РУБРИКИ |
Нефтеперерабатывающий завод "Уфанефтехим" как источник загрязнения среды обитания |
РЕКЛАМА |
|
Нефтеперерабатывающий завод "Уфанефтехим" как источник загрязнения среды обитанияОчистка нефтепродуктов. Для очистки нефтепродуктов применяют кислотную и щелочную очистку и промывку. При кислотной очистке (периодической и непрерывной) легкие фракции нефти обрабатываются в специальных аппаратах с мешалками. Затем их нейтрализуют, промывают водой и подвергают щелочной обработке. В результате очистки получается много отходов— кислых гудронов, щелочных сточных вод, обезвреживание и утилизация которых затруднительны. Однако в настоящее время решение этой проблемы чрезвычайно важно для защиты окружающей среды от загрязнения. Кроме общих методов очистки нефтепродуктов применяют специальные методы, например обессеривающие методы, из которых наиболее перспективным считают каталитической гидрогенизации, очистка с помощью селективных растворителей и другие [22]. Получение и очистка масел. Сырьем для производства масел служат масляные погоны, полученные с установок АВТ. Для удаления из масляных фракций минеральных примесей (сернистые, азотистые, асфальто-смолистые вещества и другие нежелательные для масла компоненты) их подвергают очистке с помощью растворителей на специальных установках. К ним относятся установки: деасфальтизации масел пропаном, депарафинизации масел в среде ацетон — бензол — толуол, гидроочистки масел и контактной очистки отбеливающими глинами. На установке деасфальтизации жидкий пропан растворяет асфальто-смолистые вещества, содержащиеся в масляных погонах АВТ. Эти вещества оседают в осадок и отделяются. На этой установке нефтепродукты могут попадать в канализацию через неплотности сальников насосов или в результате других неисправностей, при мытье полов. На установках селективной очистки масел и деасфальтизата от смолистых веществ и других примесей фенолом загрязнение сточных вод возможно только за счет сброса в канализацию смывов с полов насосной станции, а также через неплотности в аппаратуре. На установке депарафинизации при нормальной работе технологического оборудования загрязнения незначительны. Однако при авариях и пропусках через неплотности возможно попадание в канализацию нефтепродуктов с высокой температурой застывания, а также растворителей и др. При правильной эксплуатации установок гидроочистки масел попадание нефтепродуктов в сточные воды исключено. Сброс в канализацию масляных компонентов возможен лишь при авариях и через неплотности соединений трубопроводов. Значительное количество загрязнений поступает в сточные воды НПЗ из резервуарных парков и при ремонте оборудовании. Дополнительным источником загрязнения канализации нефтепродуктами и механическими примесями являются дождевые и талые воды [6]. Для очистки образующихся сточных на предприятии ОАО «Уфанефтехим» имеется механическая, физико–химическая и биологическая очистные сооружения. ООО «Уфанефтехим» имеет мощные биологические очистные сооружения (БОС) и способно принимать на очистку сточные воды и других организаций. Данные о сбросах сточных вод на БОС ОАО «Уфанефтехим» приведены в таблице 1.4 [29,30]. Таблица 1.4 – Сброс сточных вод на БОС ОАО «Уфанефтехим» в 2004 году.
Сточные воды предприятия ОАО «Уфанефтехим» очищаются в очистных сооружениях из которых часть идет в возврат для нового использования, а часть в итоге сбрасывается в реку Белая [30]. 1.5 Классификация сточных вод Таким образом, производственные сточные воды на НПЗ образуются практически на всех технологических установках. В зависимости от источников образования их подразделяют на следующие: 1. Нейтральные нефтесодержащие сточные воды. Они составляют основную часть воды первой системы промышленно-ливневой канализаций. К ним относятся сточные воды, получающиеся при конденсации, охлаждении и водной промывке нефтепродуктов (кроме вод барометрических конденсаторов АВТ), после очистки аппаратуры, смыва полов производственных помещений, от охлаждения втулок сальников насосов, дренажные воды из лотков технологических аппаратов (кроме вод от узлов управления при сырьевых парках), фундаментальных приямков аппаратов и насосов, а также ливневые воды с площадок технологических установок. В этих водах присутствует преимущественно нефть в виде эмульсии. Ее концентрация достигает 5—8 г/л, а общее содержание солей 700—1500 мг/л. Сравнительно невысокое содержание солей позволяет использовать сточные воды после соответствующей очистки для пополнения систем оборотного водоснабжения. 2. Солесодержащие сточные воды (стоки ЭЛОУ) с высоким содержанием эмульгированной нефти и большой концентрацией растворенных солей (в основном хлористого натрия). Они поступают от электрообеосоливающих установок и сырьевых парков. К ним также относятся дождевые воды с территории указанных объектов. Предельно допустимое содержание нефтепродуктов в них без учета аварийных сбросов не должно превышать 10 г/л. Исследования стоков с установок ЭЛОУ показывают, что содержание нефти в отдельных пробах может доходить до 30 г/л, что связано с негерметичностью технологического оборудования и дефектами в эксплуатации. Содержание солей в водах этой группы зависит главным образом от качества нефтей, поступающих на завод. 