РУБРИКИ

Гигиеническое нормирование содержания тяжелых металлов в объектах окружающей среды

   РЕКЛАМА

Главная

Зоология

Инвестиции

Информатика

Искусство и культура

Исторические личности

История

Кибернетика

Коммуникации и связь

Косметология

Криптология

Кулинария

Культурология

Логика

Логистика

Банковское дело

Безопасность жизнедеятельности

Бизнес-план

Биология

Бухучет управленчучет

Водоснабжение водоотведение

Военная кафедра

География экономическая география

Геодезия

Геология

Животные

Жилищное право

Законодательство и право

Здоровье

Земельное право

Иностранные языки лингвистика

ПОДПИСКА

Рассылка на E-mail

ПОИСК

Гигиеническое нормирование содержания тяжелых металлов в объектах окружающей среды

Считается, что железо всасывается в желудке лишь после окисления в Fe2+ и образования белкового комплекса – ферритина. При введении крысам в желудок через 4 ч в желудочно-кишечном тракте еще находилось 99,3% . При вдыхании в легких крыс через 4 ч обнаружено 52-62%, в желудочно-кишечном тракте – 33%, в крови, печени, почках – 1% от введенной дозы.

ПДК оксида железа с примесью оксидов марганца до 3%, чугун, чугун в смеси с электрокорундом до 20%, легированные стали и их смеси с алмазом до 5% - 6 мг/м3; оксид железа с примесью фторидных или 3 – 6% марганцевых соединений, железный агломерат – 4 мг/м3. В США для растворимых солей железа принята ПДК 1 мг/м3 (по Fe), для аэрозоля оксида железа – 5 мг/м3. Для феррита бария рекомендуется 2 мг/м3, а содержащих до 19% оксидов марганца ферритов – 1,5 мг/м3.

В качестве индивидуальной защиты от железосодержащих пылей в производстве применяют респираторы «Лепесток»; защитные герметические очки и спецодежду из пыленепроницаемой ткани.

Пентакарбонил железа Fe(CO)5 сильно ядовит при вдыхании, введении внутрь или всасывании через кожу. Вызывает острый отек легких независимо от пути введения. Предполагают, что выделение происходит через легкие. Смертельная доза для кроликов при введении через рот или внутривенно 1,75 мг/кг. При вдыхании паров в течении 30 мин для белых мышей ЛК50=2,19, а для белых крыс 0,91 мг/л. В производственных условиях отравления протекали сходно с картиной интоксикации оксидом углерода.

Предельно допустимая концентрация в США установлена 0,8 мг/м3.

В производстве применяют противогаз марки П-2, который защищает одновременно от СО и Fe2O3. При привесе коробки противогаза 25 г не защищает от СО; при привесе 45 г противогазная коробка негодна и должна немедленно сменяться. Предусматривают меры, предотвращающие выделение в воздух Fe(CO)5, а также СО. Дегазацию производят окислителями (KMnO4, хлорамином). Рекомендуется проведение периодических медицинских осмотров работников производства не реже одного раза в год.


1.2.8 Соединения кобальта

В народном хозяйстве широко применяются металлический кобальт, оксиды кобальта (II), (II, III) и (III), сульфат, хлорид, ацетат и тетракарбонил кобальта.

Токсическое действие кобальта и его неорганических соединений. Кобальт – важный биологический элемент. В малых дозах в организме он активизирует ряд ферментов, регулирующих тканевое дыхание, кроветворение и другие процессы, а в больших дозах угнетает. Угнетающее действие связано с образованием комплексов кобальта с SH – группами энзимов, способностью тормозить процесс переноса электронов по дыхательной цепи и окислительное фосфорилирование. В результате влияния на тканевое дыхание развивается гистотоксическая гипоксия. Токсические дозы кобальта угнетают гемопоэз. Полиглобулия сходна с развивающейся на высоте. Считают, что для ее развития необходимо присутствие в организме достаточного колсчества меди. Влияние кобальта на крове творение объясняют возникающей тканевой гипоксией, угнетением дыхательной функции форменных элементов крови, мобилизацией железа для улучшения синтеза гемоглобилина, стимуляцией костного мозга или эритропоэтического фактора. Под влиянием кобальта изменяется строение и функция щитовидной железы вследствие общего нарушения окислительных процессов, а также нарушаются каталитические реакции в самой железе, блокируется тирозиниодиназа, поглощение и окисление неорганического йода; кобальт связывает SH – группы эпителия и коллоида.

