероприятий

140

Начальник цеха, зам. начальника








5

Проведение комплекса противопожарных мероприятий

10

Начальник цеха, зам. начальник








б) Мероприятия, проводимые при возникновении ЧС (минуты)

1

Дублирование сигнала оповещения о возникновении ЧС

1

Диспетчер цеха








2

Безаварийная остановка (по сигналам ВТ) производства

1

Главный энергетик завода






















3

Укрытие производственного персонала в убежищах

3

Начальник цеха, начальники участков























Начальник цеха                                                       ___________________/Ковалев В.К./

Заключение

По результатам курсовой работы можно сделать следующие выводы.

1. При взрыве ядерного заряда мощностью q = 0,3 Мт Механический завод попадет в зону Г района возможного радиоактивного заражения местности, значение эталонного уровня радиации Р1 = 1700 р/ч. Величина максимального избыточного давления воздушной ударной волны наземного взрыва DРФ = 45 кПа, а величины светового импульса Uр = 1024 кДж/м2.

2. Элементы производственного комплекса механического цеха машиностроительного завода будут не устойчивы к воздействию воздушной ударной волны. Есть необходимость в проведении мероприятий по повышению физической устойчивости конструкции, элементов здания цеха и оборудования.

3. Воздействие давления скоростного напора воздуха ударной волны взрыва вызовет смещение станков и их среднее разрушение. Создание защитных устройств целесообразно для особо ценного оборудования.

4. Производственный комплекс цеха не устойчив к воздействию светотеплового излучения ядерного взрыва. Наиболее подвержены возгоранию деревянные окна и двери. Необходимо заменить их на металлические, либо деревянные, пропитанные антипиренами.

5. При взрыве емкости с 40 т. пожаро-взрывоопасной смеси на расстоянии 330 м от цеха избыточное давление взрывной волны будет равно DРФ = 0,52 кПа, оборудование и КЭС не получат значимых повреждений, весь персонал останется жив.

6. В случае аварии на химзаводе (выбросе 110 т. хлора) машиностроительный завод окажется в зоне с поражающей концентрацией хлора. Возможные потери персонала от воздействия АХОВ составят 16 человек различной степени тяжести.

7. Работа предприятия после ядерного взрыва может быть возобновлена через 56ч. Доза, полученная персоналом 1 смены 1 суток, будет равна 19 р(бэр),   1 смены 2 суток – 10 р (бэр).

Итак, были рассмотрены все последствия возможной ЧС для промышленного комплекса и персонала. Все мероприятия, необходимые для снижения потерь среди персонала и экономических потерь, внесены в План мероприятий по повышению устойчивости функционирования цеха объекта экономики, сроки их проведения указаны в плане-графике.

Список литературы

1. Горбунов С.Е., Гареев М.В. Безопасность в чрезвычайных ситуациях: Учебное пособие по курсовому проектированию / Под ред. А.И. Сидорова. – Челябинск: Изд-во ЮурГУ, 2000. – 57с;

2. Конспект лекций по курсу «Безопасность в чрезвычайных ситуациях», Горбунов С.Е, 2004 г;

3. Гражданская оборона: Учеб. для ВУЗов / В.Г. Атаманюк, Л.Г. Ширшев,

Н.И. Акимов. Под ред. Д.И. Михайлика. 2-е изд. – М.: Высш. шк., 1987 г;

4. Гражданская оборона: Методические указания к практическим занятиям и домашним заданиям для студентов энергетического факультета /Составитель С.Е. Горбунов; Под ред. Г.П. Лебедева. – Челябинск: ЧПИ, 1987г. – 84с.

5. Горбунов С.Е. Безопасность в чрезвычайных ситуациях: Учебное пособие / Под ред. А.И. Сидорова. – Челябинск: Изд-во ЮурГУ, 2002. Ч.1. – 119с;

6. Горбунов С.Е., Иноков В.И., Матвеев Г.И. Безопасность жизнедеятельности: Конспект лекций.     /     Под    ред.  А.И. Сидорова.   –   Челябинск:    ЧГТУ, 1993г. – Ч.П. –95с;

7. Стандарт предприятия. Курсовое и дипломное проектирование. Общие требования к оформлению. СТП ЮурГУ 04-2001/Составители: Сырейщикова Н.В., Кузеев В.И., Суриков И.В., Винокурова Л.В., – Челябинск: ЮУрГУ, 2001. – 49с.

Приложение

1.                 Схемы зон возможного радиоактивного заражения местности (рис. П.1, рис.П.2);

2.                 Схема зон возможного разрушения местности (рис. П.3);

3.                 План механического цеха (рис. П.4).

4.                 Графики зависимости дозы облучения персонала от времени (рис. П.5, рис.П.6 и рис. П.7);

5.                 Дискета с плакатами.


Г

 
Рис. П.1. Зоны возможного заражения в районе наземного ядерного взрыва


Г

 

Рис. П.2. Зоны возможного заражения на следе облака наземного ядерного взрыва


Рис. П.3. Зоны разрушений

Рис. П.4. План механического цеха:

I – ремонтная мастерская;

II – инструментально-раздаточный склад;

III – трансформаторный пункт;

IV – текущий склад механических заготовок;

1 – токарно-револьверный, прутковый 1341;

2 – копировально-фрезерный 6440 ПР;

3 – зубообрабатывающий 7А412;

4 – фрезерно-центровальный МР-71.

5 – поворотные краны;

РМ – резервные места.



Рис. П.5. Режим работы производственного персонала цеха при Р1 = 1700 р/ч.

Рис. П.6. Режим работы производственного персонала цеха при Р1 = 100 р/ч.

Рис. П.7. Режим работы производственного персонала цеха при Р1 = 200 р/ч.


Страницы: 1, 2


© 2000
При полном или частичном использовании материалов
гиперссылка обязательна.