3. Сернисто-щелочные сточные воды получаются от защелачивания светлых нефтепродуктов и сжиженных газов. В процессе щелочной очистки из нефтепродуктов удаляются главным образом сероводород, меркаптан, фенолы и нафтеновые кислоты. В соответствии с технологическими требованиями состав сернисто-щелочных сточных вод должен быть следующим: ХПК—до 85000 мгО2/л, БПКполн - до 75000 мгО2/л, сульфиды (в пересчете на H2S) до 26000 мг/л, серы общей до 35000 мг/л, фенолы летучие до 5000 мг/л, нефтепродукты до 3000 мг/л, общая щелочность (в пересчете на. NaOH) - 10000 мг/л, рН —14. Однако состав этой категории сточных вод может значительно отличаться от установленных нормативов. Периодичность сброса отработанных щелочей в сернисто-щелочную канализацию на различных заводах колеблется от 2 до 45 дней в зависимости от типа технологических установок и их .мощности, принятого режима переработки нефти, качества получаемого исходного сырья, схемы защелачивания, гидравлической нагрузки на щелочные отстойники и ряда других факторов. Среднесуточный сброс этих вод (без учета промывных вод) колеблется от 0,0009 до 0,0019 м3 на 1 т перерабатываемой нефти. 4. Кислые сточные воды от цеха регенерации серной кислоты образуются в результате неплотностей соединений в аппаратуре, потерь кислоты из-за коррозии аппаратуры и содержат в своем составе до 1 г/л серной кислоты. 5. Сероводородсодержащие сточные воды поступают в основном от барометрических конденсаторов смешения. При замене барометрических конденсаторов смешения на поверхностные объем их сокращается в 40— 50 раз. Кроме барометрических вод, сероводород содержится и в так называемых технологических конденсатах установок АВТ, каталитического крекинга, замедленного коксования, гидроочистки и гидрокрекинга, но в этих сточных водах, кроме сероводорода, присутствуют фенолы и аммиак [1]. При объединении НПЗ и нефтехимических производств появляются сточные воды, загрязненные продуктами нефтехимического синтеза. Состав их обусловлен видом получаемой продукции. Так, сточные воды производств БВК из жидких нефтяных парафинов имеют БПКполн. до 1000 мг О2/л, ХПК—2200 мг О2/л, рН 4,8—5,6. Из других источников образования сточных вод следует отметить сточные воды от этилосмесительных установок и эстакад по наливу этилированных бензинов, в которых содержатся до 10 мг/л нефтепродуктов и тетраэтилсвинец, а также кислые сточные воды от цехов синтетических жирных кислот. Таким образом, в сточные воды НПЗ попадает большое количество органических веществ, из которых наиболее значимы конечные и промежуточные продукты перегонки нефти: нефть, нафтеновые кислоты и их соли, дезмульгаторы, смолы, фенолы, бензол, толуол. В сточных водах содержится также песок, частицы глины, кислоты и их соли, щелочи. Приведенные данные показывают, что содержание отдельных соединений в сточных водах колеблется в широких пределах, например, содержание фенолов и нефти в сернисто-щелочных сточных водах. Наиболее опасными для биологических очистных сооружений и водоемов являются сульфиды и сульфогидраты, присутствие которых в воде водоемов хозяйственно-питьевого, рыбохозяйственного и культурно-бытового водопользования не допускается. Нефть и нефтепродукты в производственных сточных водах содержатся в растворенном, коллоидном и эмульгированном состояниях. Большинство растворенных в воде органических веществ как правило, определяются суммарно через биохимическое потребление кислорода или химическое (бихроматное) потребление кислорода пробой воды [5]. 1.6 Нефти и нефтепродукты, сбрасываемые со сточными водами и их влияние на водные объекты Отходы НПЗ, попадая в водные объекты, отрицательно влияют на качество воды и санитарные условия жизни и водопользования населения, нанося этим и экономический ущерб народному хозяйству. Это связано с особенностями поведения веществ, сбрасываемых со сточными водами НПЗ в водоемы, и, прежде всего нефти. Исследования по гигиеническому нормированию вредных веществ сточных вод НПЗ было показано, что нефть и нефтепродукты, поступающие в водоем со сточными водами, неблагоприятно влияют на условия водопользования населения вследствие появления запахов в воде [9]. Ниже дана характеристика вредных веществ, сбрасываемых со сточными водами НПЗ. Нефти — сложные смеси органических соединений; они содержат метановые, метано-нафтеновые, нафтеновые, нафтено-ароматические и ароматические углеводороды. Присутствие кислородных, азотистых и сернистых соединений в нефти различных месторождений колеблется в широких пределах. Различают нефти и по содержанию в них легких фракций, парафинов и смолистых веществ. Сырая нефть — вязкая маслянистая жидкость, обычно темно-коричневого цвета. Растворимость нефти в воде без предварительного взбалтывания составляет 1,5 мг/л; стойкие эмульсии содержат 30—40 мг/л нефти. Нефть и нефтепродукты окисляются в воде, причем интенсивность их окисления зависит от присутствия в воде кислорода и специфической микрофлоры. Так, на окисление 1 мг нефти за 8 суток в чистой воде расходуется 0,24—0,27мг кислорода, а при добавлении культуры, микрофлоры, выращенной на нефтяной пленке, 0,4—0,5 мг кислорода [3]. При спуске сточных вод НПЗ в водоем можно выделить следующие, важные в санитарном отношении формы состояния нефти в водной среде: всплывающую, растворенную и эмульгированную. Продукты высших погонов, практически почти нерастворимые в воде, образуют нефтяные пленки разной толщины (от микронов у мест спуска сточных вод до долей микронов в более отдаленных точках). Нефтяные пленки длительное время держатся на поверхности воды, оказывая отрицательное действие на кислородный режим водоема. Под влиянием ветров и волнений нефтяная пленка прибивается к берегам, загрязняя их и прибрежную растительность. Запахи нефти в воде ощущаются уже в небольших концентрациях: пороговые концентрации для большинства нефтей и нефтепродуктов составляют 0,1 — 0,3 мг/л. Нефть после