РУБРИКИ |
Безотходные и малоотходные технологии |
РЕКЛАМА |
|
Безотходные и малоотходные технологииБезотходные и малоотходные технологииБезотходные и малоотходные технологии (реферат) П Л А Н Безотходная переработка отходов.. 7 Текущая ситуация в России и Москве.. 9 Дешевый завод для крупного города.. 10 Методы утилизации углеродсодержащих отходов.. 13 ВведениеВ настоящее время на предприятиях горнодобывающей, металлургической, химической, деревообрабатывающей, энергетической, строительных материалов и других отраслей промышленности Российской Федерации ежегодно образуется около 7 млрд. т. отходов. Используется же лишь 2 млрд. т., или 28% от общего объема. В связи с этим, в отвалах и шламохранилищах страны накоплено около 80 млрд. т. только твердых отходов. Под полигоны для их хранения ежегодно отчуждаются около 10 тыс. га пригодных для сельского хозяйства земель. Наибольшее количество отходов получается при добыче и обогащении сырья. Так, в 1985 году объем вскрышных, попутно добываемых пород и отходов обогащения в различных отраслях промышленности бывшего Советского Союза был, соответственно, 3100 и 1200 млн. м3 . Большое количество отходов образуется в процессе заготовки и переработки древесного сырья. На лесозаготовках отходы составляют 46,5% от общего объема вывезенной древесины. В нашей стране образуется ежегодно более 200 млн. м3 древесных отходов . Несколько меньше отходов получается на предприятиях черной металлургии. В 1994 году выход огненно-жидких шлаков составил 79,7 млн. т., в том числе 52,2 млн. т. доменных, 23,3 млн. т. сталеплавильных и 4,2 млн. т. ферросплавных. Значительно больше отходов на 1 т. металла получается при производстве цветных металлов. В процессе обогащения руды — от 30 до 100 т. измельченных хвостов на 1 т. концентратов, а при плавке руды на 1 т. металла — от 1 до 8 т. шлаков, шламов и других отходов. Ежегодно на предприятиях химической, пищевой, минеральных удобрений и других отраслей промышленности образуется более 22 млн. т. гипсосодержащих отходов и около 120—140 млн. т. осадков сточных вод (в сухом виде), около 90% из которых получаются при нейтрализации производственных сточных вод.[1] На городских свалках даже среднего города ежегодно скапливаются сотни тысяч тонн бытовых отходов. Разлагаясь, они отравляют воздух, почву, подземные воды и превращаются, таким образом, в серьезную опасность для окружающей среды и человека. Вот почему "героями дня" становятся эффективные, безотходные, а главное - экологически чистые технологии промышленной переработки мусора. К их числу принадлежат современные мусоросжигательные заводы, способные обезвредить и утилизировать бытовые отходы и попутно произвести тепловую и электрическую энергию, компенсируя тем самым немалые затраты на саму переработку. Во всем мире переработка и утилизация бытовых отходов становятся все более злободневной проблемой. Главным образом это касается крупных густонаселенных городов, где ежегодно скапливаются миллионы кубометров всевозможного мусора. Дымящиеся свалки, кучи выброшенного хлама, переполненные мусорные баки - в России такие картины знакомы многим городским жителям. Подсчитано, что каждый год в стране скапливается только твердых бытовых отходов 140 миллионов кубометров, а к 2005 году эта цифра возрастет до 190 миллионов. Проблему уничтожения такой огромной массы мусора, бесспорно, можно отнести к категории экологических, с другой стороны, она самым тесным образом связана с решением сложных технических и экономических вопросов. Что такое ТБОЭкологическую обстановку в городах с высокой плотностью населения независимо от того, есть в них вредные производства или нет, во многом определяет состояние системы санитарной очистки от непромышленных отходов. К ним относятся главным образом твердые бытовые отходы, или ТБО, как называют их специалисты. Так обозначают весь мусор, который ежедневно скапливается в наших домах и квартирах и проделывает путь от мусоропровода до дворового контейнера и дальше до городской свалки. Сюда же относятся отходы, сопровождающие деятельность коммерческих и производственных фирм, пользующихся услугами коммунальных служб, садовый и уличный мусор, листва и некоторые другие. Существуют рассчитанные на год нормы накопления бытовых отходов на одного человека, на одно место в гостинице, на квадратный метр торговой площади магазина и т. д. В крупных городах на нормы накопления мусора, как правило, влияют уровень развития легкой и пищевой промышленности, индустрии упаковочных