Избыток кобальта в организме влияет на сердечно-сосудистую систему, расширяет сосуды, снижает кровяное давление; избирательно поражает сердечную мышцу. Дефицит белка усиливает токсическое действие кобальта. При длительном вдыхании кобальта или его оксидов возникают воспалительные и склеротические изменения в легких. Комплексные соединения кобальта действуют сходно с его солями (хлорид, сульфат). Так, при введении под кожу 15 – 25 мг хлорида кобальта на 9 – 13-й день у кроликов одышка, цианоз, снижение окислительных процессов в миокарде. У собак однократное введение

хлорида кобальта вызвало синусовую тахикардию. При однократном введении в трахею крыс 25 – 50 мг оксида кобальта (II) быстро развиваются массовые кровоизлияния и отек легких, смерть на 1 -2 сутки. При таком же введении сесквиоксид кобальта вызывает воспалительно-пролиферативную инфильтрацию вокруг скопления пыли и инфильтрацию межальвеолярных перегородок. Вдыхание аэрозоля 1% - ного раствора CoCl, Co [Co - ЭДТА] и Na2 [Co - ЭДТА] в течение трех часов вызывало у крыс и морских свинок отек легких. Ежедневное введение кобальта в виде его нитрата по 3 мг/кг шесть раз в неделю в течение 50-60 дней у кроликов повышало число эритроцитов на 89%, а содержание гемоглобина – на 73%.

Мелкие частицы кобальта вызывают острый дерматит в виде многочисленных не сливающихся красных капсул, узелков и отека; иногда поверхностные изъязвления. Сам металлический кобальт – слабый аллерген и редко бывает причиной контактного дерматоза.

Предельно допустимая концентрация для кобальта и его оксида 0,5 мг/м3. Защитными средствами органов дыхания в производстве соединений кобальта являются респираторы «Астра», «Лепесток».

Тетракарбонил кобальта Co(CO)4 подобно другим карбонилам металлов вызывает раздражение глубоких дыхательных путей. Менее токсичен, чем карбонил никеля. Разлагаясь с большой скоростью на воздухе, по-видимому, в какой-то период действует в виде паров, а затем в виде продуктов разложения – мелкодисперсного аэрозоля неорганических соединений кобальта и сортированных на нем паров тетракарбонила кобальта, оксида углерода и карбонилгидрида кобальта.

Процесс вдыхания паров у человека вызывает слабость, тошноту и затруднение дыхания. При более высоких концентрациях – расширенные и суженные, неравномерные зрачки, двойное видение, снижение корнеальных и сухожильных рефлексов, отклонение языка, а иногда судорожные подергивания.

При хронических отравлениях среди работающих много ринитов, ринофарингитов, понижения обоняния. Бывают также признаки поражения миокарда, тенденции к анемизации.

Концентрация 0,0008 мг/л (по кобальту) вызвала прижигание конъюнктивы и роговицы крыс. Однократное и особенно повторное нанесение тетракарбонила кобальта на кожу крыс в количестве 1,0 – 1,5 мг/см2 вызывало изъязвление.

После однократного вдыхания в легких задерживается ~5%, которые удаляются в течение 2 недель. Предельно допустимая концентрация 0,01 мг/м3 (по кобальту).

В производстве тетракарбонила кобальта применяют специальный фильтрующий противогаз марки П-2. При более высоких концентрациях – шланговые противогазы с подачей свежего воздуха или изолирующие кислородные приборы


1.2.9 Соединения никеля

Наиболее широко применяемыми в народном хозяйстве соединениями никеля являются металлический никель, оксиды никеля (II), (III), гидроксиды никеля (II) и (III), сульфат, хлорид, нитрат и сульфиды – NiS, Ni2S, Ni3S2, Ni3S4, Ni6S5, а также его nетракарбонил.

Токсическое действие никеля и его неорганических соединений. Никель активизирует или угнетает ряд ферментов: аргиназу, карбоксилазу, 5-нуклеозидфосфатазы. Он влияет на дефосфорилирование аминотрифосфата. В крови

человека никель связывается преимущественно с -глобулином сыворотки. После введения хлорида никеля кроликам в сыворотке крови обнаружен белок – никелоплазмин, идентифицированный как -микроглобулин. Однако, по другим данным, 90% никеля в крови кроликов через 24 ч связывается с альбуминами, лишь незначительная часть поступившего NiCl2 выявлена во всех фракциях -глобулина. В организме никель образует комплексы с биокомплексонами. Никель имеет особое сродство к легочной ткани, в эксперименте при любом пути введения поражает ее. Оказывает влияние на кроветворение, углеводный обмен. Металлический никель и его соединения вызывают рак. Канцерогенное действие никеля связывают с нарушением метаболизма клеток. Соли никеля вызывают поражение кожи человека с развитием повышенной чувствительности к металлу.