очистных сооружений в основном находится в растворенном и эмульгированном состоянии, хорошо смешивается с водой и может распространяться в водоеме на большие расстояния, загрязняя всю толщу водяного слоя. Тяжелые продукты переработки нефти опускаются уже у места спуска сточных вод на дно, образуя сравнительно стабильные очаги вторичного загрязнения водоема. Нефть обладает значительной стабильностью в воде: при температуре воды не выше 5°С загрязнение воды нефтью за 30 дней уменьшается только на 15%, при средних температурах до 20 °С — на 40—50% [31]. Углеводороды нефти в процессе биохимической очистки претерпевают существенные изменения. Около 50% их превращается в вещества, не растворяющиеся в эфире и, следовательно, не учитывающиеся при определении содержания нефтепродуктов. К ним относятся прежде всего кислородсодержащие соединения — многоатомные спирты, фенолы, многоосновные кислоты. Из веществ, растворяющихся в эфире, лишь 10% представляют собой углеводороды нефти, остальная масса — продукты неполного окисления нефти. В связи с этим качество очищенных нефтесодержащих сточных вод должно характеризоваться не только содержанием остаточных количеств нефтепродуктов, но и определением ВПК и ХПК, характеризующих остаточное содержание недоокисленных органических веществ в целом. В качестве лимитирующего показателя вредности был определен органолептический — запах. Оказалось, что при пороговых концентрациях нефти по запаху не наблюдается образования нефтяных пленок на воде; нет также торможения процесса самоочищения воды в водоеме и, что особенно важно, пороговые концентрации по запаху в сотни раз меньше доз и концентраций, которые могут оказаться вредными для здоровья человека [16]. Мазуты, как и нефть, имеют сложный химический состав. Они представляют собой вязкую жидкость от светло-коричневого до темно-коричневого цвета. Мазут легче эмульгируется, в стойких эмульсиях содержится до 170 мг/л мазута. Лимитируется содержание мазута в воде водных объектов по влиянию на запах (ПДК 0,3 мг/л). Нефтяные бензины получаются из легких фракций нефти; их различают по содержанию групп углеводородов в зависимости от месторождения нефти. Бензин в хронических опытах на животных при поступлении его в смеси с водой внутри организма в течение 2—6 мес. поражает нервно-регуляторный аппарат сердца и миокарда, вызывает истощение организма животных, кровоизлияние во внутренних органах, дистрофические и некробиотические изменения в них. Концентрации бензина, как и нефти, и нефтепродуктов лимитируют в воде по органолептическому показателю вредности (ПДК — 0,1 мг/л) [13]. Керосин получают из средних фракций нефти. Действие его на организм человека сходно с действием бензина. В воде растворяется слабо. Концентрацию керосина лимитируют также по органолептическому признаку вредности (ПДК—0,1 мг/л). В воде водоемов рыбохозяйственного значения нефть и все нефтепродукты в растворенном и эмульгированном состоянии нормируют по органолептическому признаку вредного действия; ПДК для этих веществ установлено на уровне 0,05 мг/л. При содержании в воде водоемов нефти выше допустимого уровня рыба приобретает отчетливый запах нефтепродуктов. Бензол — бесцветная жидкость. Встречается как примесь в составе некоторых нефтяных бензинов, а также получается при перегонке нефти; хорошо растворяется в воде (до 0,19 г/л). Бензол — нервный и кровяной яд. При хроническом воздействии низких концентраций бензола на животных и рыб обнаруживаются изменения в первую очередь со стороны крови (лейкопения, анайлозия костного мозга). Хронические отравления бензолом оказались смертельными для подопытных животных и рыб. Более высокая токсичность бензола отмечалась при совместном воздействии на организм с толуолом и ксилолом. Бензол лимитируют по санитарно-токсикологическому признаку (ПДК в воде водоема —0,5 мг/л). Он оказывает действие на органолептические свойства воды в водоеме в концентрации 25 мг/л. Толуол и ксилол получаются при тех же технологических операциях, что и бензол [16]. Толуол — бесцветная жидкость с характерным запахом. Летучесть в два раза меньше, чем у бензола. Коэффициент растворимости паров в воде составляет 2,5 при 36—38 °С. В хронических опытах на животных толуол вызывает аналогичные изменения со стороны крови, но несколько слабее, чем бензол. Содержание толуола в водоеме хозяйственно-питьевого и рыбохозяйственного водопользования лимитируют по органолептическому показателю вредности (ПДК—0,5 мг/л). На санитарный режим водоема он оказывает влияние при концентрации 25 мг/л, пороговая концентрация по санитарно-токсикологическому признаку составляет лишь 200 мг/л. Ксилол — бесцветная жидкость, в воде растворяется слабо (0,13 мг/л). На организм человека оказывает прежде всего наркотическое действие. При длительном воздействии в малых концентрациях вызывает раздражение кроветворных органов; действие его сходно с действием бензола и толуола. В воде водоемов, используемых для питьевых и культурно-бытовых целей, содержание ксилола лимитируют по органолептическому признаку вредности (ПДК—0,05 кг/л). Очень важно подчеркнуть, что его подпороговая концентрация по токсическому действию близка к установленной для него ПДК (0,1 мг/л), что делает ксилол особо потенциально опасным для здоровья человека. Его пороговая концентрация по влиянию на санитарный режим водоема также невысока — 1 мг/л. В водоемах, используемых для рыбохозяйственных целей, содержание ксилола лимитируют по органолептическому признаку; его ПДК составляет 0,5 мг/л [14]. Нафтеновые кислоты содержатся главным образом в нефтях