материалов, климатическая зона и, конечно же, менталитет и благосостояние населения. В промышленных городах центральной части России норма отходов на душу населения оценивается сейчас в 225-250 килограммов в год. Для сравнения: в развитых европейских странах, таких, как Бельгия, Великобритания, Германия, Дания, Италия, Нидерланды, Швеция, Швейцария, Япония, этот показатель уже в 1995-1996 годах достиг 340-440 килограммов, в Австрии и Финляндии - свыше 620, а в США превысил 720 килограммов на одного человека в год. Постоянные компоненты бытовых отходов, обычно попадающие в дворовые контейнеры, - бумага, картон, пищевые остатки, текстиль, древесина, листва, черный и цветной металл, кости, стекло, кожа, резина, камни, керамика, полимерные материалы. Зачастую туда же выбрасываются крупногабаритные отходы: строительный мусор, отслужившая свой век мебель, бытовая техника и другие. Многие отходы токсичны. Только одна "пальчиковая" батарейка заражает солями тяжелых металлов и химикатами 20 кубометров мусора, а с разбитыми термометрами и ртутьсодержащими приборами на свалки ежегодно попадает большое количество ртути, во Франции эта цифра подсчитана - 5 тонн. Доля полимерных материалов в бытовых отходах за последние 30 лет резко возросла во всех развитых странах. В Японии и Италии она составляет сейчас 10-15%, в Москве - 6%. Последние 20-25 лет при более или менее постоянном составе всех прочих компонентов в общей массе отходов растет доля полимерных материалов. В промышленно развитых странах, таких, как Япония и государства Европейского Союза, она наибольшая - 10-15%, в Москве - всего 6%, но рост налицо: в 1960 году доля полимеров в бытовых отходах столицы составляла 0,7%. Это, очевидно, связано со все большим применением полимерной упаковки, которая в 1960-х годах была большой редкостью. Проблемы мусорной свалкиСамый распространенный до последнего времени способ борьбы с бытовыми отходами в городах - вывоз их на свалки - не решает проблему, а, прямо скажем, усугубляет ее. Свалки - это не только эпидемиологическая опасность, они неизбежно становятся мощным источником биологического загрязнения. Происходит это из-за того, что анаэробное (без доступа воздуха) разложение органических отходов сопровождается образованием взрывоопасного биогаза, который может представлять угрозу для человека, вредно воздействует на растительность, отравляет воду и воздух. Более того, главный компонент биогаза - метан - признан одним из виновников возникновения парникового эффекта, разрушения озонового слоя атмосферы и прочих бед глобального характера. В общей сложности из отходов в окружающую среду попадает более ста токсичных веществ. Нередко свалки горят, выбрасывая в атмосферу ядовитый дым. Под полигоны для мусора на десятки лет отчуждаются громадные территории, их, безусловно, можно было бы использовать с большей пользой. И, наконец, чтобы обустроить полигон и содержать его на уровне современных экологических требований, нужны большие средства. Очень дорого обходится рекультивация закрытых (уже не действующих) полигонов. Это целый комплекс мер, цель которых - остановить вредное воздействие свалок на окружающую среду, в том числе на почву и подземные воды. Рекультивация всего лишь одного гектара мусорного полигона обходится сегодня в 6 миллионов рублей. Велики и транспортные расходы на перевозку отходов, поскольку свалки, как правило, располагаются далеко от города. Мегаватты из отходовВ экономически развитых странах все меньше бытовых отходов вывозится на свалки и все больше перерабатывается промышленными способами. Самый эффективный из них - термический. Он позволяет почти в 10 раз снизить объем отходов, вывозимых на свалки, причем несгоревший остаток уже не содержит органических веществ, вызывающих гниение, самопроизвольное возгорание и опасность эпидемий. Сейчас зарубежные специалисты делают ставку на мусоросжигательные установки, которые не только сжигают отходы, но и перерабатывают выделяемое при этом тепло в энергию. Тем не менее в большинстве стран выработка и утилизация тепловой и электрической энергии рассматриваются всего лишь как дополнение к обезвреживанию отходов. В этой связи особое внимание привлекает концепция "энергетического баланса", предложенная рабочей группой Всемирного энергетического совета: полученная энергия должна покрывать энергетические затраты на саму переработку мусора. Поэтому выбор технологии чаще всего определяется балансом производимой и потребляемой энергии. Наибольший эффект дают комплексные