Смертность от рака легких, полости носа и его пазух составляет 35,5% всех смертей рабочих, занятых электролизом и рафинированием никеля. На первом месте был рак легких, на втором – желудка. Наиболее часто страдали работавшие при пирометаллургических процессах в обжиговосстановительных цехах (стаж 12 – 23 года, концентрации пыли колебались в пределах порядка мг/м3; в ней содержалось 70% Ni в виде сульфидов, NiO или металлического никеля). Высока смертность от рака в цехах электролиза при наличии в воздухе аэрозолей NiCl2 и NiSO4. Средний стаж работы у умерших от рака легких 7 – 13 лет, от рака желудка – 10 – 14 лет.

Считают, что никель не обладает прямым раздражающим действием на кожу. Однако у никелировщиков, работающих на производстве электролизом и имеющих контакт с его солями, наблюдается «никелевая экзема», «никелевая чесотка»: фолликулярно-расположенные папулы, отек, эритема, пузырьки.

Никель и его соединения – сильные сенсибилизаторы.

Никель поступает в организм человека через желудочно-кишечный тракт. При этом всасываются не только соли, но и высокодисперсный металл и оксиды. В крови никель образует комплексные с белками плазмы – никелоплазмин. Никель, поступивший в результате вдыхания или через рот, распределяется в тканях более или менее равномерно. Однако в дальнейшем проявляется тропность никеля к легочной ткани. Предельно допустимая концентрация оксида никеля (II), оксида никеля (III), сульфида никеля (в пересчете на никель) 0,5 мг/м3. Соли никеля в виде гидроаэрозоля (в пересчете на никель) 0,0005 мг/м3. Аэрозоль медно-никелевой руды – 4 мг/м3. Для аэрозолей Фанштейна, никелевого концентрата, пыли электрофильтров никелевого производства 0,1 мг/м3.

В качестве защитных средств в производстве применяются респираторы, изолирующие, шланговые противогазы или респираторы. Пользуются защитной пастой ИЭР-2, ланолино-касторовой мазью.

 Тетракарбонил никеля Ni(CO)4 раздражает глубокие дыхательные пути, вызывая пневмонию и отек легких независимо от пути поступления в организм. Значительное общетоксическое действие направлено на нервную систему. Ингибирует аминопиридиндеметилазу, цитохром-450, триптофанпирролазу, бензпиренгидролазу. Угнетает синтез РНК, белков, что, возможно, связано с подавлением тетракарбонила никеля. Пока не установлено, действует ли Тетракарбонил никеля целой молекулой или продуктами разложения. Однако после вдыхания или введения в вену Тетракарбонил никеля выделяется с вдыхаемым воздухом, а также циркулирует в крови какое-то время. Тетракарбонил никеля подвергается внутриклеточному метаболизму с образованием Ni и СО. Клеточными окислительными системами Ni окисляется в Ni2+ и частично

связывается с нуклеиновыми кислотами, он имеет особое сродства к РНК; часть его транспортируется в плазму. СО образует карбоксигемоглобин и в конечном итоге выдыхается. Очень незначительная часть тетракарбонила никеля окисляется до СО2. Даже при смертельных концентрациях или дозах и полном и быстром разложении тетракарбонила никеля образовавшийся СО не может дать выраженной картины отравления.

Предельно допустимая концентрация 0,0005 мг/м3.

В производстве при повышенных концентрациях тетракарбонила никеля пользуются фильтрующим промышленным противогазом марки П-2. Его защитное действие рассчитано на 2,5 ч при концентрации тетракарбонила никеля 0,005 мг/л и СО 0,1 мг/л. В присутствии СО допускается привес коробки противогаза на 45 г, после чего она уже непригодна. В случае резко повышенных концентрации применяют шланговые противогазы. Применяют также специальную одежду и перчатки.