кожных месторождений. В сточных водах они присутствуют в виде солей, образующихся при щелочной очистке нефтепродуктов. Неочищенные нафтеновые кислоты представляют собой бурую маслянистую жидкость с резким, неприятным запахом. Окисление нафтеновых кислот в водной среде идет крайне медленно, что делает их опасными загрязнителями водоемов. Пороговые концентрации нафтеновых кислот по влиянию на запах воды близки к пороговым концентрациям нефти (0,2— 0,3 мг/л). Влияние кислот на санитарный режим водоема не выражено. Этилен — бесцветный газ, способный растворяться в воде: его растворимость при 0°С составляет 0,32 мг/л. Этилен используется как исходный продукт при синтезе спиртов, полиэтилена, оксида этилена, этиленгликоля, дихлорэтана и др. По характеру токсического действия этилен — сильный наркотик. При длительном введении водных растворов этилена имеет место поражение печени, сдвиги со стороны крови. Порог токсического действия в экспериментах на животных установлен при концентрации 1,5 мг/л; в концентрациях выше 0,5 мг/л этилен придает воде посторонний запах, и в концентрациях больше 10 мг/л нарушает процессы самоочищения водоема от органических веществ хозяйственно-бытовых сточных вод. ПДК этилена в водных объектах хозяйственно-питьевого назначения установлена по органолептическому признаку действия на уровне 0,5 мг/л. Пропилен — бесцветный газ; растворимость пропилена в воде составляет 0,835 мг/л при 20°С. В хронических опытах на животных пропилен вызывает аналогичную этилену картину интоксикации. ПДК установлена по влиянию на запах воды на уровне 0,5 .мг/л [14]. 1.6.1 Содержание примесей в сточных водах Как уже указывалось, в процессе переработки и очистки нефти в сточные воды наряду с основными нефтепродуктами попадает много соединений, присутствующих в нефти в виде примесей. Из них наибольшее гигиеническое значение имеют сернистые соединения и фенол. Сернистые соединения содержатся в больших концентрациях в отработанных сточных водах, образующихся в результате щелочной очистки бензинов, керосинов и сжиженных газов. Важнейшими из них являются сульфиды и меркаптаны. Сернистые соединения попадают в водоемы со сточными водами НПЗ в виде свободного и связанного сероводорода (сульфиды) и продуктов их окисления. Сульфиды при поступлении в водоем диссоциируют с образованием гидросульфидных ионов HSˉ, которые носят название связанного сероводорода. Связанный и свободный сероводород в водоеме окисляются с образованием сульфат-ионов; промежуточными продуктами при этом являются сульфитные и тиосульфатные ионы. Кроме того, могут образовываться коллоидная сера, оксиды серы, тритионовые и политионовые кислоты. Процесс окисления сернистых соединений в воде начинается с первых же минут. В присутствии избытка кислорода сероводород (свободный и связанный) окисляется полностью в течение первых суток. Промежуточные продукты окисляются значительно медленнее, так как их окисление обусловлено биохимическими процессами, протекающими в воде [17]. Установлена зависимость интенсивности окисления в водной среде сернистых соединений от концентрации растворенного кислорода, рН и температуры, а также от процессов перемешивания и наличия тионовых бактерий. Расчетная величина необходимых затрат кислорода на полное окисление сероводорода до сульфатов полностью совпадает с величиной, полученной в прямом опыте. Так, 1 мг кислорода расходуется на окисление 0,53 мг сероводорода до сульфатов или на окисление 1,09 мг сероводорода до тиосульфатов. Особенность поведения сульфидов в водной среде обусловливает выраженное вредное влияние их на санитарный режим водоема — быстрое связывание кислорода, растворенного в воде. Сульфиды должны полностью отсутствовать в воде, а следовательно, и в сточных водах, чтобы сохранить надлежащий кислородный режим в воде водоемов. Сульфиды вредно влияют и на органолептические свойства воды, придавая ей в концентрациях 0,1—0,3 мг/л запах интенсивностью 1—2 балла. Меркаптаны — простейшие сернистые соединения, представляют собой летучие бесцветные жидкости плотностью ниже единицы с очень резким отталкивающим запахом. Меркаптаны легко растворяются в щелочах, образуя соединения, в которых водород замещен металлом (меркаптиды); в воде растворяются плохо. Под действием слабых окислителей или воздуха меркаптаны постепенно окисляются в дисульфиды. Применение метода определения меркаптанов в воде чувствительностью 0,001—0,002 мг/л позволило установить концентрацию меркаптана 0,001 мг/л в качестве предельной по ее влиянию на запах воды. Эта концентрация меркаптана не влияет на санитарный режим водоема и не вызывает отрицательного токсического действия на организм [17]. Фенолы в чистом виде представляют собой бесцветные кристаллические вещества. Одноатомные фенолы (оксибензол, крезолы) хорошо растворяются в воде, придавая ей резкий запах и привкус. Порог восприятия запаха фенола составляет 0,025—1,0 мг/л. При обработке воды хлором фенолы резко усиливают запах за счет образования хлорфенольных соединений. Запах хлорфенола стабилен, не обладает привыкаемостью. Эта способность фенолов и положена в основу его гигиенического нормирования в воде водоемов, используемых для хозяйственно-питьевых целей. Минимальная концентрация фенола, образующая при хлорировании запах интенсивностью 1 балл, составляет 0,001 мг/л [16]. Наряду с влиянием на органолептические свойства воды одноатомные фенолы, воздействуют и на санитарный режим водоема, потребляя на окисление кислород, растворенный в воде. Было установлено, что при длительном введении с водой одноатомных фенолов в концентрации