технологии (утилизация материалов и сжигание) или непосредственное сжигание неподготовленных отходов, а наименьший - компостирование отходов с захоронением неорганических остатков. Специалисты считают, что уже в ближайшее время сжигание с выработкой электрической и тепловой энергии будет основным способом переработки отходов. В будущем мусоросжигательные энергетические установки, скорее всего, войдут в интегрированную систему управления отходами вместе с предприятиями по утилизации и вторичному использованию некоторых материалов (стекла, металла, бумаги и т. д.). В этой области первыми добиваются успехов те страны, где остро ощущается "дефицит территории" и введены ограничения на захоронение определенных видов отходов. Еще в 1990 году в Японии сжигалось 74% отходов, в Швейцарии - 77%, в Дании - 54%. В прошлом году в Германии работало 57 мусоросжигательных заводов, в Великобритании - 23, а к концу века планируется ввести в строй еще 22. В США количество отходов, сжигаемых в установках с выработкой энергии, должно увеличиться с 30 миллионов тонн в 1990 году до 70 миллионов тонн в 2000-м. Безотходная переработка отходовСейчас в мировой практике применяется больше десятка технологий сжигания бытовых отходов. По оценке Всероссийского теплотехнического института (ВТИ), вырабатываемая при их реализации тепловая энергия наиболее эффективно используется в трех случаях: при сжигании твердых отходов на колосниковых решетках, в топке с псевдоожиженным (кипящим) слоем и по технологии, называемой "Пиролиз - высокотемпературное сжигание". Сжигание на колосниках в слоевой топке считается самой распространенной технологией. По этому методу работают большинство зарубежных мусоросжигательных заводов и все, построенные до настоящего времени в России. Сжигание отходов в топках с псевдоожиженным слоем широко распространено в Японии. В Европе таких заводов только два - в Испании и Германии, строительство еще двух ведется во Франции и в России (Москва). В США работает завод по сжиганию отходов в циркулирующем псевдоожиженном слое. К сожалению, обе эти технологии не решают проблему утилизации и обезвреживания твердых остатков - шлака и особенно летучей золы, которая улавливается системой газоочистки. Но если шлак можно использовать, например на засыпке оврагов или в строительстве (см. "Наука и жизнь" № 5, 1996 г.), то золу приходится захоранивать на специально оборудованных полигонах, поскольку она адсорбирует тяжелые металлы и другие токсичные вещества. Есть и другие пути переработки твердых остатков, но все они требуют дополнительных материальных затрат. На диаграмме показана энергетическая эффективность одиннадцати применяемых в США технологий переработки бытовых отходов. Наибольшим энергетическим эффектом обладают комбинированные методы с применением установок по утилизации материалов и сжиганию или непосредственное сжигание неподготовленных отходов с выработкой тепловой и электрической энергии, а наименьшим - компостирование с захоронением неорганических остатков: 1 - утилизация плюс сжигание; 2 - сжигание неподготовленных отходов; 3 - утилизация материалов с раздельным сбором плюс сжигание; 4 -непосредственное сжигание топлива, полученного из отходов; 5 - утилизация материалов с раздельным сбором плюс сжигание топлива, полученного из отходов; 6 - утилизация отходов с раздельным сбором плюс сжигание плюс компостирование; 7 - утилизация материалов с раздельным сбором плюс захоронение; 8 - захоронение со сбором газа; 9 - подготовка топлива, полученного из отходов, плюс компостирование; 10 - утилизация материалов с раздельным сбором плюс захоронение плюс компостирование; 11 - компостирование отходов плюс захоронение. Обезвредить золу и шлак позволяют комбинированные технологии сжигания отходов при высокой температуре. К ним относится, например, практически безвредная комбинированная технология немецкой фирмы "Сименс" под названием "Пиролиз - высокотемпературное сжигание". С ее внедрением переработка ТБО стала почти полностью безотходной. Первый крупномасштабный завод, работающий по данной технологии, построен в городе Вюрте (Германия). Новый метод сочетает в себе низкотемпературный пиролиз (обработку отходов без доступа кислорода) и последующее их сжигание при высокой температуре. Сейчас на заводе идут промышленные испытания. После начала эксплуатации он сможет принимать 100000 тонн бытовых отходов в год. Комбинированная технология фирмы "Сименс" выгодно отличается от прочих тем, что, во-первых, из бытовых отходов