2 Гигиеническое нормирование содержания тяжелых металлов в объектах окружающей среды


Ниже приведены основные сведения по нормированию содержания тяжелых металлов в воздухе, воде, почве, пищевых продуктах и кормах сельскохозяйственных животных


2.1 Воздух


Воздух – среда, непосредственно окружающая человека и потому прямо воздействующая на его здоровье. Еще в 20-е гг. ХХ века начали вводить ДПК вредных веществ в рабочих помещениях. Обычно содержание примесей в воздухе рабочего помещения больше, чем на площадке предприятия и тем более за ее пределами. Поэтому для каждого вредного вещества в воздухе устанавливают по крайней мере два нормативных значения: ПДК в воздухе рабочей зоны (ПДКр.з.) и ПДК в атмосферном воздухе ближайшего населенного пункта (ПДКа.в), а также максимально разовые (ПДКм.р.) и среднесуточные (ПДКс.с).

Под ПДК следует понимать такую концентрацию химического соединения, которая при ежедневном воздействии в течение длительного времени на организм человека не вызывает каких-либо патологических изменений или заболеваний, обнаруживаемых современными методами исследования, а также не нарушает биологического отптимума для человека.

ПДК р.з. – предельно-допустимая концентрация вредного вещества в воздухе рабочей зоны (мг/м3). Эта концентрация не должна вызывать у работающих при ежедневном вдыхании в приделах 8 часов в течение всего рабочего стажа заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследования непосредственно в процессе работы или в отдельные сроки. Рабочей зоной считается пространство высотой до 2 метров над уровнем пола или площадки, на которой находится места постоянного или временного пребывания работающих.

ПДК м.р. – максимальная разовая концентрация вредного вещества в воздухе населенных мест, мг/м3. Эта концентрация вредного вещества не должна вызывать рефлекторных реакций в организме человека.

ПДК с.с. – среднесуточная предельно допустимая концентрация вредного вещества в воздухе населенных мест, мг/м3. Эта концентрация вредного вещества не должна оказывать на человека прямого или косвенного воздействия в условиях неопределенного долгого круглосуточного вдыхания.

В таблице 2.1 приведены ПДК некоторых загрязняющих веществ в воздухе

При проектировании или строительстве предприятий в районах, где воздух уже загрязнен, необходимо выбросы предприятий нормировать с учетом присутствующих примесей, т.е. фоновой концентрации (Сф). Если в атмосферном воздухе присутствуют выбросы нескольких веществ, то сумма отношений концентраций загрязняющих веществ к их ПДК (с учетом Сф) не должна превышать единицы:


 


где Сi – концентрация i-го вещества; ПДКi – предельно допустимая концентрация i-го вещества; Сфi - фоновая концентрация i-го вещества; n – число суммируемых веществ.



Таблица 2.1

Предельно-допустимые концентрации вредных неорганических веществ в воздухе рабочей зоны и в атмосферном воздухе населенных мест [8]

 

№ п/п

Соединение

Формула

Молекулярная масса

ПДКр.з. (1)

ПДКм.р. (2)

ПДКс.с. (3), мг/м3

 

1

2

3

4

5

 

1

Железа оксид

Fe2O3

159,7

10 (1)

 

2

Железа растворимые соли в пересчете на Fe

-

-

0,1 (1)

 

3

Кадмий сернистый

CdS

144,46

0,1 (1)

 

4

Кадмий и его соединения

-

-

0,2 (1)

 

5

Кадмий стеариновокислый в пересчете на Cd

Cd(C17H33COO)2

678,39

0,1 (1)

 

6

Кадмия оксид

CdO

128,39

0,1 (1)

 

7

Кобальт

Co

58,93

0,5 (1)

 

8

Кобальта гидрокарбонил и продукты его распада в пересчете на Co

Co(CO)4H

171,98

0,01 (1)

 

9

Кобальта оксид

Co2O3

165,88

0,5 (1)

 

10

Марганец

Mn

54,94

0,3 (1), 0,01 (3)

 

11

Медь

Cu

63,54

1 (1)

 

12

Молибден

Mo

95,94

> 4 (1)

 

13

Молибдена нерастворимые соединения

-

-

6,0 (1)

 

14

Молибдена растворимые соединения в виде аэрозоля пыли

--

--

2,0 (1)

4,0 (1)

 

15

Молибдена карбонил

Mo(CO)6

264,0

1 (1)

 

16

Мышьяк и его соединения в пересчете на As

-

-

0,5 (1), 0,003 (3)

 

17

Мышьяка пятиокись

As2O5

229,84

0,3 (1)

 