около 800 мг/л в организме животных развивается хроническая интоксикация, проявляющаяся в дистрофическом поражении почек, печени, изменениях со стороны сердечно-сосудистой системы, центральной нервной системы и др. Эффект совместного действия двух — трех фенолов близок к сумме эффектов действия отдельных веществ. Для водоемов рыбохозяйственного значения ПДК фенолов установлена на уровне 0,001 мг/л по влиянию на качество мяса рыбы (рыбохозяйственный признак). При оценке возможного загрязнения окружающей среды отходами НПЗ нельзя забывать их роли как источников канцерогенов особенно в водных объектах. Содержание их в сточных водах зависит от температуры, при которых происходит возгонка сырья. Как известно, среди большой группы полициклических ароматических соединений в качестве индикатора канцерогенной загрязненности окружающей среды принимается бенз[а]пирен (3,4-бензпирен). Хотя в сточных водах НПЗ сравнительно меньше 3,4-бензпирена, чем в сточных водах других предприятий по термической переработке твердого и жидкого топлива, однако и в них обнаруживалось до 0,292 мг/л 3,4-бензпирена. Как показали исследования, 3,4-бензпирен обладает значительной стабильностью и растворимостью в водной среде, что делает возможным распространение его (и других канцерогенных углеводородов) на большие расстояния вниз по течению от источника загрязнения. 3,4-Бензпирен накапливается в донных отложениях в планктоне, водорослях, рыбных организмах [1]. 1.6.2 Содержание диэмульгаторов в сточной воде Как известно, основным источником загрязнения сточных вод НПЗ является процесс обезвоживания и обессоливания нефти. Решающее значение при этом имеет качество применяемых деэмульгаторов, представляющих собой поверхностно-активные вещества (ПАВ). ПАВ — это вещества, адсорбирующиеся на поверхности раздела соприкасающихся тел и образующие на этой поверхности адсорбционный молекулярный слой. Даже очень малые добавки ПАВ могут резко изменить условия молекулярного взаимодействия на поверхности раздела, скорости фазовых превращений и перехода из одной фазы в другую. В химическом отношении ПАВ могут быть разделены на ионогенные и неионогенные; первые в свою очередь делятся на анионоактивные и катионоакивные. Анионоактивные ионогенные ПАВ при растворении в воде диссоциируют на положительно заряженный катион и отрицательно заряженный анион. Носителем поверхностно-активных свойств у анионоактивных ПАВ является анион. Представителями анионоактивных ПАВ является алкилбензосульфонат и алкилсульфаты. К ним относятся применяемые ранее на НПЗ сульфонат (соли сульфонафтеновых кислот) и деэмульгатор НЧК (нейтрализованный черный контакт). Катионоактивные ПАВ также диссоциируют на катионы и анионы, но поверхностно-активными свойствами обладают катионы, представляющие собой положительно заряженную группу. Отрицательными свойствами анионоактивных ПАВ (в частности, НЧК и сульфоната) является их способность реагировать с находящимися в воде солями кальция и магния и образовывать осадки, способствующие шламообразованию при деэмульгации нефти. При этом образуются стойкие эмульсии нефти, не поддающиеся ни отстаиванию, ни всплыванию. Обессоливание высокосмолистых нефтей требует больших расходов НЧК (до 3 кг на 1 т нефти). При переработке такой нефти получающиеся сточные воды не поддаются очистке на нефтеловушках и кварцевых фильтрах. НЧК плохо окисляется на биологических очистных сооружениях и в большой степени определяет характер загрязнения биологически очищенных сточных вод НПЗ (в настоящее время НЧК в процессе подготовки нефти не используется). На смену малоэффективных и плохо разрушающихся на очистных сооружениях ионогенных деэмульгаторов в нефтеперерабатывающей промышленности стали применять неионогенные ПАВ. Неионогенные ПАВ не диссоциируют в водных растворах; их молекула проявляет поверхностную активность как целая электролитная единица. Их расход значительно ниже, они хорошо растворяются в воде, не образуют стойких нефтяных эмульсий и соединений с солями и кислотами, содержащимися в воде и нефти. Так, расход ОП-10 составляет лишь 40—50 г на 1 т нефти, причем производительность установок обезвоживания и обессоливания повышается на 40—50% по сравнению с применением НЧК. С санитарно-гигиенической точки зрения очень важным преимуществом неионогенных деэмульгаторов является то, что они не образуют стойких нефтяных эмульсий, не поддающихся разрушению и очистке [3]. 1.7 Загрязнение почвы В настоящее время количество промышленных выбросов, поступающих в биосферу, превышает в десятки и сотни раз уровень некоторых веществ, естественно циркулирующих в ней. В силу наличия органной адсорбционной поверхности, почва служит резервуаром, в котором загрязнения могут накапливаться в большом количестве. Загрязнение почвенного покрова происходит в результате адсорбции атмосферных выбросов, складирования и захоронения отходов производств. Образующиеся в процессе переработки нефти углеводороды, особенно ароматические, обладают большей токсичностью, чем природная нефть. При этом содержание ароматических углеводородов в количестве 10—25 мг/кг почвы может привести к угнетению некоторых микробиологических процессов, происходящих в ней. Прежде всего, нарушается процесс нитрификации, ацетиленовой азотфиксации и угнетаются актиномицеты [30]. Изучение загрязнения почвы выбросами нефтехимических предприятий и накопление специфических ингредиентов нефтепереработки в сельскохозяйственных культурах было начато в институте гигиены и профзаболеваний в 1976 г. Контроль за содержанием специфических компонентов в почвенном