получают материалы, пригодные для использования практически без дальнейшей обработки. Во-вторых, выходящие из установки газы по степени очистки отвечают самым строгим требованиям, более того, зачастую содержание в них вредных веществ гораздо ниже установленных пределов. Наконец, метод дает возможность использовать выделяемое при сжигании отходов тепло для производства электроэнергии и централизованного теплоснабжения или направлять его на технологические нужды. Диоксины и фураныСжигание полимерных материалов, содержащих хлор, неизбежно сопровождается появлением в дымовых газах хлорсодержащих токсичных компонентов - диоксинов и фуранов. Так называют большую группу веществ, основу молекул которых составляют два шестичленных углеродных кольца. В органической химии известно 210 подобных соединений. Если в них нет атомов хлора, то эти вещества токсичны не больше, чем, например, бензин, однако при замещении в кольцах атомов водорода на атомы хлора образуются опасные для природы и человека диоксины и фураны - всего около 20 соединений разной степени токсичности. Они привлекают внимание экологов и специалистов на протяжении двух последних десятилетий, особенно после взрыва на химическом предприятии в городе Севезо в Италии. Тогда облако, содержащее в больших концентрациях диоксин, распространилось на территории 16 квадратных километров и вызвало массовое отравление людей и домашних животных. Источники диоксинов и фуранов - не только аварийные ситуации на предприятиях химической промышленности. Эти ядовитые вещества образуются в обычных условиях при сжигании древесины, отходов, дизельного топлива, при выплавке меди, производстве целлюлозы, в цементных печах и других (особенно химических) производствах. Все это - контролируемые выбросы диоксинов, но существуют и более мощные неконтролируемые источники, главным образом горящие свалки, костры, в которых сжигают мусор и растительные отходы, в том числе и на садовых участках. Температура их горения относительно низкая - до 600оС. При таком режиме образуется в десятки раз больше диоксинов и фуранов, чем на мусоросжигательных заводах, где используется высокотемпературный процесс (свыше 1000оС). Если заводская технология строго соблюдается, концентрация хлорсодержащих токсичных компонентов в дымовых газах опускается до самых низких нормативных значений, принятых в европейских странах, а сейчас и в Москве. Иначе говоря, в отличие от захоронения на свалках при сжигании отходов на заводе можно не только контролировать их количество и воздействие на окружающую среду, но и, что очень важно, управлять этим процессом. Текущая ситуация в России и МосквеПо сравнению с Западной Европой утилизация отходов в России имеет ряд особенностей. Главные из них - суровый климат и сбор всех отходов в общий контейнер без предварительной сортировки. Из-за большой доли несгораемых веществ и высокой влажности бытовых отходов их калорийность невысока - всего 1000-1500 ккал/кг. Это почти в два раза ниже, чем в большинстве городов Европы, США и Японии. Объемы промышленной переработки и утилизации мусора в стране до сих пор ничтожно малы. Сейчас действуют всего лишь 7 заводов по термической переработке отходов, причем два из них реконструируются, а остальные работают не на полную мощность. На всех этих предприятиях, вместе взятых, обезвреживается меньше 1% бытовых отходов. Для строительства новых заводов нужны большие материальные средства, а переработка отходов на тех, что есть, экономически невыгодна из-за устаревшей технологии. Первое обстоятельство связано с тем, что нет отечественного оборудования, а закупать его за рубежом очень дорого, второе - с неэффективным использованием тепловой энергии и невысокой теплотворной способностью самих отходов, хотя их приравнивают к низкокалорийным топливам, таким, как сланцы или торф. Проблема избавления от мусора стоит наиболее остро в крупных городах, особенно в Москве. Население столицы приближается к 9 миллионам человек, а вместе с приезжими превышает 10 миллионов. Каждый год Москва выбрасывает около 10 миллионов кубометров мусора (бытовых отходов, осадков водопроводной, канализационной сети и ливневоочистных сооружений). Большая их часть добавляется к накопившимся за многие годы горам отходов на столичных свалках. Вокруг Москвы их свыше двухсот. Самые большие по площади - Тимохово, Хметьево, Саларьево, Щербинка. Кроме санкционированных часто образуется множество так называемых самовольных свалок. Кучи мусора можно встретить в поймах рек, в лесах