18

Мышьяка трехокись

As2O3

197,84

0,3 (1)

 

19

Никель

Ni

58,71

0,5 (1)

 

20

Никель сернистый в пересчете на Ni

NiS

90,76

0,5 (1)

 

21

Никель сернокислый

NiSO4

154,78

0,5 (1)

 

22

Никеля карбонил

Ni(CO)4

170,75

0,0005 (1)

 

23

Никеля растворимые соединения

-

-

1 (1)

 

24

Олово и его неорганические соединения

-

-

2 (1)

 

25

Ртуть

Hg

200,59

0,01 (1), 0,0003 (3)

 

26

Ртуть хлорная

HgCl2

271,5

0,1 (1)

 

27

Свинец и его неорганические соединения в пересчете на Pb

-

-

0,01 (1), 0,0007 (3)

 

28

Свинец сернистый

PbS

239,28

0,0017 (3)

29

Селена соединения в пересчете на Se

 -

-

0,2 (1)

 

30

Титана диоксид

TiO2

79,90

10 (1)

 

31

Хром

Cr

52,0

2 (1)

 

32

Хрома оксид

CrO3

100,0

0,01 (1), 0,0015 (2, 3)

 

33

Хром треххлористый

CrCl3·6H2O

266,48

0,01 (1)

 

34

Хрома (VI) соединения в пересчете на CrO3

-

-

0,0015 (2, 3)

 

35

Хромовокислые соли

-

-

0,01 (1)

 

36

Цинк хлористый

ZnCl2

136,29

1 (1)

 

37

Цинка оксид

ZnO

81,37

6 (1)

 


Мощным загрязнением атмосферы городов является транспорт, при этом лидирующая роль принадлежит автотранспорту. Во многих городах выбросы автодорожного транспорта превалируют над промышленностью, и составляет 60-80% от общего объёма выбросов загрязняющих веществ в атмосферу. Бурная “эпидемия автомобилизации” как фактор загрязнения окружающей среды является характерным явлением для Уфы.

Известно, что в России 75% выпускаемых бензинов являются этилированными и в своем составе содержат свинец. Использование этилированного бензина приводит к значительному загрязнению свинцом воздуха, почвы и растительности на площадях, прилегающих и городским автострадам. При истирании тормозных колодок в воздух и почву попадает тяжелые металлы (Zn, Mo, Ni, Cr), а при износе автопокрышек – Cd, Pb, Mo, Zn. Детали и механизмы автомобилей, которые подвергаются изнашиванию и коррозии в процессе экспирации, также содержат тяжелые металлы. Так, Cr, Ni, Cu, Pb входят в состав применяющих в автомобилестроении сталей в качестве легирующих компонентов.


2.2 Вода

Вода является средой, в которой возникала жизнь и обитает большая часть видов живых организмов (в атмосфере лишь слой около 100м наполнен жизнью).Поэтому при нормировании качества природных вод необходимо заботиться не только о воде как ресурсе, потребляемом человеком, но и о сохранении водных экосистем как важнейших регуляторов условий жизни планеты. Однако действующие нормативы качества природных вод ориентированы главным образом на интересы здоровья человека и рыбного хозяйства и практически не обеспечивают экологическую безопасность водных экосистем.

 Требования потребителей к качеству воды зависят от целей использования. Выделяют три вида водопользования:

 - хозяйственно-питьевое – использование водных объектов или их участков в качестве источника хозяйственно-питьевого водоснабжения, а также для водоснабжения предприятий пищевой промышленности;

 - культурно-бытовое – использование водных объектов для купания, занятий спортом и отдыха. К этому виду водопользования относятся и участки водных объектов, находящиеся в черте населенных мест;

- водоемы рыбохозяйственного назначения, которые, в свою очередь, делятся на три категории:

- высшая категория – места расположения нерестилищ, массового нагула и зимовальных ям особо ценных и ценных видов рыб, других промысловых водных организмов, а также охранные зоны хозяйств для искусственного разведения и выращивания рыб, других водных животных и растений;

 - первая категория – водные объекты, используемые для сохранения и воспроизводства ценных видов рыб, обладающих высокой чувствительностью к содержанию кислорода;

 - вторая категория – водные объекты, используемые для других рыбохозяйственных целей.