покрове и сельскохозяйственных растениях осуществлялся в основном в гг. Уфа, Салават и Стерлитамак [29]. Общеизвестно, что такие компоненты выбросов НХЗ, как сероводород и окислы в процессе круговорота серы в пригороде с осадками попадают в почву, где адсорбируются почвенным поглощающим комплексом. Все сернистые соединения нефти проходят стадию образованию сульфатов. Поэтому повышенное содержание сульфатов в почве, по-видимому, свидетельствует о загрязнении почвы выбросами НХЗ [7]. Для климатических условий Башкирии, где продолжительность снежного периода составляет 5—6 месяцев, снег является хорошим индикатором загрязнения окружающей среды. В нем накапливаются такие выбросы НХЗ, как углеводороды, нефти оксиды азота, серы, фенол, аммиак, а также тяжелые металлы, вымываемые снегом из атмосферы в районе расположения тепловых электростанций. С гигиенических позиций качественный состав снежного покрова имеет большое значение, т. к. во время снеготаяния может формировать загрязнение поверхностных вод. Кроме того, по степени загрязненности снеговых проб можно в определенной степени судить о санитарном состоянии атмосферного воздуха [2]. Таким образом, исследования почвы в районах размещения предприятий нефтепереработки и нефтехимии показали, что она загрязняется нефтепродуктами и выбросами этих предприятий в радиусе до 3-х км и глубиной до 60—80 см. В километровой зоне концентрации загрязняющих почву химических веществ значительно выше фоновых и предельно допустимых уровней по отдельным ингредиентам достигающих десятки и сотни ПДК. Исходя из этого, в 3-х километровой санитарно-защитной зоне предприятий недопустимо размещение баз отдыха и лечения, Размещение коллективных садов и сельхозугодий. Эти территории должны быть использованы для выращивания древесных и кустарниковых насаждений с высокой газоустойчивостью для создания светофильтров — зеленой защиты от химических загрязнений . Таким образом, нефтеперерабатывающие и нефтехимические предприятия оказывают неблагоприятное воздействие на все объекты окружающей среды — атмосферный воздух, водные объекты, почву загрязняя их отходами своего производства [12]. Загрязнение почвенного покрова вокруг НХЗ происходит за счет адсорбции атмосферных выбросов и фильтрации химических веществ из загрязненных сточными водами водных объектов, а также в результате складирования и захоронения отходов производств. Промышленные отходы состоят, в основном, из шлаков, кислого гудрона, растворов щелочей, отработанных катализаторов и др. Основными загрязнителями почвенного покрова являются нефтепродукты, сульфаты, ароматические углеводороды (бензол, толуол, стирол, альфаметилстирол, ортоксилол, этилбензол, изопропилбензол, бензин), бензапипрен, азот аммонийный. В радиусе 1 км от НХЗ загрязнители обнаруживаются на глубине 60—80 см от поверхности почвы [20]. 1.8 Влияние загрязнения на человека Имеются многочисленные научные данные, свидетельствующие о связи легочной, онкологической, кожной и другой паталогии с характером и уровнем загрязнения воздуха. Многократно подтверждена, например, зависимость обострения хронического бронхита от уровня загрязнения воздуха сернистым газом, характеризуемая следующими данными: при концентрации сернистого газа 0,13 мг/м3 процент обострения хронического бронхита (в человеко-днях) 13,0, при концентрации 0,78 мг/м3 — 26,5. Статистически установлена связь детской заболеваемости (в первую очередь органов дыхания) с уровнем загрязнения атмосферного воздуха сернистым газом. Обстоятельное изучение большой группы детей (3866 человек) с момента их рождения и до 15-летнего возраста показало, что частота острых респираторных заболеваний среди них значительно увеличилось в те дни, когда уровни среднегодовых концентраций сернистого газа и дыма в атмосферном воздухе превышали 0,13 мг/м3. Аналогичная связь частоты обострений с опасным загрязнением атмосферы установлена для бронхиальной астмы. Загрязнение воздуха сернистым газом при концентрации до 0,049 мг/м3 увеличивает показатель общей заболеваемости (в человеко-днях, США) до 8,1%: при концентрации от 0,150 до 0,349 и выше 0,350 мг/м3 — соответственно до 12 и 43,8%. Частота заболевания бронхиальной астмой пропорциональна концентрации сернистого газа в воздухе (Япония). Все возрастающее количество раковых заболеваний пропорционально числу труб, выбрасывающих загрязняющие вещества в атмосферу (Великобритания) и т. д. [31]. Канцерогенные вещества при контакте с клеткой организма человека оставляют на ней «клеймо». Последующее воздействие канцерогенов суммируется даже в том случае, если оно разделено значительным интервалом времени. Вероятность возникновения злокачественного образования повышается, хотя видимого воздействия на организм и качественной перестройки клетки не отмечено. Последняя отчетливо фиксируется при пороговой концентрации. Для многих вредных веществ биологических видов и экосистем эта концентрация в настоящее время не определена [16]. Опасное воздействие на человека оказывает окись углерода. Вдыхание воздуха, содержащего даже небольшие количества СО, вызывает глубокое отравление. Причина отравления в том, что окись углерода быстрее и легче, чем кислород, связывается с гемоглобином крови и образует довольно стойкое соединение, названное карбоксигемоглобин (НЬ — СО). Химическое сродство НЬ с СО в 200 раз больше, чем с кислородом. Это означает, что даже небольшого количества СО во вдыхаемом воздухе оказывается достаточно, чтобы превратить около 2/3 гемоглобина крови в карбоксигемоглобин. Процесс этот обратим, но НЬ — СО диссоциирует