и вокруг дачных участков. В Московской области свалки занимают свыше 800 гектаров. Дешевый завод для крупного городаДля большинства промышленных городов России - Челябинска, Магнитогорска, Екатеринбурга и многих других - очень важно, чтобы строительство мусоросжигательного завода было под силу городскому бюджету. Для того чтобы снизить капитальные затраты, нужно оснастить завод отечественным оборудованием. Но не менее важно выбрать рациональную технологическую схему, которая позволила бы совместить работу завода с ТЭЦ или котельной и тем самым повысить экономичность переработки отходов. Специалисты подсчитали, что для городов с населением 500-600 тысяч человек оптимальным будет завод производительностью 120-150 тысяч тонн бытовых отходов в год, а наиболее экономичным способом использования энергии - отпуск тепла. С учетом этого во Всероссийском теплотехническом институте сейчас разрабатывается отечественная технология сжигания твердых бытовых отходов, созданная под оборудование российского производства. Примером может служить строящийся мусоросжигательный завод в Тракторозаводском районе Челябинска, который будет работать в единой системе с городской ТЭЦ-2. Его технологическая схема достаточно проста: вода с ТЭЦ поступает на завод, где в котлоагрегатах вырабатывается пар. оттуда одна его часть через общий коллектор с ТЭЦ подается потребителям, другая - на технологические нужды мусоросжигательного завода. Себестоимость переработки отходов в этом случае значительно ниже, чем при автономной схеме. Отходы поступают на переработку без какой-либо предварительной подготовки. Подъехавшие мусоровозы проходят через автовесовую и сразу направляются по эстакаде в приемное отделение на разгрузку. Приемный бункер, рассчитанный на трехсуточный запас отходов, обслуживается двумя мостовыми грейферными кранами грузоподъемностью по 10 тонн. С помощью многочелюстных захватов - грейферов ТБО перемешиваются и из них удаляются крупногабаритные предметы. Затем отходы попадают в топку мусоросжигательного котла. Для его растопки и стабилизации горения влажных отходов используются четыре газовые горелки. Одновременно с отходами в топку подают негашеную известь-пыленку. Она связывает вредные примеси (HCl, HF и SO2) в дымовых газах. На подвижной решетке начинается процесс подсушивания отходов горячим воздухом и потоком тепла из топки. Продвигаясь дальше, отходы воспламеняются и интенсивно горят. Вращающиеся валки под колосниковой решеткой помогают интенсивной шуровке (ворошению) отходов и одновременно перемещают их из одной температурной зоны в другую, включая зону максимальных температур (950-1000оС). В конце топочной камеры остатки отходов догорают и остывает шлак, который потом сбрасывается в устройство выгрузки. Далее на входе в котел-утилизатор, в так называемой зоне дожигания, поток газов интенсивно перемешивается с воздухом, в результате дожигается токсичный оксид углерода. Процесс горения отходов регулируется и контролируется с центрального диспетчерского пульта, оснащенного компьютером. Котел-утилизатор и расположенная под ним топка скомпонованы как одно целое. С котлом соединяется первый подъемный газоход. Газы проходят по нему при температуре 850-1000оС в течение 2 секунд. За это время успевают разложиться почти все наиболее токсичные вещества (диоксины и фураны). Далее дымовые газы попадают в циклоны (сепараторы), затем в полусухой абсорбер и роторный фильтр, а оттуда зола и продукты газоочистки поступают в систему золоудаления. Такая многоступенчатая система очистки дымовых газов дает хорошие результаты - концентрация вредных веществ на выходе из дымовой трубы не превышает нормативов зарубежных установок. Шлак, зола и продукты газоочистки направляются в бункеры-накопители, но предварительно шлак очищается на магнитном сепараторе от металла. Отделенный металл пакетируется на прессе и идет во "Вторчермет", а зола и продукты газоочистки специальным транспортом направляются на переработку. Шлак грузится на самосвалы и вывозится на предприятия строительной индустрии. Там из него делают шлакоблоки или используют на строительстве дорог. График иллюстрирует, как изменялось соотношение способов переработки бытовых отходов в США за последние 30-35 лет: если до середины 80-х годов объем захоронения отходов на свалках постоянно увеличивался, то в последнее десятилетие он пошел на спад; доля сжигания отходов с утилизацией тепла неуклонно растет, а без утилизации - резко падает практически до нулевого уровня. Чтобы достичь