 Конечно, природные воды являются объектами и других видов водопользования - промышленного водоснабжения, орошения, судоходства, гидроэнергетики и.т.д. Использование воды, связано с ее частичным или полным изъятием, называют водопотреблением. Все водопользователи обязаны соблюдать условия, которые обеспечивают качество воды, соответствующее установленным для данного водного объекта нормативам. Существуют и некоторые общие требования к составу и свойствам воды (табл. 2.2).

 Поскольку требования к качеству воды зависят от вида водопользования, необходимо определить этот вид для каждого водного объекта или его участков. Согласно Правилам виды водопользования устанавливаются региональными органами экологического и санитарного контроля и утверждаются соответствующей исполнительной властью.

 Под ПДК природных вод подразумевается концентрация индивидуального вещества в воде, при превышении которой она непригодна для установленного вида водопользования. При концентрации вещества равной или меньше ПДК вода так же безвредна для всего живого, как и вода, в которой полностью отсутствует данное вещество.


Таблица 2.2

Общие требования к составу и свойствам воды (Правила охраны поверхностных вод от загрязнения)

Показатель

Виды водопользования

хозяйственно-питьевое

культурно-бытовое

рыбохозяйственное

высшая и первая категория

вторая категория

Взвешенные вещества

Содержание взвешенных веществ не должно увеличиваться более чем на

0,25 мг/л

0,75 мг/л

0,25 мг/л

0,75 мг/л

Плавающие примеси

На поверхности водоема не должны обнаруживаться плавающие пленки, пятна минеральных масел и других примесей

Окраска

Не должна обнаруживаться в столбике

Вода не должна иметь окраски

20 см

10 см

Запахи, привкусы

Вода не должна приобретать запахов и привкусов более 2 баллов, обнаруживаемых

Вода не должна придавать посторонних привкусов и запахов мясу рыбы

непосредственно или после хлорирования

непосредственно

Температура

Летом, после спуска сточных вод, не должна повышаться более, чем на 3 0С по сравнению со средней в самый жаркий месяц

Не должна повышаться более, чем на 5 0С там, где обитают холоднолюбивые рыбы, и не более 8 0С в остальных случаях

Водородный показатель рН

Не должен выходить за пределы 6,5 – 8,5

Минерализация воды

Не должна превышать по плотному остатку 1000 мг/л, в том числе хлоридов – 350 мг/л, сульфатов – 500 мг/л

Нормируется по показателю «привкусы»

Нормируется согласно таксации рыбохозяйственных водоемов

Растворенный кислород

В любой период года не ниже 4 мг/л в пробе, отобранной до 12 ч дня

В подледный период не ниже

6,0 мг/л

4,0 мг/л

Полное биохимическое потребление кислорода (БПК полн)

При 20 0С не должно превышать

3,0 мг/л

6,0 мг/л

3,0 мг/л

3,0 мг/л

Химическое потребление кислорода (ХПК)

Не более 15,0 мг/л

30,0 мг/л

-

-

Химические вещества

Не должны содержаться в воде водотоков и водоемов в концентрациях, превышающих ПДК, установленные

СанПиН 4630-88

Перечнем ПДК и ОБУВ вредных веществ для воды рыбохозяйственных водоемов

Возбудители заболеваний

Вода не должна содержать возбудителей заболеваний, в том числе жизнеспособные яйца гельминтов и цисты патогенных кишечных простейших

Лактозоположительные кишечные палочки (ЛКП)

Не более

-

-

10000 в 1 л

100 в 1 л

Колифаги (в бляшкообразующих единицах)

Не более 100 в 1 л

Сточная вода на выпуске в водный объект не должна оказывать острого токсического действия на тест-объекты

Токсичность воды

-

-

Характер воздействия загрязняющих веществ на человека и водные экосистемы может быть разным. Многие химические вещества могут тормозить естественные процессы самоочищения, что приводят к ухудшению общего санитарного состояния водоема (дефициту кислорода, гниению, появлению сероводорода, метана и. т. д.). В этом случае устанавливают ПДК по общесанитарному признаку вредности.

При нормировании качества воды водоемов ПДК устанавливается по лимитирующему признаку вредности – ЛПВ.

ЛПВ – признак вредного действия вещества, который характеризуется наименьшей пороговой концентрацией.

В табл.2.3 приведены значения ПДК соединений тяжелых металлов в водоемах хозяйственно-питьевого водопользования.