медленно. По этой причине образовавшийся НЬ — СО нарушает дыхательную функцию крови (кровь насыщается окисью углерода и человек погибает от кислородной недостаточности). Повышенное содержание СО в воздухе при высоких уровнях загрязнения атмосферы (0,1%) нарушает сердечно-сосудистую функцию у работающих. Оно смертельно опасно для людей, страдающих сердечно-сосудистыми заболеваниями. Содержание СО в атмосфере при концентрации 0,1% в 35 раз увеличивает смертность больных острым инфарктом миокарда и т. д. Диссоциацию НЬ — СО можно ускорить увеличением парциального давления кислорода в воздухе (вдыхание кислородно-углекислотной смеси с содержанием 95%О2 и 5%СО2 или воздуха с повышенным содержанием кислорода). Одним из опасных загрязнителей атмосферы Земли, связанных также с нефтегазодобывающим производством, является сера. По удельной значимости вклада в загрязнение сера занимает в настоящее время одно из первых мест, особенно в составе очень распространенных сульфатных аэрозолей [31]. 1.9 Влияние загрязнения на биоту Нефтяная пленка сильно влияет и на динамику биологических процессов в поверхностном микрослое воды. Прежде всего, микробиологическая деструкция углеводородов нефти сопровождается потреблением больших количеств растворенного кислорода: для полного окисления 10 л сырой нефти требуется столько кислорода, сколько его содержится примерно в 3750 м3 воды поверхностного 30-сантиметрового слоя. Следовательно, загрязнение нефтепродуктами приводит к значительным изменениям условий жизнедеятельности организмов, обитающих в верхних горизонтах воды [15]. Влияние нефтяных загрязнений на жизнь океана изучено далеко не достаточно. Принято общее воздействие нефтепродуктов на состояние гидробионтов подразделять на пять основных категорий: 1) непосредственное отравление организмов с летальным исходом; 2)серьезные нарушения физиологической активности гидробионтов; 3)прямое обволакивание птиц и морских животных нефтепродуктами; 4)болезненные изменения в организме гидробионтов, вызванные внедрением углеводородов; 5)изменение химических, биологических и биохимических свойств среды обитания. Летальное отравление морских организмов наступает в результате прямого воздействия нефтяных углеводородов на внутриклеточные процессы и, особенно, на процессы обмена между клетками . В этом отношении парафиновые углеводороды с относительно короткими (С10 и менее) цепями менее опасны. Они проявляют наркотическое действие лишь в очень больших концентрациях, отсутствующих в нефтяных пятнах. Напротив, ароматические углеводороды, растворимые в воде, представляют большую опасность: смерть взрослых морских организмов может наступить после нескольких часов контакта с ними уже при концентрации 10-4—10-2 %. Смертельные концентрации ароматических углеводородов для икринок и мальков еще ниже. Массовая гибель морских организмов отмечается, как правило, в прибрежных районах, где их обитает особенно много. При загрязнении морской воды вдали от берегов, на больших глубинах, токсичные нефтяные фракции успевают частично испариться, частично разбавиться водой до менее опасных концентраций. Однако и в сравнительно невысоких концентрациях ароматические углеводороды нефти оказывают негативное воздействие на морские биоценозы [10]. Эффекты покрытия нефтепродуктами и гибели находящихся в зоне прилива планктона, низкорастущих растений и птиц хорошо известны. Нефтепродукты нарушают изолирующие свойства оперения, а при попытке очистить перья птицы заглатывают загрязнения и погибают. Только в Северном море и Северной Атлантике нефтяные загрязнения являются причиной гибели 150—450 тыс. птиц в год. В акваториях с замедленным водообменом (заливы, бухты) наблюдается почти полное уничтожение морской флоры и фауны. Нефтяные разливы в реках создают в межсезонный период непроходимый барьер для некоторых видов рыб, чувствительных к углеводородному загрязнению[8]. Поражение морских организмов в результате накопления ароматических углеводородов в их тканях может происходить даже при очень низком содержании нефтепродуктов, если обитатели моря сравнительно долго пребывают в загрязненной ими среде. Присутствие полициклических ароматических углеводородов не только ухудшает вкус съедобных организмов, но и опасно, так как эти вещества являются канцерогенным. Так, концентрация канцерогенных многоядерных углеводородов в ткани мидий, выловленных в районе порта Тулон (Франция), достигала 1,3—3,4 мг/кг сухого вещества . Значение нижнего яруса растительного покрова как корма диких и домашних животных, тепло - и влагорегулятора почвы, основного средства против образования оврагов, оползней и эрозии трудно переоценить. Между тем основное воздействие нефти и нефтепродуктов на природно-растительный комплекс при отказах трубопроводов сводится именно к снижению биологической продуктивности почвы и фитомассы растительного покрова [9]. Характер и степень воздействия нефти и нефтепродуктов на почвенно-растительный комплекс определяется объемом ингредиента и его свойствами, видовым составом растительного покрова, временем года и другими факторами. Многие виды сосудистых растений оказываются устойчивыми против нефтяного загрязнения, тогда как большинство лишайников погибает при воздействии на них нефти и нефтепродуктов. Установлено, что наиболее токсичны углеводороды с температурой кипения в пределах от 150 до 2700 С, т. е. нафтеновые и керосиновые фракции. Углеводороды с более низкой температурой кипения менее токсичны либо вообще безвредны, особенно их летучие фракции, поскольку они испаряются, не успевая проникнуть через растительную