запланированной производительности - 150 тысяч тонн твердых бытовых отходов в год, заводу нужны две технологические линии производительностью по 10 тонн в час при круглосуточном режиме работы. Все оборудование, включая газоочистное, на завод поставляют отечественные производители. Лишь один важный элемент мусоросжигательного агрегата - механическая решетка приобретается у фирмы ЧКД-Дукла (Чехия). Стоимость такого мусоросжигательного завода, как Челябинский, в несколько раз ниже стоимости аналогичных заводов, поставляемых зарубежными фирмами. Специалисты ВТИ считают, что опыт его строительства послужит примером для других городов России. Так что же такое мусоросжигательный завод? Дополнительный источник энергии и помощник в решении проблемы санитарной очистки городов от бытовых отходов, как считают энергетики и коммунальщики, или генератор диоксинов, как утверждают оппоненты? А что такое автомобиль? Средство передвижения или главный источник загрязнения атмосферы оксидом углерода и другими вредными веществами? Все зависит от того, в какие руки попадет автомобиль или мусоросжигательный завод, каков уровень компетентности их создателей и обслуживающего персонала и какова серьезность подхода к строительству и эксплуатации объекта. Пока же из двух "зол" между вывозом мусора на свалки и сжиганием его на мусоросжигательных заводах нужно безоговорочно выбирать наименьшее - сжигание. Методы утилизации углеродсодержащих отходовВ мировой практике для утилизации и обезвреживания ПО и ТБО используют термические, химические, биологические и физико-химические методы К термическим методам обезвреживания отходов относятся сжигание, газификация и пиролиз. Сжигание - наиболее отработанный и используемый способ. Этот метод осуществляется в печах различных конструкций при температурах не менее 1200°С. В результате сгорания органической части отходов образуются диоксид углерода, пары воды, оксиды азота и серы, аэрозоль, оксид углерода, бензопирен и диоксины. Зола, имеющая в своем составе неподвижную форму тяжелых металлов, накапливается в нижней части печи и периодически вывозится на полигоны для захоронения или используется в производстве цемента. Газификация - широко используемый в металлургии способ переработки некоксующихся углей - осуществляется в вихревых реакторах или печах с кипящим слоем при температурах 600-1100°С в атмосфере газифицирующего агента (воздух, кислород, водяной пар, диоксид углерода или их смесь). В результате реакции образуются синтез-газ (H2, СО), туман из жидких смолистых веществ, бензопирена и диоксинов. Реакция газификации протекает в среде с восстановительными свойствами, поэтому оксиды азота и серы практически не образуются. Масса тумана при 600°С может доходить до 30% от массы синтез-газа. При увеличении температуры газификации доля тумана в массе синтез-газа падает и при температуре более 1100°С близка к нулю. Горючая смесь водорода и оксида углерода сжигается на горелках при 1400-1600°С или используется в каталитическом процессе синтеза метилового спирта. Зола, остающаяся после газификации, может содержать остаточный углерод и соли тяжелых металлов, растворимые в воде. После проверки золы на отсутствие бензопирена, диоксинов и тяжелых металлов в подвижной форме она может быть отправлена на захоронение. Пиролиз - наиболее изученный процесс широко используется для производства активированного угля из древесины. Пиролиз нефтесодержащих отходов проводят при температуре 600-800°С с вакуумированием реактора. При этом протекают реакции коксо- и смолообразования, разложения высокомолекулярных соединений на низкомолекулярные, жидкую и газообразную фракции, а если углеводородные отходы содержат серу, то образуются также сероводород и меркаптаны. Оксиды азота и серы практически не образуются. Химические методы обезвреживания жидких и твердых нефтесодержащих отходов заключаются в добавлении к нейтрализуемой массе химических реагентов. В зависимости от типа химической реакции реагента с загрязнением происходит осаждение, окисление-восстановление, замещение, комплексообразование. Методы осаждения основаны на ионных реакциях с образованием мало растворимых в воде веществ и особенно эффективны при нейтрализации тяжелых металлов и радионуклидов. Метод осаждения органических загрязнений основан на двух типах реакций: комплексообразование и кристаллизация. Осаждение используют для очистки грунта от полихлорированных бифенилов, пентахлорфенолов, хлорированных и нитрированных углеводородов. Реагенты могут