Таблица 2.3

Предельно допустимые концентрации вредных веществ в воде водоемов хозяйственно-питьевого водопользования [8]

№ п/п

Соединение

Формула

Молекуляр-ная масса

Концентрация, мг/л

ППКорл

ППКс.рв

ППКт

ПДКв

1

2

3

4

5

6

7

8

1

Железа соединения в пересчете на Fe

-

-

0,5

0,5

>50


0,5

2

Кадмий хлористый в пересчете на Cd

CdCl2

183,3


2

0,01

0,01

0,01


3

Кобальт хлористый в пересчете на Co

СoCl2


129,8


1000


1


≥3


1


4

Марганца соединения в пересчете на Mn

-

-

1

≤100

-

1

5

Медь сернокислая в пересчете

на Cu

CuSO4


159,6


3

0,1

10

0,1

6

Мышьяк окись в пересчете

на As

As2O3


197,8

100

0,1

0,05

0,05

7

Никель серyокислый в пересчете на Ni

NiSO4

157,8

50

0,1

>3,75

0,1

8

Ртуть:

оксид

металл

сульфид


HgO

Hg

HgS


216,6

200,6

232,7


5

5

5


0,01

0,01

0,01


0,005

0,005

0,005


0,005

0,005

0,005

9

Свинец азотнокислый в пересчете на Pb

-

-

2

0,8

0,1

0,1

10

Свинца соединение в пересчете на Pb

-

-

-

-

0,1

0,1

11

Хрома (III) соединения

в пересчете на Cr

-

-

0,5

10

>0,5

0,5

12

Хрома (VI) соединения

в пересчете на Cr

-

-

0,1

0,1

6

0,1

13

Цинка соединение в пересчете на Zn

-

-

5

1

30

1


Примечание:

При установлении ПДК вредных веществ в воде водоемов ориентируются на минимальную концентрацию веществ по одному из следующих показателей:

ППЛорл – подпороговая концентрация веществ в водоеме, определяемая по изменению органолептических характеристик(запах, цвет, привкус), мг/л.

ППКс.р.в. – подпороговая концентрация вещества, определяемая по влиянию на санитарный режим водоема (сапрофитная микрофлора, биологическая потребность в кислороде и др.), мг/л.

ППКт – подпороговая концентрация вещества в водоеме, определяемая по токсилогическим характеристикам, мг/л.

ПДКв – предельно допустимая концентрация вещества в воде водоема, мг/л.

При сбросе в водоемы нескольких загрязняющих веществ и от нескольких источников действует то же правило, что и при выбросе нескольких загрязнений в атмосферу: сумма отношений концентраций веществ, нормируемых по одинаковому ЛПВ и относящихся к 1-му и 2-му классам опасности, к их ПДК не должна превышать единицы:



На основании отчета ОАО “Башкиргеология” по гидрохимической характеристике поверхностных вод имеются превышения ПДК по некоторым тяжелым металлам:

- по молибдену в ручье около ОАО “Уфаорсинтез” (12,5 ПДК) и в правом протоке р. Белой южнее садов п. Новоалександровка (6,6 ПДК)

- по марганцу в ручье около АНП “Черкассы” и в озерах Кумлекуль, Абизово, Брызгалово (100-300 ПДК).

- по никелю в ручьях Рыча и Фирсов Овраг (18,5 ПДК)

- по меди в реке Дема в зимний период (56 ПДК).

 - по ртути в реке Шугуровка и ее притоках (7-10 ПДК).

Таким образом, имеет место несанкционированное загрязнение тяжелыми металлами ряда водных объектов Башкортостана. Высокая степень загрязнения характерна для шахтных и подвальных вод горнопромышленного комплекса РБ. Низкая степень очистки загрязненных сточных вод характерна для предприятий машиностроительного комплекса Республики [6].


2.3 Почва


В настоящее время в России для оценки загрязнения почв тяжелыми металлами (ТМ) используется как официально одобренные, так и не имеющие официального статуса нормативы. Основное их назначение – не допустить поступления в избыточном количестве антропогенно накапливающихся в почве ТМ в организм человека и тем самым избежать их негативного влияния. Почва в отличие от гомогенных водной и воздушной сред является сложной гетерогенной системой, меняющей поведение токсикантов в зависимости от её свойств . трудности обоснованной оценки почвенно-экологического состояния – одна из причин различного уровня фитотоксичности почв, установленного разными исследователями (табл. 2.4)


Таблица 2.4

Суммарные концепции микроэлементов в поверхностном слое почв, считающиеся предельными в отношении фитотоксичности мг/кг сухой массы [9]