ткань. Высококипящие тяжелые фракции нефти также менее токсичны, чем нафтеновые и керосиновые фракции[23]. Деградация нефти в грунтовой среде происходит путем биологического окисления микроорганизмами и химического окисления. Значительно ускоряют процесс очищения почвы от нефти дождевые осадки, которые вымывают ее и тем самым снижают концентрацию нефти в верхних слоях почвы. Загрязнение почвы нефтью и нефтепродуктами в северных районах будет, очевидно, иметь гораздо большие отрицательные последствия, нежели в районах с относительно умеренным климатом. Низкие температуры воздуха и грунтовой среды, сильные ветры, небольшая продолжительность летнего теплого периода (во время которого активизируются биологические процессы) создают чрезвычайно сложный режим функционирования растительного покрова. Поэтому всякое нарушение этого режима может привести к необратимым процессам. Одним из наиболее опасных в этом является загрязнение нефтью грунтовой среды в результате утечек из магистральных нефтепроводов, резервуаров [13]. Таким образом, на основании вышеизложенного можно сделать вывод о том, что наибольшей токсичностью для биоты обладают нефтепродукты с температурой кипения 150-2700С (нафтеновые и керосиновые фракции), поражение морских организмов в результате накопления ароматических углеводородов в их тканях происходит даже при очень низком содержании нефтепродуктов, характер и степень воздействия нефти и нефтепродуктов на почвенно-растительный комплекс определяется объемом ингредиента и его свойствами, видовым составом растительного покрова, временем года и другими факторами. Это воздействие сводится именно к снижению биологической продуктивности почвы и фитомассы растительного покрова [18]. 1.10 Экологические, экономические, этические и социальные аспекты
Экологические аспекты. Кризис во взаимоотношениях человека и природы в немалой степени обусловлен бурным развитием нефтяной и нефтеперерабатывающей отраслей промышленности. Особенностью развития этих отраслей на современном этапе является создание территориально-производственных комплексов, в которых различные отрасли сконцентрированы в единый производственный цикл и объединены территориально в один узел. В таких регионах сильно загрязнены воздух, вода, почва, продукты питания. Серьезно подорвано состояние здоровья населения. Регионы эти стали районами экологического бедствия, в Башкортостане это центральный (Уфа, Благовещенск) и южный ТПК (Стерлитамак, Салават, Ишимбай). Башкортостан в этом ряду занимает особое место, потому что на его территории ведется добыча нефти и газа, земля пронизана мощными продуктопроводами, по которым осуществляется их транспортировка, располагаются мощнейшие заводы по переработке, развиты нефтехимия, химия, микробиология на основе переработки нефтепродуктов. Башкирии принадлежит исключительное место по концентрации экологически опасных производств в Европе. Здесь производится 23% продукции нефтехимии страны, 45% кальцинированной соды, 12%—каустической соды, 15%—гербицидов, 7%—смол и пластмасс и т. д.[3]. Большинство производств сосредоточено на юге республики. В центре этого промышленного узла находится г. Салават с населением 150 тыс, человек. В этом городе сосредоточено более 30 крупных предприятий нефтеперерабатывающей, нефтехимической и химической промышленности — всего 94 промышленных предприятия, 2277 источников загрязнения атмосферного воздуха. В радиусе 45 км расположены еще три крупных индустриальных города — Стерлитамак, Ишимбай, Мелеуз, где также сконцентрированы производства химии, нефтехимии, минеральных удобрений. Эти города составляют так называемый Южный башкирский промышленный узел. Аналогов по мощности нет в отечественной и зарубежной практике. Экологическая опасность нефтехимических промышленных узлов очень высока потому, что, во-первых, сам продукт и процесс переработки состоит из сотен химических веществ, присутствующих одновременно в различных комбинациях между собой, сочетаниях с другими неблагоприятными факторами и обладает комплексным воздействием на организм, во-вторых, все продукты нефти и газа поражают объекты окружающей среды: воздух, воду, почву и трансформируются во все живое и неживое. Главными загрязнителями в нефтяной и нефтеперерабатывающей отраслях принято считать углеводороды, сероводород, диоксид серы, оксиды углерода и азот [15]. В действительности же выбросы содержат до 250 химических веществ, одна треть из которых представляет I и II класс опасности, среди которых тяжелые углеводороды, лимонен, диоксин, бензпирен и т. д. Еще следует сказать, что 30% таких предприятий находится в центре жилой зоны (в Уфе — РТИ, Гидравлика, 2 установки ароматики, СЖС и ВЖС в 500 м от жилых домов), санитарная зона других - составляет 2—3 км, а вещества, превышающие в десятки раз ПДК, выявляются во всех этих городах на расстоянии до 20 км от завода. Необходимо учесть, что нефтеперерабатывающие и некоторые нефтехимические предприятия построены еще в 50-е годы и, несмотря на реконструкцию, 40—45% установок эксплуатируется более 30 лет. Все это создает полное экологическое неблагополучие, стремительное ухудшение стандартов жизни, всех санитарно-гигиенических норм, что не может не отразиться на состоянии здоровья населения. В Уфе население, проживающее на расстоянии до 3 км от НХЗ, болеет в 3 раза чаще населения «чистых» районов по показателям обращаемости в медицинские учреждения, в 1,7 раза по данным углубленного медосмотра, в 1,5 раза по временной утрате трудоспособности, по болезням ЦНС — в 4 раза, простудными — в 3,5 раза. |
|
© 2000 |
|