быть как в жидкой, так и в газообразной фазах. Однако при этом происходит увеличение объема обезвреженной массы. Методы управления окислительно-восстановительной реакцией среды позволяют переводить соединения тяжелых металлов и радионуклидов в трудно растворимые в воде гидрооксиды, а также разрушать цианиды, нитраты, тетра-хлориды и другие хлорорганические соединения. Для химической иммобилизации или компексообразования используют неорганические вяжущие типа цемента, золы, силикатов калия и натрия, извести и гелеобразующих веществ (бентонит или целлюлоза). Иммобилизацию используют для связывания тяжелых металлов, радиоактивных отходов, полициклических и ароматических углеводородов, трихлорэтилена и нефтепродуктов. Недостатком комплексообразования является неустойчивость вяжущих веществ к атмосферной и грунтовой влаге, быстрым изменениям температуры, что приводит в результате к разрушению композиционного материала. Объем отходов после комплексообразования уменьшается только в 2 раза. Биологические методы обезвреживания ПО и ТБО находят все более широкое применение в нашей стране и особенно за рубежом. Они основаны на способности различных штаммов микроорганизмов в процессе жизнедеятельности разлагать или усваивать в своей биомассе многие органические загрязнители. В процессе биообезвреживания происходит вторичное загрязнение атмосферного воздуха продуктами гниения клеток микроорганизмов - сероводородом и аммиаком. Биологическая очистка чаще всего используется для нейтрализации органических токсикантов и тяжелых металлов, а также азотных и фосфорных соединений в почвах и грунтах. Биологические методы можно условно подразделить на микробиодеградацию загрязнителей, биопоглощение и перераспределение токсикантов. Микробиодеградация - это деструкция органических веществ определенными культурами микрофлоры, внесенными в грунт. Процесс биоразложения протекает с заметной скоростью при оптимальной температуре и влажности. Микробиодеградация может быть использована во всех случаях, где естественный микробиоценоз сохранил жизнеспособность и видовое разнообразие. Хотя процесс идет крайне медленно, его эффективность высока. Биопоглощение - это способность некоторых растений и простейших организмов ускорять биодеградацию органических веществ или аккумулировать загрязнения в клетках. Физико-химические методы образуют наиболее представительную группу методов обезвреживания ПО и ТБО. При создании физических полей в пористых средах начинают протекать одновременно множество физико-химических процессов. При наложении поля механических напряжений загрязненный грунт интенсивно перемешивается и происходит очистка частиц грунта от поверхностных загрязнений. Гидродинамическое воздействие на грунт или почву сопровождается суффозией, выщелачиванием, адсорбцией, диффузией и выносом загрязнений из порового пространства грунтов. Перспективен метод сверхкритической экстракции углекислым газом органических загрязнений. Постоянное электрическое поле, приложенное к водонасыщенному грунту или почве, вызывает протекание электрохимических и электрокинетических процессов. К электрохимическим процессам относятся: электролиз, электрофлотация, электрокоагуляция, электродеструкция, электрохимическое обеззараживание, ионный обмен, электрохимическое окисление и выщелачивание, электродиализ, а к электрокинетическим - электроосмос, электрофорез и электромиграция. Электролиз порового раствора загрязненных грунтов и почв - это окислительно-восстановительный процесс, в результате протекания которого происходит разложение химических соединений. Он используется для очистки грунтов от микроорганизмов и называется электрохимическим обеззараживанием. Эффективность метода доходит до 99%. При электрофлотации удаление нефтепродуктов происходит пузырьками газа, образующимися при электролизе и поднимающимися к поверхности. Электрокоагуляция - это процесс агрегации микрочастиц минерального происхождения и органических молекул. В методе электрокоагуляции используют железные и алюминиевые электроды, при растворении которых образуются гидрооксиды, адсорбирующие загрязнения и выпадающие затем в осадок. Электрохимическое окисление применяется для очистки грунтов от хлорированных углеводородов и фенола. Эффективность окисления фенола 70-92%. Электрохимическое выщелачивание - это метод очистки грунтов, основанный на высолаживании загрязнений или переводе тяжелых металлов в подвижную форму. Однако метод требует внесения дополнительных химических реагентов. Электродеструкция