Элемент

Концентрация (по данным разных авторов)

Ковалевский

El-Bassam

Linzon

Кабата-Пендкас

Kloke

Kita-gischi

As

B

Cd

Cr

Cu

Fe

Hg

Pb

V

Zn

-

30

-

-

60

-

-

-

-

70

50

100

5

100

100

500

5

100

-

300

25

-

8

75

100

-

0.3

200

60

400

30

100

5

1000

100

1000

5

100

100

300

20

25

3

100

100

200

4

100

50

800

15

-

-

-

125

-

-

400

-

250


Оценку почв можно проводить с учетом интенсивности и характера загрязнений. В этом случае загрязнение почвы оценивают по четырем уровням: допустимое, умерено-опасное, высоко-опасное и чрезвычайно опасное.

Суммарный показатель ZC предложен Ю.Э. Саэтом [10] и рассчитывается по формуле:



где n – число определяемых ингредиентов; KС – коэффициент концентрации элемента (вещества), определяемый отношением его содержания в загрязненной почве к фоновому.

Если ZС<16 , почва относиться к I категории загрязнения; ZС=16–32 – ко II категории; ZС=33–128 – к III категории; ZС>128 – к IV категории.

Однако расплывчивость классификационных диапазонов концентраций ТМ в почве ограничивает применение данного показателя. С его помощью возможна лишь самая общая оценка экологической ситуации на изучаемой территории.

Степень загрязнения почв можно оценивать на основе учета предельно-допустимых концентраций (ПДК) химических веществ. Согласно этой схеме нормирование в почвах подразделяется на транслокационное (переход нормируемого элемента в растение) и общесанитарное (влияние на самоочищающую способность почвы и почвенный микробиоценоз). Значение ПДК представлены в табл.2.5 [11]

Недостатком этой разработки является ограниченность информации по элементам. Кроме этого значение ПДК и ОДК для некоторых металлов(например для цинка и свинца)не учитывают наличие у растений защитных механизмов, которые могут существенно ограничить поступление избытка химических элементов в надземные органы [12]


Таблица 2.5

Предельно-допустимые концентрации тяжелых металлов в почве и ориентировочно допустимые концентрации их в почвах с различными физико-химическими свойствами, утвержденные Госкомсанэпиднадзором России, ГН 2.1.7.020-94

Наименование вещества

Величина ПДК (мг/кг) почвы с учетом фона

Лимитирующий показатель вредности

1

2

3

Предельно допустимые концентрации (ПДК)

Валовое содержание

Ванадий

Ванадий + марганец

Мышьяк

Ртуть

Свинец

Свинец + ртуть

Сурьма

150

100+1000

2,0

2,1

32,0

120,0+1,0

4,5

Общесанитарный

Общесанитарный

Транслокационный

Транслокационный

Общесанитарный

Транслокационный

Воздушномиграционный

Подвижная среда

Кобальт*

Марганец (извлекаемый 0,1н H2SO4)

черноземы

дерново-подзолистые почвы:

pH 4,0

pH 5,1-6,0

pH > 6,0

(извлекаемый ацетатно-аммонийным буфером с pH 4,8)

черноземы

дерново-подзолистые почвы:

pH 4,0

pH 5,1-6,0

pH > 6,0

5,0

700

300

400

500




140



60

80

100


Общесанитарный

Общесанитарный

Общесанитарный

Общесанитарный

Общесанитарный








Общесанитарный


Медь**

Никель**

Свинец**

Цинк**

Хром**

3,0

4,0

6,0

23,0

6,0

Общесанитарный

Общесанитарный

Общесанитарный

Транлокационный

Общесанитарный

Ориентеровочно-допустимые концентрации (ОДК)

Валовое содержание мг/кг

Никель



Медь



Цинк



Мышьяк



Кадмий



Свинец

а)20

б)40

в)80

а)33

б)66

в)132

а)55

б)110

в)220

а)2

б)5

в)10

а)0,5

б)1,0

в)2,0

а)32

б)65

в)130

Общесанитарный

Общесанитарный

Общесанитарный

Общесанитарный

Общесанитарный

Общесанитарный

Транлокационный

Транлокационный

Транлокационный

Транлокационный

Транлокационный

Транлокационный

Транлокационный

Транлокационный

Транлокационный

Общесанитарный

Общесанитарный

Общесанитарный

Страницы: 1, 2, 3


© 2000
При полном или частичном использовании материалов
гиперссылка обязательна.