осуществляется при электрохимическом разложении токсичных органических соединений на электродах с образованием нетоксичных веществ. Преимущество метода в низкой стоимости и высокой эффективности. При электродиализе порового раствора грунтов и почв происходит очистка от загрязнений в коллоидной форме, обессоливание в средней части межэлектродного пространства. Электрокинетические методы начали широко применяться с 60-х годов. Электрокинетическая обработка применяется для очистки глинистых и суглинистых грунтов. Электрокинетические явления, наблюдающиеся в пористых средах при протекании постоянного электрического тока, подразделяются на электроосмос и электрофорез. При электроосмосе ионы, содержащиеся в жидкости, перемещаются относительно неподвижной заряженной поверхности минеральных частиц грунта, увлекая при этом загрязнения в растворенном или жидком состоянии. Электроосмотическая скорость потока пропорциональна произведению силы потока на величину дзетта-потенциала и на удельную поверхность пористой среды. При протекании электрофореза в поровом пространстве грунта, заполненном полностью или частично водой, перемещаются минеральные частицы. Это явление имеет крайне незначительную роль в электрокинетическом переносе загрязнений в диссоциированной форме, но определяющую в переносе коллоидных и заряженных минеральных частиц Электрофоретическое перемещение коллоидных и микрочастиц наблюдается в макропористых грунтах (песчаник, супесь). Под действием напряжения, приложенного к электродам, которые погружены в скважины, вода и экотоксиканты в коллоидном состоянии перемещаются к электродным резервуарам, из которых затем вода с загрязнениями извлекается на поверхность и очищается одним из физико-химических методов. Эффективность очистки может доходить до 99%. Отдельную группу составляют электромагнитные методы, основанные на термическом эффекте при взаимодействии электромагнитного излучения с веществом В сверхвысокочастотных полях происходит быстрый и равномерный прогрев грунта, и при этом протекают дегидратация, диссоциация карбонатов, окисление и даже плавление. Десорбирующиеся органические соединения обезвреживаются, например, каталитическим методом. Обезвреживание ПО и ТБО с помощью ультрафиолетового и лазерного излучения относится также к электромагнитным методам. Активация ароматических молекул УФ и лазерным излучениями приводит к диссоциации молекул с образованием радикалов и активных комплексов, быстрому окислению и полимеризации. Эффективен для очистки грунта от нефтепродуктов ультразвук. Начиная с критического значения звукового давления акустических волн, в жидкости возникает кавитация. При схлопывании кавитационных полостей образующиеся микроструи с линейными скоростями 300-800 м/с срывают с поверхности твердых частиц нефтяные загрязнения. Эффективность очистки может достигать 99,5-99,8%. При кавитационных разрывах жидкости происходит ионизация и активация молекул, стимулирующие окисление и полимеризацию углеводородных молекул. Рассмотренные выше методы являются базой для уже созданных технологий обезвреживания ПО и ТБО или технологий, разрабатываемых в настоящее время. Каждый метод обезвреживания отходов и технология на его основе имеют определенную нишу, то есть совокупность физико-химических параметров отходов и возможностей метода, оптимальное сочетание которых позволяет достичь наибольшей прибыли или минимальных затрат на обезвреживание определенного вида отходов при наименьшем экологическом ущербе природе. Литература1. Матросов А. С. Проблемы санитарной очистки города Москвы. Известия Академии промышленной экологии , № 1, 1997. 2. Мусор - проблема физико-химическая. // "Наука и жизнь" № 7, 1978. 3. Нужное из ненужного. // "Наука и жизнь" № 7, 1986. 4. О состоянии окружающей природной среды Российской Федерации в 1998 году Государственный доклад. – М., 1999; 5. Переработка и утилизация промышленных отходов Челябинской области / И.П. Добровольский, И.Я. Чернявский, А.Н. Абызов, Ю.Е. Козлов. – Челябинск, 2000; 6. Состояние окружающей среды Московской области в 1997 году II Государственный доклад. – М., 1998; 7. Экологический бумеранг. // "Наука и жизнь" № 5, 1996. 8. Эскин Н. Б., Тугов А. Н., Изюмов М. А. Разработка и анализ различных технологий сжигания бытовых отходов. Сборник. Москва, ВТИ, 1996. [1] См.: Переработка и утилизация промышленных отходов Челябинской области / И.П. Добровольский, И.Я. Чернявский, А.Н. Абызов, Ю.Е. Козлов. – Челябинск, 2000. – С. 3-5. |
|
© 2000 |
|